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Introduction

The growth of the internet has been phenomenal. According to Internet 
World Stats (https://www.internetworldstats.com/emarketing.htm), 
69 percent of the world is now connected in some way to the internet, 

including developing countries. North America has the highest penetration rate 
93.4 percent, which means you now have access to nearly everyone just by  
knowing how to manipulate data. Data science turns this huge amount of data into 
capabilities that you use absolutely every day to perform an amazing array of 
tasks or to obtain services from someone else.

You’ve probably used data science in ways that you never expected. For example, 
when you used your favorite search engine this morning to look for something, it 
made suggestions on alternative search terms. Those terms are supplied by data 
science. When you went to the doctor last week and discovered that the lump you 
found wasn’t cancer, the doctor likely made the prognosis with the help of data 
science.

In fact, you may work with data science every day and not even know it. Even 
though many of the purposes of data science elude attention, you have probably 
become more aware of the data you generate, and with that awareness comes a 
desire for control over aspects of your life, such as when and where to shop, or 
whether to have someone perform the task for you. In addition to all its other 
uses, data science enables you to add that level of control that you, like many 
people, are looking for today.

Python for Data Science For Dummies, 3rd Edition not only gets you started using 
data science to perform a wealth of practical tasks but also helps you realize just 
how many places data science is used. By knowing how to answer data science 
problems and where to employ data science, you gain a significant advantage  
over everyone else, increasing your chances at promotion or that new job you 
really want.

https://www.internetworldstats.com/emarketing.htm
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About This Book
The main purpose of Python for Data Science For Dummies, 3rd Edition, is to take the 
scare factor out of data science by showing you that data science is not only really 
interesting but also quite doable using Python. You may assume that you need to 
be a computer science genius to perform the complex tasks normally associated 
with data science, but that’s far from the truth. Python comes with a host of useful 
libraries that do all the heavy lifting for you in the background. You don’t even 
realize how much is going on, and you don’t need to care. All you really need to 
know is that you want to perform specific tasks, and Python makes these tasks 
quite accessible.

Part of the emphasis of this book is on using the right tools. You start with either 
Jupyter Notebook (on desktop systems) or Google Colab (on the web) — two tools 
that take the sting out of working with Python. The code you place in Jupyter 
Notebook or Google Colab is presentation quality, and you can mix a number of 
presentation elements right there in your document. It’s not really like using a 
traditional development environment at all.

You also discover some interesting techniques in this book. For example, you can 
create plots of all your data science experiments using Matplotlib, and this book 
gives you all the details for doing that. This book also spends considerable time 
showing you available resources (such as packages) and how you can use Scikit-
learn to perform some very interesting calculations. Many people would like to 
know how to perform handwriting recognition, and if you’re one of them, you can 
use this book to get a leg up on the process.

Of course, you may still be worried about the whole programming environment 
issue, and this book doesn’t leave you in the dark there, either. At the beginning, 
you find complete methods you need to get started with data science using Jupyter 
Notebook or Google Colab. The emphasis is on getting you up and running as 
quickly as possible, and to make examples straightforward and simple so that the 
code doesn’t become a stumbling block to learning.

This third edition of the book provides you with updated examples using Python 
3.x so that you’re using the most modern version of Python while reading. In 
addition, you find a stronger emphasis on making examples simpler, but also 
making the environment more inclusive by adding material on deep learning. 
More important, this edition of the book contains updated datasets that better 
demonstrate how data science works today. This edition of the book also touches 
on modern concerns, such as removing personally identifiable information and 
enhancing data security. Consequently, you get a lot more out of this edition of the 
book as a result of the input provided by thousands of readers before you.
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To make absorbing the concepts even easier, this book uses the following 
conventions:

 » Text that you’re meant to type just as it appears in the book is in bold. The 
exception is when you’re working through a list of steps: Because each step is 
bold, the text to type is not bold.

 » When you see words in italics as part of a typing sequence, you need to 
replace that value with something that works for you. For example, if you see 
“Type Your Name and press Enter,” you need to replace Your Name with your 
actual name.

 » Web addresses and programming code appear in monofont. If you’re reading 
a digital version of this book on a device connected to the internet, note that 
you can click the web address to visit that website, like this: http://www.
dummies.com.

 » When you need to type command sequences, you see them separated by a 
special arrow, like this: File  ➪    New File. In this example, you go to the File 
menu first and then select the New File entry on that menu.

Foolish Assumptions
You may find it difficult to believe that we’ve assumed anything about you — after 
all, we haven’t even met you yet! Although most assumptions are indeed foolish, 
we made these assumptions to provide a starting point for the book.

You need to be familiar with the platform you want to use because the book doesn’t 
offer any guidance in this regard. (Chapter 3 does, however, provide Anaconda 
installation instructions, which supports Jupyter Notebook, and Chapter 4 gets 
you started with Google Colab.) To provide you with maximum information about 
Python concerning how it applies to data science, this book doesn’t discuss any 
platform-specific issues. You really do need to know how to install applications, 
use applications, and generally work with your chosen platform before you begin 
working with this book.

You must know how to work with Python. This edition of the book no longer con-
tains a Python primer because you can find a wealth of tutorials online (see 
https://www.w3schools.com/python/ and https://www.tutorialspoint.com/ 
python/ as examples).

This book isn’t a math primer. Yes, you do encounter some complex math, but the 
emphasis is on helping you use Python and data science to perform analysis tasks 

http://www.dummies.com
http://www.dummies.com
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/
https://www.tutorialspoint.com/python/
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rather than teaching math theory. Chapters 1 and 2 give you a better understand-
ing of precisely what you need to know to use this book successfully.

This book also assumes that you can access items on the internet. Sprinkled 
throughout are numerous references to online material that will enhance your 
learning experience. However, these added sources are useful only if you actually 
find and use them.

Icons Used in This Book
As you read this book, you come across icons in the margins, and here’s what 
those icons mean:

Tips are nice because they help you save time or perform some task without a lot 
of extra work. The tips in this book are time-saving techniques or pointers to 
resources that you should try in order to get the maximum benefit from Python or 
in performing data science–related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you 
should avoid doing anything that’s marked with a Warning icon. Otherwise, you 
may find that your application fails to work as expected, or you get incorrect 
answers from seemingly bulletproof equations, or (in the worst-case scenario) 
you lose data.

Whenever you see this icon, think advanced tip or technique. You may find that 
you don’t need these tidbits of useful information, or they could contain the solu-
tion you need to get a program running. Skip these bits of information whenever 
you like.

If you don’t get anything else out of a particular chapter or section, remember the 
material marked by this icon. This text usually contains an essential process or a 
morsel of information that you must know to work with Python or to perform data 
science–related tasks successfully.

Beyond the Book
This book isn’t the end of your Python or data science experience — it’s really just 
the beginning. We provide online content to make this book more flexible and bet-
ter able to meet your needs. That way, as we receive email from you, we can 
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address questions and tell you how updates to either Python or its associated add-
ons affect book content. In fact, you gain access to all these cool additions:

 » Cheat sheet: You remember using crib notes in school to make a better mark 
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides 
you with some special notes about tasks that you can do with Python, IPython, 
IPython Notebook, and data science that not every other person knows. You 
can find the cheat sheet by going to www.dummies.com and entering Python 
for Data Science For Dummies, 3rd Edition in the search field. The cheat sheet 
contains neat information such as the most common programming mistakes, 
styles for creating plot lines, and common magic functions to use in 
Jupyter Notebook.

 » Updates: Sometimes changes happen. For example, we may not have seen 
an upcoming change when we looked into our crystal ball during the writing 
of this book. In the past, this possibility simply meant that the book became 
outdated and less useful, but you can now find updates to the book by 
searching this book’s title at www.dummies.com.

In addition to these updates, check out the blog posts with answers to reader 
questions and demonstrations of useful book-related techniques at http:// 
blog.johnmuellerbooks.com/.

 » Companion files: Hey! Who really wants to type all the code in the book and 
reconstruct all those plots manually? Most readers would prefer to spend 
their time actually working with Python, performing data science tasks, and 
seeing the interesting things they can do, rather than typing. Fortunately for 
you, the examples used in the book are available for download, so all you 
need to do is read the book to learn Python for Data Science For Dummies 
usage techniques. You can find these files at www.dummies.com/go/ 
pythonfordatasciencefd3e. You can also find the source code on author 
John’s website at http://www.johnmuellerbooks.com/source-code/.

Where to Go from Here
It’s time to start your Python for Data Science For Dummies adventure! If you’re 
completely new to Python and its use for data science tasks, you should start with 
Chapter 1 and progress through the book at a pace that allows you to absorb as 
much of the material as possible.

http://www.dummies.com
http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com/go/pythonfordatasciencefd3e
http://www.dummies.com/go/pythonfordatasciencefd3e
http://www.johnmuellerbooks.com/source-code/
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If you’re a novice who’s in an absolute rush to use Python with data science as 
quickly as possible, you can skip to Chapter 3 (desktop users) or Chapter 4 (web 
browser users) with the understanding that you may find some topics a bit con-
fusing later. More advanced readers can skip to Chapter 5 to gain an understand-
ing of the tools used in this book.

Readers who have some exposure to Python and know how to use their develop-
ment environment can save reading time by moving directly to Chapter 6. You can 
always go back to earlier chapters as necessary when you have questions.  
However, you should understand how each technique works before moving to the 
next one. Every technique, coding example, and procedure has important lessons 
for you, and you could miss vital content if you start skipping too much 
information.



1Getting Started 
with Data Science 
and Python



IN THIS PART . . .

Understanding the connection between Python and 
data science

Getting an overview of Python capabilities

Defining a Python setup for data science

Using Google Colab for data science tasks



CHAPTER 1  Discovering the Match between Data Science and Python      9

Chapter 1
Discovering the Match 
between Data Science 
and Python

Data science may seem like one of those technologies that you’d never use, 
but you’d be wrong. Yes, data science involves the use of advanced math 
techniques, statistics, and big data. However, data science also involves 

helping you make smart decisions, creating suggestions for options based on pre-
vious choices, and making robots see objects. In fact, people use data science in so 
many different ways that you almost can’t look anywhere or do anything without 
feeling the effects of data science on your life. In short, data science is the person 
behind the partition in the experience of the wonderment of technology. Without 
data science, much of what you accept as typical and expected today wouldn’t 
even be possible. This is the reason that being a data scientist is one of the most 
interesting jobs of the 21st century.

To make data science doable by someone who’s less than a math genius, you need 
tools. You could use any of a number of tools to perform data science tasks, but 
Python is uniquely suited to making it easier to work with data science. For one 
thing, Python provides an incredible number of math-related libraries that help 
you perform tasks with a less-than-perfect understanding of precisely what is 

IN THIS CHAPTER

 » Discovering the wonders of data 
science

 » Exploring how data science works

 » Creating the connection between 
Python and data science

 » Getting started with Python
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going on. However, Python goes further by supporting multiple coding styles 
(programming paradigms) and doing other things to make your job easier. There-
fore, yes, you could use other languages to write data science applications, but 
Python reduces your workload, so it’s a natural choice for those who really don’t 
want to work hard, but rather to work smart.

This chapter gets you started with Python. Even though this book isn’t designed 
to provide you with a complete Python tutorial, exploring some basic Python 
issues will reduce the time needed for you to get up to speed. (If you do need a 
good starting tutorial, please get Beginning Programming with Python For Dummies, 
3rd Edition, by John Mueller (Wiley)). You’ll find that the book provides pointers 
to tutorials and other aids as needed to fill in any gaps that you may have in your 
Python education.

Understanding Python as a Language
This book uses Python as a programming language because it’s especially well-
suited to data science needs and also supports performing general programming 
tasks. Common wisdom says that Python is interpreted, but as described in the 
blog post at http://blog.johnmuellerbooks.com/2023/04/10/compiling-
python/, Python can act as a compiled language as well. This book uses Jupyter 
Notebook because the environment works well for learning, but you need to know 
that Python provides a lot more than you see in this book. With this fact in mind, 
the following sections provide a brief view of Python as a language.

Viewing Python’s various uses as a  
general-purpose language
Python isn’t a language just for use in data science; it’s a general-purpose lan-
guage with many uses beyond what you need to perform data science tasks. 
Python is important because after you have built a model, you may need to build 
a user interface and other structural elements around it. The model may simply be 
one part of a much larger application, all of which you can build using Python. 
Here are some tasks that developers commonly use Python to perform beyond 
data science needs:

 » Web development

 » General-purpose programming:

• Performing Create, Read, Update, and Delete (CRUD) operations on any 
sort of file

http://blog.johnmuellerbooks.com/2023/04/10/compiling-python/
http://blog.johnmuellerbooks.com/2023/04/10/compiling-python/
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• Creating graphical user interfaces (GUIs)

• Developing application programming interfaces (API)s

 » Game development (something you can read about at https://realpython. 
com/tutorials/gamedev/)

 » Automation and scripting

 » Software testing and prototyping

 » Language development (Cobra, CoffeeScript, and Go all use a language syntax 
similar to Python)

 » Marketing and Search Engine Optimization (SEO)

 » Common tasks associated with standard applications:

• Tracking financial transactions of all sorts

• Interacting with various types of messaging strategies

• Creating various kinds of lists based on environmental or other inputs

• Automating tasks like filling out forms

The list could be much longer, but this gives you an idea of just how capable 
Python actually is. The view you see of Python in this book is limited to experi-
menting with and learning about data science, but don’t let this view limit what 
you actually use Python to do in the future. Python is currently used as a general-
purpose programming language in companies like the following:

Amazon Dropbox Facebook

Google IBM Instagram

Intel JP Morgan Chase NASA

Netflix PayPal Pinterest

Reddit Spotify Stripe

Uber YouTube

Interpreting Python
You see Python used in this book in an interpreted mode. There are a lot of  
reasons to take this approach, but the essential reason is that it allows the use  
of literate programming techniques (https://notebook.community/sfomel/ 
ipython/LiterateProgramming), which greatly enhance learning and significantly 
reduce the learning curve. The main advantages of using Python in an interpreted 

https://realpython.com/tutorials/gamedev/
https://realpython.com/tutorials/gamedev/
https://notebook.community/sfomel/ipython/LiterateProgramming
https://notebook.community/sfomel/ipython/LiterateProgramming
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mode are that you receive instant feedback, and fixing errors is significantly eas-
ier. When combined with a notebook environment, using Python in an interpreted 
mode also makes it easier to create presentations and reports, as well as to create 
graphics that present outcomes of various analyses.

Compiling Python
Outside this book, you may find that compiling your Python application is impor-
tant because doing so can help increase overall application speed. In addition, 
compiling your code can reduce the potential for others stealing your code and 
make your applications both more secure and reliable. You do need access to third-
party products to compile your code, but you’ll find plenty of available products 
discussed at https://www.softwaretestinghelp.com/python-compiler/.

Defining Data Science
At one point, the world viewed anyone working with statistics as a sort of accoun-
tant or perhaps a mad scientist. Many people consider statistics and analysis of 
data boring. However, data science is one of those occupations in which the more 
you learn, the more you want to learn. Answering one question often spawns more 
questions that are even more interesting than the one you just answered. How-
ever, the thing that makes data science so interesting is that you see it everywhere 
and used in an almost infinite number of ways. The following sections provide 
more details on why data science is such an amazing field of study.

Considering the emergence of data science
Data science is a relatively new term. William S. Cleveland coined the term in 2001 
as part of a paper entitled “Data Science: An Action Plan for Expanding the Tech-
nical Areas of the Field of Statistics.” It wasn’t until a year later that the Interna-
tional Council for Science actually recognized data science and created a committee 
for it. Columbia University got into the act in 2003 by beginning publication of the 
Journal of Data Science.

However, the mathematical basis behind data science is centuries old because data 
science is essentially a method of viewing and analyzing statistics and probability. 
The first essential use of statistics as a term comes in 1749, but statistics are cer-
tainly much older than that. People have used statistics to recognize patterns for 
thousands of years. For example, the historian Thucydides (in his History of the 

https://www.softwaretestinghelp.com/python-compiler/
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Peloponnesian War) describes how the Athenians calculated the height of the wall 
of Plataea in fifth century BC by counting bricks in an unplastered section of the 
wall. Because the count needed to be accurate, the Athenians took the average of 
the count by several solders.

The process of quantifying and understanding statistics is relatively new, but the 
science itself is quite old. An early attempt to begin documenting the importance 
of statistics appears in the ninth century when Al-Kindi wrote Manuscript on Deci-
phering Cryptographic Messages. In this paper, Al-Kindi describes how to use a 
combination of statistics and frequency analysis to decipher encrypted messages. 
Even in the beginning, statistics saw use in practical application of science to 
tasks that seemed virtually impossible to complete. Data science continues this 
process, and to some people it may actually seem like magic.

Outlining the core competencies  
of a data scientist
As is true of anyone performing most complex trades today, the data scientist 
requires knowledge of a broad range of skills to perform the required tasks. In 
fact, so many different skills are required that data scientists often work in teams. 
Someone who is good at gathering data may team up with an analyst and someone 
gifted in presenting information. It would be hard to find a single person with all 
the required skills. With this in mind, the following list describes areas in which a 
data scientist could excel (with more competencies being better):

 » Data capture: It doesn’t matter what sort of math skills you have if you can’t 
obtain data to analyze in the first place. The act of capturing data begins by 
managing a data source using database management skills. However, raw data 
isn’t particularly useful in many situations — you must also understand the data 
domain so that you can look at the data and begin formulating the sorts of 
questions to ask. Finally, you must have data-modeling skills so that you 
understand how the data is connected and whether the data is structured.

 » Analysis: After you have data to work with and understand the complexities 
of that data, you can begin to perform an analysis on it. You perform some 
analysis using basic statistical tool skills, much like those that just about 
everyone learns in college. However, the use of specialized math tricks and 
algorithms can make patterns in the data more obvious or help you draw 
conclusions that you can’t draw by reviewing the data alone.
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 » Presentation: Most people don’t understand numbers well. They can’t see 
the patterns that the data scientist sees. It’s important to provide a graphical 
presentation of these patterns to help others visualize what the numbers 
mean and how to apply them in a meaningful way. More important, the 
presentation must tell a specific story so that the impact of the data isn’t lost.

Linking data science, big data, and AI
Interestingly enough, the act of moving data around so that someone can perform 
analysis on it is a specialty called Extract, Transformation, and Loading (ETL). 
The ETL specialist uses programming languages such as Python to extract the 
data from a number of sources. Corporations tend not to keep data in one easily 
accessed location, so finding the data required to perform analysis takes time. 
After the ETL specialist finds the data, a programming language or other tool 
transforms it into a common format for analysis purposes. The loading process 
takes many forms, but this book relies on Python to perform the task. In a large, 
real-world operation, you may find yourself using tools such as Informatica, MS 
SSIS, or Teradata to perform the task.

Data science isn’t necessarily a means to an end; it may instead be a step along the 
way. As a data scientist works through various datasets and finds interesting 
facts, these facts may act as input for other sorts of analysis and AI applications. 
For example, consider that your shopping habits often suggest what books you 
may like or where you may like to go for a vacation. Shopping or other habits can 
also help others understand other, sometimes less benign, activities as well. 
Machine Learning For Dummies, 2nd Edition and Artificial Intelligence For Dummies, 
2nd Edition, both by John Mueller and Luca Massaron (Wiley) help you under-
stand these other uses of data science. For now, consider the fact that what you 
learn in this book can have a definite effect on a career path that will go many 
other places.

EXTRACT, LOAD, AND TRANSFORM (ELT)
You may come across a new way of working with data called ELT, which is a variation of 
ETL. The article “Extract, Load, Transform (ELT)” (https://www.techtarget.com/
searchdatamanagement/definition/Extract-Load-Transform-ELT), describes 
the difference between the two. This different approach is often used for nonrelational 
and unstructured data. The overall goal is to simplify the data gathering and manage-
ment process, possibly allowing the use of a single tool even for large datasets. 
However, this approach also has significant drawbacks. The ELT approach isn’t covered 
in this book, but it does pay to know that it exists.

https://www.techtarget.com/searchdatamanagement/definition/Extract-Load-Transform-ELT
https://www.techtarget.com/searchdatamanagement/definition/Extract-Load-Transform-ELT
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Creating the Data Science Pipeline
Data science is partly art and partly engineering. Recognizing patterns in data, 
considering what questions to ask, and determining which algorithms work best 
are all part of the art side of data science. However, to make the art part of data 
science realizable, the engineering part relies on a specific process to achieve spe-
cific goals. This process is the data science pipeline, which requires the data sci-
entist to follow particular steps in the preparation, analysis, and presentation of 
the data. The following list helps you understand the data science pipeline better 
so that you can understand how the book employs it during the presentation of 
examples:

 » Preparing the data: The data that you access from various sources doesn’t 
come in an easily packaged form, ready for analysis. The raw data not only 
may vary substantially in format but also need you to transform it to make all 
the data sources cohesive and amenable to analysis.

 » Performing exploratory data analysis: The math behind data analysis relies 
on engineering principles in that the results are provable and consistent. 
However, data science provides access to a wealth of statistical methods and 
algorithms that help you discover patterns in the data. A single approach 
doesn’t ordinarily do the trick. You typically use an iterative process to rework 
the data from a number of perspectives. The use of trial and error is part of 
the data science art.

 » Learning from data: As you iterate through various statistical analysis 
methods and apply algorithms to detect patterns, you begin learning from the 
data. The data may not tell the story that you originally thought it would, or it 
may have many stories to tell. Discovery is part of being a data scientist. If you 
have preconceived ideas of what the data contains, you won’t find the 
information it actually does contain.

 » Visualizing: Visualization means seeing the patterns in the data and then 
being able to react to those patterns. It also means being able to see when 
data is not part of the pattern. Think of yourself as a data sculptor, removing 
the data that lies outside the patterns (the outliers) so that others can see the 
masterpiece of information beneath.

 » Obtaining insights and data products: The data scientist may seem to 
simply be looking for unique methods of viewing data. However, the process 
doesn’t end until you have a clear understanding of what the data means. The 
insights you obtain from manipulating and analyzing the data help you to 
perform real-world tasks. For example, you can use the results of an analysis 
to make a business decision.
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Understanding Python’s Role  
in Data Science

Given the right data sources, analysis requirements, and presentation needs, you 
can use Python for every part of the data science pipeline. In fact, that’s precisely 
what you do in this book. Every example uses Python to help you understand 
another part of the data science equation. Of all the languages you could choose 
for performing data science tasks, Python is the most flexible and capable because 
it supports so many third-party libraries devoted to the task. The following sec-
tions help you better understand why Python is such a good choice for many (if 
not most) data science needs.

Considering the shifting profile  
of data scientists
Some people view the data scientist as an unapproachable nerd who performs 
miracles on data with math. The data scientist is the person behind the curtain in 
an Oz-like experience. However, this perspective is changing. In many respects, 
the world now views the data scientist as either an adjunct to a developer or as a 
new type of developer. The ascendance of applications of all sorts that can learn is 
the essence of this change. For an application to learn, it has to be able to manip-
ulate large databases and discover new patterns in them. In addition, the applica-
tion must be able to create new data based on the old data — making an informed 
prediction of sorts. The new kinds of applications affect people in ways that would 
have seemed like science fiction just a few years ago. Of course, the most notice-
able of these applications define the behaviors of robots that will interact far more 
closely with people tomorrow than they do today.

From a business perspective, the necessity of fusing data science and application 
development is obvious: Businesses must perform various sorts of analysis on the 
huge databases it has collected — to make sense of the information and use it to 
predict the future. In truth, however, the far greater impact of the melding of 
these two branches of science — data science and application development — will 
be felt in terms of creating altogether new kinds of applications, some of which 
aren’t even possibly to imagine with clarity today. For example, new applications 
could help students learn with greater precision by analyzing their learning trends 
and creating new instructional methods that work for that particular student. This 
combination of sciences may also solve a host of medical problems that seem 
impossible to solve today — not only in keeping disease at bay, but also by solving 
problems, such as how to create truly usable prosthetic devices that look and act 
like the real thing.
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Working with a multipurpose, simple,  
and efficient language
Many different ways are available for accomplishing data science tasks. This book 
covers only one of the myriad methods at your disposal. However, Python repre-
sents one of the few single-stop solutions that you can use to solve complex data 
science problems. Instead of having to use a number of tools to perform a task, 
you can simply use a single language, Python, to get the job done. The Python dif-
ference is the large number scientific and math libraries created for it by third 
parties. Plugging in these libraries greatly extends Python and allows it to easily 
perform tasks that other languages could perform, but with great difficulty.

Python’s libraries are its main selling point; however, Python offers more than 
reusable code. The most important thing to consider with Python is that it sup-
ports four different coding styles:

 » Functional: Treats every statement as a mathematical equation and avoids 
any form of state or mutable data. The main advantage of this approach is 
having no side effects to consider. In addition, this coding style lends itself 
better than the others to parallel processing because there is no state to 
consider. Many developers prefer this coding style for recursion and for 
lambda calculus.

 » Imperative: Performs computations as a direct change to program state. This 
style is especially useful when manipulating data structures and produces 
elegant, but simple, code.

 » Object-oriented: Relies on data fields that are treated as objects and manipu-
lated only through prescribed methods. Python doesn’t fully support this coding 
form because it can’t implement features such as data hiding. However, this is a 
useful coding style for complex applications because it supports encapsulation 
and polymorphism. This coding style also favors code reuse.

 » Procedural: Treats tasks as step-by-step iterations where common tasks are 
placed in functions that are called as needed. This coding style favors 
iteration, sequencing, selection, and modularization.

Learning to Use Python Fast
It’s time to try using Python to see the data science pipeline in action. The follow-
ing sections provide a brief overview of the process you explore in detail in the rest 
of the book. You won’t actually perform the tasks in the following sections. In fact, 
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you don’t install Python until Chapter 3, so for now, just follow along in the text. 
This book uses a specific version of Python and an IDE called Jupyter Notebook, so 
please wait until Chapter 3 to install these features (or skip ahead, if you insist, 
and install them now). (You can also use Google Colab with the source code in the 
book, as described in Chapter 4.) Don’t worry about understanding every aspect of 
the process at this point. The purpose of these sections is to help you gain an 
understanding of the flow of using Python to perform data science tasks. Many of 
the details may seem difficult to understand at this point, but the rest of the book 
will help you understand them.

The examples in this book rely on a web-based application named Jupyter Note-
book. The screenshots you see in this and other chapters reflect how Jupyter Note-
book looks in Chrome on a Windows 10/11 system. The view you see will contain 
the same data, but the actual interface may differ a little depending on platform 
(such as using a notebook instead of a desktop system), operating system, and 
browser. Don’t worry if you see some slight differences between your display and 
the screenshots in the book.

You don’t have to type the source code for this chapter in by hand. In fact, it’s a 
lot easier if you use the downloadable source (see the Introduction for details on 
downloading the source code). The source code for this chapter appears in the 
P4DS4D3_01_Quick_Overview.ipynb source code file.

Loading data
Before you can do anything, you need to load some data. The book shows you all 
sorts of methods for performing this task. In this case, Figure 1-1 shows how to 
load a dataset called California Housing that contains housing prices and  
other facts about houses in California. It was obtained from StatLib repository  
(see https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html for 
details). The code places the entire dataset in the housing variable and then places 
parts of that data in variables named X and y. Think of variables as you would 
storage boxes. The variables are important because they make it possible to work 
with the data. The output shows that the dataset contains 20,640 entries with 
eight features each. The second output shows the name of each of the features.

Training a model
Now that you have some data to work with, you can do something with it. All sorts 
of algorithms are built into Python. Figure 1-2 shows a linear regression model. 
Again, don’t worry precisely how this works; later chapters discuss linear regres-
sion in detail. The important thing to note in Figure 1-2 is that Python lets you 
perform the linear regression using just two statements and to place the result in 
a variable named hypothesis.

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
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Viewing a result
Performing any sort of analysis doesn’t pay unless you obtain some benefit from 
it in the form of a result. This book shows all sorts of ways to view output, but 
Figure 1-3 starts with something simple. In this case, you see the coefficient out-
put from the linear regression analysis. Notice that there is one coefficient for 
each of the dataset features.

One of the reasons that this book uses Jupyter Notebook is that the product helps 
you to create nicely formatted output as part of creating the application. Look 
again at Figure 1-3, and you see a report that you could simply print and offer to 
a colleague. The output isn’t suitable for many people, but those experienced with 
Python and data science will find it quite usable and informative.

FIGURE 1-1: 
Loading data into 
variables so that 

you can 
manipulate it.

FIGURE 1-2: 
Using the variable 
content to train a 
linear regression 

model.

FIGURE 1-3: 
Outputting a 

result as a 
response to the 

model.
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Chapter 2
Introducing Python’s 
Capabilities and 
Wonders

All computers run on just one kind of language — machine code. However, 
unless you want to learn how to talk like a computer in 0s and 1s, machine 
code isn’t particularly useful. You’d never want to try to define data sci-

ence problems using machine code. It would take an entire lifetime (if not longer) 
just to define one problem. Higher-level languages make it possible to write a lot 
of code that humans can understand quite quickly. The tools used with these lan-
guages make it possible to translate the human-readable code into machine code 
that the machine understands. Therefore, the choice of languages depends on the 
human need, not the machine need. With this in mind, this chapter introduces you 
to the capabilities that Python provides that make it a practical choice for the data 
scientist. After all, you want to know why this book uses Python and not another 
language, such as Java or C++. These other languages are perfectly good choices 
for some tasks, but they’re not as suited to meet data science needs.

The chapter begins with some simple Python examples to give you a taste for the 
language. As part of exploring Python in this chapter, you discover all sorts of 
interesting features that Python provides. Python gives you access to a host of 
libraries that are especially suited to meet the needs of the data scientist. In fact, 
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Python for the data scientist
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you use a number of these libraries throughout the book as you work through the 
coding examples. Knowing about these libraries in advance will help you under-
stand the programming examples and why the book shows how to perform tasks 
in a certain way.

Even though this chapter shows examples of working with Python, you don’t 
really begin using Python in earnest until Chapter 6. This chapter offers an over-
view so that you can better understand what Python can do. Chapter 3 shows how 
to install the particular version of Python used for this book. Chapters 4 and 5 are 
about tools you can use, with Chapter 4 emphasizing Google Colab, an alternative 
environment for coding. In short, if you don’t quite understand an example in this 
chapter, don’t worry: You get plenty of additional information in later chapters.

Working with Python
This book doesn’t provide you with a full Python tutorial. (However, you can get a 
great start with Beginning Programming with Python For Dummies, 3rd Edition, by 
John Paul Mueller (Wiley)). For now, it’s helpful to get a brief overview of what 
Python looks like and how you interact with it, as in the following sections.

You don’t have to type the source code for this chapter manually; using the down-
loadable source a lot easier (see the Introduction for details on downloading the 
source code). The source code for this chapter appears in the P4DS4D3_02_Using_ 
Python.ipynb file.

Contributing to data science
Because this is a book about data science, you’re probably wondering how Python 
contributes to better data science and what the word better actually means in this 
case. Knowing that a lot of organizations use Python doesn’t help you because it 
doesn’t really say much about how they use Python, and if you want to match your 
choice of language to your particular need, understanding how other organiza-
tions use Python becomes important.

One such example appears at https://www.datasciencegraduateprograms.
com/python/. In this case, the article talks about Forecastwatch.com (https://
forecastwatch.com/), which actually does watch the weather and try to make 
predictions better. Every day, Forecastwatch.com compares 36,000 forecasts 
with the weather that people actually experience and then uses the results to cre-
ate better forecasts. Trying to aggregate and make sense of the weather data for 
800 U.S. cities is daunting, so Forecastwatch.com needed a language that could 

https://www.datasciencegraduateprograms.com/python/
https://www.datasciencegraduateprograms.com/python/
http://Forecastwatch.com
https://forecastwatch.com/
https://forecastwatch.com/
http://Forecastwatch.com
http://Forecastwatch.com
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do these tasks with the least amount of fuss. Here are the reasons Forecast.com 
chose Python:

 » Library support: Python provides support for a large number of libraries, 
more than any one organization will ever need. According to https://www.
python.org/about/success/forecastwatch/, Forecastwatch.com found 
the regular expression, thread, object serialization, and gzip data compression 
libraries especially useful.

 » Parallel processing: Each of the forecasts is processed as a separate thread 
so that the system can work through them quickly. The thread data includes 
the web page URL that contains the required forecast, along with category 
information, such as city name.

 » Data access: This huge amount of data can’t all exist in memory, so 
Forecast.com relies on a MySQL database accessed through the MySQLdb 
(https://sourceforge.net/projects/mysql-python/) library, which is 
one of the few libraries that hasn’t moved on to Python 3.x yet. However, the 
associated website promises the required support soon. In the meantime, if 
you need to use MySQL with Python 3.x, then using mysqlclient (https:// 
pypi.org/project/mysqlclient/) will be a good replacement because it 
adds Python 3.x support to MySQLdb.

 » Data display: Originally, the PHP scripting language produced the 
Forecastwatch.com output. However, by using Quixote (https://www.
mems-exchange.org/software/quixote/), which is a display framework, 
Forecastwatch.com was able to move everything to Python. (An update of 
this framework is DurusWorks, at https://www.mems-exchange.org/ 
software/DurusWorks/.)

Getting a taste of the language
Python is designed to provide clear language statements but to do so in an incred-
ibly small space. A single line of Python code may perform tasks that another 
language usually takes several lines to perform. For example, if you want to dis-
play something on-screen, you simply tell Python to print it, like this:

print("Hello There!")

The point is that you can simply tell Python to output text, an object, or anything 
else using a simple statement. You don’t really need too much in the way of 
advanced programming skills. When you want to end your session using a com-
mand line environment such as IDLE, you simply type quit() and press Enter. 
This book relies on a much better environment, Jupyter Notebook (or Google Colab 

http://Forecast.com
https://www.python.org/about/success/forecastwatch/
https://www.python.org/about/success/forecastwatch/
http://Forecastwatch.com
http://Forecast.com
https://sourceforge.net/projects/mysql-python/
https://pypi.org/project/mysqlclient/
https://pypi.org/project/mysqlclient/
http://Forecastwatch.com
https://www.mems-exchange.org/software/quixote/
https://www.mems-exchange.org/software/quixote/
http://Forecastwatch.com
https://www.mems-exchange.org/software/DurusWorks/
https://www.mems-exchange.org/software/DurusWorks/
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as an alternative), which really does make your code look as though it came from 
someone’s notebook.

Understanding the need for indentation
Python relies on indentation to create various language features, such as condi-
tional statements. One of the most common errors that developers encounter is 
not providing the proper indentation for code. You see this principle in action later 
in the book, but for now, always be sure to pay attention to indentation as you 
work through the book examples. For example, here is an if statement (a condi-
tional that says that if something meets the condition, perform the code that fol-
lows) with proper indentation.

if 1 < 2:
    print("1 is less than 2")

The print statement must appear indented below the conditional statement. Oth-
erwise, the condition won’t work as expected, and you may see an error mes-
sage, too.

Working with Jupyter Notebook  
and Google Colab
The vast majority of this book relies on Jupyter Notebook (with code also tested 
using Google Colab), which is part of the Anaconda installation you create in 
Chapter 3. Jupyter Notebook is used in Chapter 1 and again later in the book. The 
presentation for Google Colab is similar to, but not precisely the same as, Jupyter 
Notebook, and you see Google Colab in detail in Chapter 4. The purpose behind 
using an Integrated Development Environment (IDE) such as Jupyter Notebook 
and Google Colab is that they help you create correct code and perform some tasks, 
such as indentation, automatically. An IDE can also give your code a nicer appear-
ance and give you a means for making report-like output with graphics and other 
noncode features.

Performing Rapid Prototyping  
and Experimentation

Python is all about creating applications quickly and then experimenting with 
them to see how things work. The act of creating an application design in code 
without necessarily filling in all the details is prototyping. Python uses less code 
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than other languages to perform tasks, so prototyping goes faster. The fact that 
many of the actions you need to perform are already defined as part of libraries 
that you load into memory makes things go faster still.

Data science doesn’t rely on static solutions. You may have to try multiple solu-
tions to find the particular solution that works best. This is where experimentation 
comes into play. After you create a prototype, you use it to experiment with vari-
ous algorithms to determine which algorithm works best in a particular situation. 
The algorithm you use varies depending on the answers you see and the data you 
use, so there are too many variables to consider for any sort of canned solution.

The prototyping and experimentation process occurs in several phases. As you go 
through the book, you discover that these phases have distinct uses and appear in 
a particular order. The following list shows the phases in the order in which you 
normally perform them.

1. Building a data pipeline. To work with the data, you must create a pipeline to 
it. It’s possible to load some data into memory. However, after the dataset gets 
to a certain size, you need to start working with it on disk or by using other 
means to interact with it. The technique you use for gaining access to the data 
is important because it impacts how fast you get a result.

2. Performing the required shaping. The shape of the data — the way in which 
it appears and its characteristics (such as data type), is important in performing 
analysis. To perform an apples-to-apples comparison, like data has to be 
shaped the same. However, just shaping the data the same isn’t enough.  
The shape has to be correct for the algorithms you employ to analyze it. Later 
chapters (starting with Chapter 7) help you understand the need to shape data 
in various ways.

3. Analyzing the data. When analyzing data, you seldom employ a single 
algorithm and call it good enough. You can’t know which algorithm will 
produce the most useful results at the outset. To find the best result from  
your dataset, you experiment on it using several algorithms. This practice is 
emphasized in the later chapters of the book when you start performing 
serious data analysis.

4. Presenting a result. A picture is worth a thousand words, or so they say. 
However, you need the picture to say the correct words or your message gets 
lost. Using the MATLAB-like plotting functionality provided by the Matplotlib 
library, you can create multiple presentations of the same data, each of which 
describes the data graphically in different ways. (MATLAB, found at https:// 
www.mathworks.com/products/matlab.html, is a widely used mathematical 
modeling program; see MATLAB For Dummies, 2nd Edition, by John Paul Mueller 
and Jim Sizemore [Wiley] for more details.) To ensure that your meaning really 
isn’t lost, you must experiment with various presentation methods and 
determine which one works best.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Considering Speed of Execution
Computers are known for their prowess in crunching numbers. Even so, analysis 
takes considerable processing power. The datasets are so large that you can bog 
down even an incredibly powerful system. In general, the following factors  
control the speed of execution for your data science application:

 » Dataset size: Data science relies on huge datasets in many cases. Yes, you 
can make a robot see objects using a modest dataset size, but when it comes 
to making business decisions, larger is better in most situations. The applica-
tion type determines the size of your dataset in part, but dataset size also 
relies on the size of the source data. Underestimating the effect of dataset 
size is deadly in data science applications, especially those that need to 
operate in real time (such as self-driving cars).

 » Loading technique: The method you use to load data for analysis is critical, 
and you should always use the fastest means at your disposal, even if it 
means upgrading your hardware to do so. Working with data in memory is 
always faster than working with data stored on disk. Accessing local data is 
always faster than accessing it across a network. Performing data science 
tasks that rely on internet access through web services is probably the slowest 
method of all. Chapter 6 helps you understand loading techniques in more 
detail. You also see the effects of loading technique later in the book.

 » Coding style: Some people will likely try to tell you that Python’s program-
ming paradigms make writing a slow application nearly impossible. They’re 
wrong. Anyone can create a slow application using any language by employing 
coding techniques that don’t make the best use of programming language 
functionality. To create fast data science applications, you must use best-of- 
method coding techniques. The techniques demonstrated in this book are a 
great starting point.

 » Machine capability: Running data science applications on a memory- 
constrained system with a slower processor is an extremely painful process 
akin to sitting in the dentist’s chair for a root canal without Novocain. The 
system you use needs to have the best hardware you can afford. Given that 
data science applications are both processor and disk bound, you can’t really 
cut corners in any area and expect great results.

 » Analysis algorithm: The algorithm you use determines the kind of result you 
obtain and controls execution speed. Many of the chapters in the latter parts 
of this book demonstrate multiple methods to achieve a goal using different 
algorithms. However, you must still experiment to find the best algorithm for 
your particular dataset.
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A number of the chapters in this book emphasize performance, most notably 
speed and reliability, because both factors are critical to data science applications. 
Even though database applications tend to emphasize the need for speed and reli-
ability to some extent, the combination of huge dataset access (disk-bound issues) 
and data analysis (processor-bound issues) in data science applications makes the 
need to make good choices even more critical.

Visualizing Power
Python makes it possible to explore the data science environment without resort-
ing to using a debugger or debugging code, as would be needed in many other 
languages. The print()function and dir() function let you examine any object 
interactively. In short, you can load something up and play with it for a while to 
see just how the developer put it together. Playing with the data, visualizing what 
it means to you personally, can often help you gain new insights and create new 
ideas. Judging by many online conversations, playing with the data is the part of 
data science that its practitioners find the most fun.

To get an idea of how the print() and dir() functions work, you can try the fol-
lowing code that appears in the downloadable source:

from sklearn.utils import Bunch
items = dir(Bunch)
for item in items:
    if 'key' in item:
        print(item)

Don’t worry if you don’t understand this code, you’ll discover more about it later. 
Beginning with Chapter 4, you start to play with code more, and the various sec-
tions give you more details. You can also obtain the book Beginning Programming 
with Python For Dummies, 3rd Edition, by John Paul Mueller (Wiley) if you want a 
more detailed tutorial. Just follow along with the concept of playing with data for 
now. You see the following output when you run this code:

fromkeys
keys

Scikit-learn datasets appear within bunches (a bunch is a kind of data structure). 
When you import a dataset, that dataset will have certain functions that you can 
use with it that are determined by the code used to define the data structure — a 
bunch. This code shows which functions deal with keys — the data identifiers for 
the values (one or more columns of information) in the dataset. Each row in the 
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dataset has a unique key, even if the values in that row repeat another row in the 
dataset. You can use these functions to perform useful work with the dataset as 
part of building your application.

Before you can work with a dataset, you must provide access to it in the local envi-
ronment. The following code shows the import process and demonstrates how 
you can use the keys() function to display a list of keys that you can use to access 
data within the dataset.

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
print(housing.keys())

The output from this code shows that you can access a variety of information 
about the dataset:

dict_keys(['data', 'target', 'frame', 'target_names',
           'feature_names', 'DESCR']) 

You don’t have to know what all these names mean for now, but feature_names 
tells you about the data columns used in the dataset. When you have a list of keys 
you can use, you can access individual data items. For example, the following code 
shows a list of all the feature names contained in the California Housing dataset. 
Python really does make it possible to know quite a lot about a dataset before you 
have to work with it in depth.

print(housing.feature_names)

In this case, you see the following column names for the data:

['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms',
 'Population', 'AveOccup', 'Latitude', 'Longitude']

Using the Python Ecosystem  
for Data Science

You have already seen the need to load libraries in order to perform data science 
tasks in Python. The following sections provide an overview of the libraries you 
use for the data science examples in this book. Various book examples show the 
libraries at work.
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Accessing scientific tools using SciPy
The SciPy stack (http://www.scipy.org/) contains a host of other libraries that 
you can also download separately. These libraries provide support for mathemat-
ics, science, and engineering. When you obtain SciPy, you get a set of libraries 
designed to work together to create applications of various sorts. These librar-
ies are

 » NumPy

 » SciPy

 » Matplotlib

 » Jupyter

 » Sympy

 » pandas

The SciPy library itself focuses on numerical routines, such as routines for numer-
ical integration and optimization. SciPy is a general-purpose library that provides 
functionality for multiple problem domains. It also provides support for domain-
specific libraries, such as Scikit-learn, Scikit-image, and statsmodels.

Performing fundamental scientific  
computing using NumPy
The NumPy library (http://www.numpy.org/) provides the means for performing 
n-dimensional array manipulation, which is critical for data science work. The 
California Housing dataset used in the examples in Chapters 1 and 2 is an example 
of an n-dimensional array, and you couldn’t easily access it without NumPy func-
tions that include support for linear algebra, Fourier transform, and random-
number generation (see the listing of functions at http://docs.scipy.org/doc/
numpy/reference/routines.html).

Performing data analysis using pandas
The pandas library (http://pandas.pydata.org/) provides support for data 
structures and data analysis tools. The library is optimized to perform data sci-
ence tasks especially fast and efficiently. The basic principle behind pandas is to 
provide data analysis and modeling support for Python that is similar to other 
languages, such as R.

http://www.scipy.org/
http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/routines.html
http://docs.scipy.org/doc/numpy/reference/routines.html
http://pandas.pydata.org/
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Implementing machine learning  
using Scikit-learn
The Scikit-learn library (http://scikit-learn.org/stable/) is one of a number 
of Scikit libraries that build on the capabilities provided by NumPy and SciPy to 
allow Python developers to perform domain-specific tasks. In this case, the library 
focuses on data mining and data analysis. It provides access to the following sorts 
of functionality:

 » Classification

 » Regression

 » Clustering

 » Dimensionality reduction

 » Model selection

 » Preprocessing

A number of these functions appear as chapter headings in the book. As a result, 
you can assume that Scikit-learn is the most important library for the book (even 
though it relies on other libraries to perform its work).

Going for deep learning with Keras  
and TensorFlow
Keras (https://keras.io/) is an application programming interface (API) that is 
used to train deep learning models. An API often specifies a model for doing some-
thing, but it doesn’t provide an implementation. Consequently, you need an 
implementation of Keras to perform useful work, which is where the machine 
learning platform TensorFlow (https://www.tensorflow.org/) comes into play 
because Keras runs on top of it.

When working with an API, you’re looking for ways to simplify things. Keras 
makes things easy by offering the following features:

 » A consistent interface: The Keras interface is optimized for common use 
cases with an emphasis on actionable feedback for fixing user errors.

 » A building-block approach: Using a black-box approach makes it easy to 
create models by connecting configurable building blocks together with only  
a few restrictions on how you can connect them.

http://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/
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 » Extendability: You can easily add custom building blocks to express new 
ideas for research that include new layers, loss functions, and models.

 » Parallel processing: To run applications fast today, you need good parallel 
processing support. Keras runs on both CPUs and GPUs. It will also make use 
of multiple CPUs, when available.

 » Direct Python support: You don’t have to do anything special to make the 
TensorFlow implementation of Keras work with Python, which can be a major 
stumbling block when working with other sorts of APIs.

Performing analysis efficiently using 
XGBoost
You use XGBoost (https://xgboost.readthedocs.io/en/stable/), which 
stands for extreme gradient boosting, to perform data analysis in an efficient, 
flexible, and portable manner. This library makes it easier to perform analysis 
using gradient boosting, which is explained in Chapter 20. Chapter 20 also shows 
how to work with XGBoost to get the most benefit from the analysis process. You 
can use this library to solve regression, classification, and ranking problems. 
XGBoost has proven its capabilities by helping individuals and teams win virtually 
every Kaggle structured-data competition. In addition, XGBoost supports Python, 
R, Java, Scala, Julia, Perl, and other languages.

Plotting the data using Matplotlib
The Matplotlib library (http://matplotlib.org/) gives you a MATLAB-like 
interface for creating data presentations of the analysis you perform. The library 
is currently limited to 2-D output, but it still provides you with the means to 
express graphically the data patterns you see in the data you analyze. Without this 
library, you couldn’t create output that people outside the data science community 
could easily understand. Chapter 10 offers a great introduction to Matplotlib.

Creating graphs with NetworkX
To properly study the relationships between complex data in a networked system 
(such as that used by your GPS setup to discover routes through city streets), you 
need a library to create, manipulate, and study the structure of network data in 
various ways. In addition, the library must provide the means to output the  

https://xgboost.readthedocs.io/en/stable/
http://matplotlib.org/
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resulting analysis in a form that humans understand, such as graphical data.  
NetworkX (https://networkx.github.io/) enables you to perform this sort of 
analysis. The advantage of NetworkX is that nodes can be anything (including 
images) and edges can hold arbitrary data. These features allow you to perform a 
much broader range of analysis with NetworkX than using custom code would 
(and such code would be time consuming to create).

https://networkx.github.io/
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Chapter 3
Setting Up Python 
for Data Science

Before you can do too much with Python or use it to solve data science prob-
lems, you need a workable installation. In addition, you need access to the 
datasets and code used for this book. Downloading the sample code and 

installing it on your system is the best way to absorb more understanding from 
the book. This chapter helps you get your system set up so that you can easily fol-
low the examples in the remainder of the book.

This book relies on Jupyter Notebook version 6.5.2 supplied with the Anaconda 3 
environment (version 2023.03) that supports the Python version 3.10.9 to create 
the coding examples. For the examples to work, you must use Python 3.10.9 and 
the packages present in Anaconda 3 version 2023.03 (listed as conda version 
23.1.0). Older versions of both Python and its packages tend to lack needed fea-
tures, and newer versions tend to produce breaking changes. If you use some 
other version of Python, the examples likely won’t work as intended. As an alter-
native to working with Jupyter Notebook on a desktop system, you can also work 
on Google Colab on your mobile device, as described in Chapter 4.

Using the downloadable source doesn’t prevent you from typing the examples on 
your own, following them using a debugger, expanding them, or working with the 
code in all sorts of ways. The downloadable source is there to help you get a good 
start with your data science and Python learning experience. After you see how the 
code works when it’s correctly typed and configured, you can try to create the 
examples on your own. If you make a mistake, you can compare what you’ve typed 

IN THIS CHAPTER

 » Using Anaconda to work with Python

 » Creating an Anaconda installation on 
Linux, Mac OS, and Windows

 » Getting and installing the datasets 
and example code
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with the downloadable source and discover precisely where the error exists. You 
can find the downloadable source for this chapter in the P4DS4D3_03_Sample.
ipynb and P4DS4D3_03_Dataset_Load.ipynb files. (The Introduction tells you 
where to download the source code for this book.)

Working with Anaconda
Anaconda is actually a collection of tools, as described at https://docs. 
anaconda.com/free/navigator/overview/. Jupyter Notebook is just one of those 
tools, and it’s the one used most often in this book. However, it’s also helpful to 
know about the other tools that Anaconda provides because they can help you cre-
ate Python applications faster and also work with some other languages. The fol-
lowing sections describe the two Anaconda tools that are used in this book.

Using Jupyter Notebook
Jupyter Notebook is an Integrated Development Environment (IDE) that promotes 
the concept of literate programming as originally defined by Donald Knuth 
(https://guides.nyu.edu/datascience/literate-prog). The idea behind lit-
erate programming is to make learning as easy as possible as well as provide a 
means of presenting code that can include graphics and explanatory text. Such an 
environment works incredibly well in a book because you can both easily experi-
ment and obtain detailed information as you work through the source code.

This chapter doesn’t focus much on Jupyter Notebook usage because it’s similar to 
working with Google Colab, which Chapter 4 explains fully. Even though there are 
slight differences in commands and appearance between the two, the products are 
essentially the same.

However, you do want to check your versions of Anaconda, Jupyter Notebook, and 
Python before going too far in the book, and you can use the following code to 
check them. You also find this code in the P4DS4D3_03_Sample.ipynb file of the 
downloadable source:

import sys
print('Python Version:\n', sys.version)
 
import os
result = os.popen('conda --version').read()
print('\nAnaconda Version:\n', result)
 

https://docs.anaconda.com/free/navigator/overview/
https://docs.anaconda.com/free/navigator/overview/
https://guides.nyu.edu/datascience/literate-prog
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result = os.popen('conda list notebook$').read()
print('\nJupyter Notebook Version:\n', result)

This code essentially opens command prompts, executes commands, and returns 
with the configuration information. Don’t worry about how it precisely works for 
now; the goal is to discover which versions of products you have installed on your 
system. The outputs show you the versions you have installed. The source code for 
this book was tested (and mostly written) using these version numbers:

Python Version:
 3.10.9 | packaged by Anaconda, Inc. | ...
 
Anaconda Version:
 conda 23.1.0
 
 
Jupyter Notebook Version:
# packages in environment at C:\Users\John\anaconda3:
#
# Name                    Version ...
notebook                  6.5.2   ...

Accessing the Anaconda Prompt
You use the Anaconda Prompt to perform many command-line tasks related to 
working with Jupyter Notebook. For example, you can use it to discover the ver-
sion numbers of products and libraries you have installed, as in the previous sec-
tion does. The Anaconda Prompt also provides access to the conda utility, which is 
used to perform various configuration tasks, such as installing libraries and cre-
ating environments so that you can test your code in multiple ways. In short, the 
Anaconda Prompt provides a gateway to allowing maximum flexibility with your 
Python programming environment, which is a significant advantage over using 
Google Colab (where it’s a take-it-or-leave-it proposition).

The Anaconda Prompt is available in several places. The easiest way to locate it is 
in Anaconda Navigator. You can also access it on Windows using the Start ➪    
Anaconda Prompt (Anaconda3) command.

When you open the Anaconda Prompt, you see a window that looks much like any 
other command window except that the prompt will say something like “(base) 
C:\Users\John>.” The (base) part of the prompt is important because it tells you 
which environment you’re using. The (base) environment is the default and is the 
one you use most in the book.
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Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so getting 
a good install means using a wizard, much as you would for any other installation. 
Of course, you need a copy of the installation file before you begin. The best place 
to find a particular version of Anaconda is at the Anaconda archive, at https://
repo.anaconda.com/archive/. The following procedure should work fine on any 
Windows system, whether you use the 32-bit or the 64-bit version of Anaconda:

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2023. 
03-1-Windows-x86_64.exe. The download is currently more than 786 MB,  
so you may not want to try it using the free connection at your favorite coffee 
shop. The version number is embedded as part of the filename. In this case, 
the filename refers to version 2023.03, which is the version used for this book. 
If you use some other version, you may experience problems with the source 
code and need to make adjustments when working with it.

2. Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether 
you want to run this file. Click Run if you see this dialog box pop up.) You see 
an Anaconda 3 Setup dialog box. The exact dialog box you see depends on 
which version of the Anaconda installation program you download. If you have 
a 64-bit operating system, it’s always best to use the 64-bit version of Anaconda 
so that you obtain the best possible performance. This first dialog box tells you 
when you have the 64-bit version of the product.

3. Click Next.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

4. Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in Figure 3-1. In 
most cases, you want to install the product just for yourself. The exception is if you 
have multiple people using your system and they all need access to Anaconda.

WINDOWS 10 DIFFERENCES
You may see slight differences in the Start menu organization if you’re using Windows 
10. For example, to access an Anaconda prompt, you may see the entry as Start ➪    
Anaconda 3 ➪   Anaconda Prompt. These slight differences won’t affect your ability to 
work with Anaconda Navigator in Windows 10.

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
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5. Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-2.  
The book assumes that you use the default location. If you choose some other 
location, you may have to modify some procedures later in the book to work 
with your setup.

FIGURE 3-1: 
Tell the wizard 
how to install 
Anaconda on 
your system.

FIGURE 3-2: 
Specify an 

installation 
location.
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6. Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-3. These options 
are selected by default and there isn’t a good reason to change them in  
most cases.

The Add Anaconda to My PATH Environment Variable option is cleared by 
default, and you should leave it cleared. Adding it to the PATH environment 
variable does offer the ability to locate the Anaconda files when using a standard 
command prompt, but if you have multiple versions of Anaconda installed, only 
the first version you installed is accessible. Opening an Anaconda Prompt 
instead is far better so that you gain access to the version you expect.

7. Change the advanced installation options (if necessary) and then click 
Install.

You see an Installing dialog box with a progress bar. The installation process 
can take a few minutes, so get yourself a cup of coffee and read the comics for 
a while. When the installation process is over, you see a Next button enabled.

8. Click Next.

The wizard tells you that the installation is complete.

9. Click Finish.

You’re ready to begin using Anaconda.

FIGURE 3-3: 
Configure the 

advanced 
installation 

options.
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Installing Anaconda on Linux
You use the command line to install Anaconda on Linux — there is no graphical 
installation option. Before you can perform the install, you must download a copy 
of the Linux software from the Anaconda site at https://repo.anaconda.com/
archive/. On most Linux systems, you can type curl https://repo.anaconda.
com/archive/Anaconda3-2023.03-Linux-x86_64.sh --output Anaconda3- 
2023.03-Linux-x86_64.sh and press Enter in the terminal window to get your 
copy. The following procedure should work fine on any Linux system, whether 
you use the 32-bit or the 64-bit version of Anaconda.

1. Open a copy of Terminal.

You see the Terminal window appear.

2. Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2023.03-1- 
Linux-x86_64.sh. The version number is embedded as part of the filename. In 
this case, the filename refers to version 2023.03, which is the version used for 
this book. If you use some other version, you may experience problems with the 
source code and need to make adjustments when working with it.

3. Type bash Anaconda3-2023.03-1-Linux-x86_64.sh and press Enter.

An installation wizard starts that asks you to accept the licensing terms for 
using Anaconda. Note that this isn’t a GUI installation; it’s text-based.

A WORD ABOUT THE SCREENSHOTS
As you work your way through the book, you’ll use an IDE of your choice to open the 
Python and Jupyter Notebook files containing the book’s source code. Every screenshot 
in this book that contains IDE-specific information relies on Anaconda because Anaconda 
runs on all the platforms supported by the book. The use of Anaconda doesn’t imply that 
it’s the best IDE or that the authors are making any sort of recommendation for it; it sim-
ply works well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI) environment, Jupyter 
Notebook, is precisely the same across all three platforms, and you won’t even see any 
significant difference in the presentation. The differences you do see are minor, and 
you should ignore them as you work through the book. With this in mind, the book  
does rely heavily on Windows screenshots. When working on a Linux or Mac OS X, you 
should expect to see some differences in presentation, but these differences shouldn’t 
reduce your ability to work with the examples.

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh
https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh
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4. Read the licensing agreement and accept the terms using the method 
required for your version of Linux, which normally consists of typing yes 
and pressing Enter.

The wizard asks you to provide an installation location for Anaconda. The book 
assumes that you use the default location of /home/<user name>/anaconda3. 
If you choose some other location, you may have to modify some procedures 
later in the book to work with your setup.

5. Provide an installation location (if necessary) and press Enter  
(or click Next).

You see the application extraction process begin. After the extraction is 
complete, you see a series of installation messages.

6. Type yes and press Enter to initialize Anaconda 3 by running the conda 
init command.

You see a series of setup messages as conda performs the required initializa-
tion tasks.

7. Close the terminal window and open a new one before you try to work 
with Anaconda 3.

When you reopen the terminal, the prompt will change to (base) 
<username>@<machine name>:~$ unless you specify that you don’t want 
conda starting during the startup process.

To keep conda from automatically starting each time you log in, type conda 
config --set auto_activate_base false and press Enter at the conda prompt.  
If you’re accessing Jupyter Notebook on a Linux server from a remote browser, 
follow the instructions at https://docs.anaconda.com/free/anaconda/
jupyter-notebooks/remote-jupyter-notebook/.

Installing Anaconda on Mac OS X
The Mac OS X installation comes only in one form: 64-bit. Before you can perform 
the install, you must download a copy of the Mac OS X software from the  
Anaconda site at https://repo.anaconda.com/archive/. The following steps 
help you install Anaconda 64-bit on a Mac system.

1. Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-2023.03- 
1-MacOSX-x86_64.pkg. The version number is embedded as part of the 

https://docs.anaconda.com/free/anaconda/jupyter-notebooks/remote-jupyter-notebook/
https://docs.anaconda.com/free/anaconda/jupyter-notebooks/remote-jupyter-notebook/
https://repo.anaconda.com/archive/
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filename. In this case, the filename refers to version 2023.03, which is the 
version used for this book. If you use some other version, you may experience 
problems with the source code and need to make adjustments when working 
with it.

2. Double-click the installation file.

You see an introduction dialog box.

3. Click Continue.

The wizard asks whether you want to review the Read Me materials. You can 
read these materials later. For now, you can safely skip the information.

4. Click Continue.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

5. Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The destina-
tion controls whether the installation is for an individual user or a group.

You may see an error message stating that you can’t install Anaconda on the 
system. The error message occurs because of a bug in the installer and has 
nothing to do with your system. To get rid of the error message, choose the 
Install Only for Me option. You can’t install Anaconda for a group of users on a 
Mac system.

6. Click Continue.

The installer displays a dialog box containing options for changing the installa-
tion type. Click Change Install Location if you want to modify where Anaconda 
is installed on your system (the book assumes that you use the default path of 
~/anaconda). Click Customize if you want to modify how the installer works. 
For example, you can choose not to add Anaconda to your PATH statement. 
However, the book assumes that you have chosen the default install options 
and there isn’t a good reason to change them unless you have another copy of 
Python 2.7 installed somewhere else.

7. Click Install.

You see the installation begin. A progress bar tells you how the installation 
process is progressing. When the installation is complete, you see a completion 
dialog box.

8. Click Continue.

You’re ready to begin using Anaconda.
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Downloading the Datasets  
and Example Code

This book is about using Python to perform data science tasks. Of course, you 
could spend all your time creating the example code from scratch, debugging it, 
and only then discovering how it relates to data science, or you can take the easy 
way and download the prewritten code so that you can get right to work. Likewise, 
creating datasets large enough for data science purposes would take quite a while. 
Fortunately, you can access standardized, precreated datasets quite easily using 
features provided in some of the data science libraries. The following sections help 
you download and use the example code and datasets so that you can save time 
and get right to work with data science–specific tasks.

Using Jupyter Notebook
To make working with the relatively complex code in this book easier, you use 
Jupyter Notebook or Google Colab (see Chapter 4). This interface makes it easy to 
create Python notebook files that can contain any number of examples, each  
of which can run individually. The program runs in your browser, so which  
platform you use for development doesn’t matter; as long as it has a browser, you 
should be OK.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. All you need to do is 
open this icon to access Jupyter Notebook. For example, on a Windows system, 
you choose Start ➪ Jupyter Notebook (Anaconda 3) (or Start ➪   Anaconda3 ➪ Jupyter 
Notebook on a Windows 10 system). The precise appearance on your system 
depends on the browser you use and the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon, you can nor-
mally type jupyter notebook and press Enter while in one of the conda environ-
ments. To access a conda environment, open an Anaconda Prompt or type conda 
activate and press Enter at the terminal prompt.

Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the 
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Notebook. This window contains a server that makes the 
application work. After you close the browser window when a session is complete, 
select the server window and press Ctrl+C or Ctrl+Break to stop the server. Type y 
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and press Enter if asked to do so. To exit the conda environment, type conda deac-
tivate and press Enter.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard 
drive. Think of a repository as a kind of filing cabinet where you put your code. 
Notebook opens a drawer, takes out the folder, and shows the code to you. You can 
modify it, run individual examples within the folder, add new examples, and  
simply interact with your code in a natural manner. The following sections get  
you started with Notebook so that you can see how this whole repository  
concept works.

Defining a new folder
You use folders to hold your code files for a particular project. The project for  
this book is P4DS4D3 (which stands for Python for Data Science For Dummies,  
3rd Edition). The following steps help you create a new folder for this book.

1. Choose New ➪ Folder.

Notebook creates a new folder for you. The name of the folder can vary, but 
for Windows users, it’s simply listed as Untitled Folder. You may have to scroll 
down the list of available folders to find the folder in question.

2. Place a check in the box next to Untitled Folder.

3. Click Rename at the top of the page.

You see the Rename Directory dialog box, shown in Figure 3-4.

4. Type P4DS4D3 and press Enter.

Notebook renames the folder for you.

FIGURE 3-4: 
Create a folder to 

use to hold the 
book’s code.
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Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within 
the file folder, just as you would sheets of paper into a physical file folder. Each 
example appears in a cell. You can put other sorts of things in the file folder, too, 
but you see how these things work as the book progresses. Use these steps to cre-
ate a new notebook.

1. Click the P4DS4D3 entry on the Home page.

You see the contents of the project folder for this book, which will be blank if 
you’re performing this exercise from scratch.

2. Choose New ➪ Python 3 (ipykernel).

You see a new tab open in the browser with the new notebook. Notice that the 
notebook contains a cell and that Notebook has highlighted the cell so that you 
can begin typing code in it. The title of the notebook is Untitled right now. 
That’s not a particularly helpful title, so you need to change it.

3. Click Untitled on the page.

Notebook asks whether you want to use a new name.

4. Type P4DS4D3_03_Sample and press Enter.

The new name tells you that this is a file for Python for Data Science For 
Dummies, 3rd Edition, Chapter 3, Sample.ipynb. Using this naming convention 
will let you easily differentiate these files from other files in your repository.

Adding notebook content
Of course, the Sample notebook doesn’t contain anything just yet. This book fol-
lows a convention of putting the source code files together that makes them easy 
to use. The following steps tell you about this convention:

1. Choose Markdown from the drop-down list that currently contains the 
word Code.

A Markdown cell contains documentation text. You can put anything in a 
Markdown cell because Notebook won’t interpret it. By using Markdown cells, 
you can easily document precisely what you mean when writing code.

2. Type # Downloading the Datasets and Example Code and click Run (the 
button with the right-pointing arrow on the toolbar).

The hash mark (#) creates a heading. A single # creates a first-level heading. 
The text that follows contains that actual heading information. Clicking Run 
turns the formatted text into a heading. Notice that Notebook automatically 
creates a new cell for you to use.
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3. Choose Markdown, type ## Defining the code repository, and click Run.

Notebook creates a second-level heading, which looks smaller than a first-level 
heading.

4. Choose Markdown, type ### Adding notebook content, and click Run.

Notebook creates a third-level heading. Your headings now match the 
hierarchy that starts with the first-level heading for this section. Using this 
approach helps you to easily locate a particular piece of code in the download-
able source. As always, Notebook creates a new cell for you, and the cell type 
automatically changes to Code, so you’re ready to type some code for this 
example.

5. Type print(’Python is really cool!’) and click Run.

Notice that the code is color coded so that you can tell the difference between 
a function (print) and its associated data ('Python is really cool!').  
You see the combined output of the various markdown and coding steps in 
Figure 3-5. The output is part of the same cell as the code. However, Notebook 
visually separates the output from the code so that you can tell them apart. 
Notebook automatically creates a new cell for you.

When you finish working with a notebook, shutting it down is important. To close 
a notebook, choose File ➪ Close and Halt. You return to the P4DS4D3 page, where 
you can see the notebook you just created added to the list.

Exporting a notebook
It isn’t much fun to create notebooks and keep them all to yourself. At some point, 
you want to share them with other people. To perform this task, you must export 
your notebook from the repository to a file. You can then send the file to someone 
else who will import it into their repository.

FIGURE 3-5: 
Notebook uses 

cells to store  
your code.
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The previous section shows how to create a notebook named P4DS4D3_03_ 
Sample. You can open this notebook by clicking its entry in the repository list. The 
file reopens so that you can see your code again. To export this code, choose 
File ➪ Download As ➪ Notebook (.ipynb). What you see next depends on your 
browser, but you generally see some sort of dialog box for saving the notebook as 
a file. Use the same method for saving the Notebook file as you use for any other 
file you save using your browser.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them 
any longer. Rather than allow your repository to get clogged with files you don’t 
need, you can remove these unwanted notebooks from the list. Notice the check 
box next to the P4DS4D3_03_Sample.ipynb entry. Use these steps to remove the 
file:

1. Select the check box next to the P4DS4D3_03_Sample.ipynb entry.

2. Click the Delete (trashcan) icon.

You see a Delete notebook warning message.

3. Click Delete.

Notebook removes the notebook file from the list.

Importing a notebook
To use the source code from this book, you must import the downloaded files into 
your repository. The source code comes in an archive file that you extract to a 
location on your hard drive. The archive contains a list of .ipynb (IPython Note-
book) files containing the source code for this book (see the Introduction for 
details on downloading the source code). The following steps tell how to import 
these files into your repository:

1. Click Upload on the Notebook P4DS4D3 page.

What you see depends on your browser. In most cases, you see some type of 
File Upload dialog box that provides access to the files on your hard drive.

2. Navigate to the directory containing the files you want to import into 
Notebook.
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3. Highlight one or more files to import and click the Open (or other, 
similar) button to begin the upload process.

You see the file added to an upload list. The file isn’t part of the repository 
yet — you’ve simply selected it for upload.

4. Click Upload.

Notebook places the file in the repository so that you can begin using it.

Understanding the datasets  
used in this book
This book uses a number of datasets, all of which appear in the Scikit-learn 
library. These datasets demonstrate various ways in which you can interact with 
data, and you use them in the examples to perform a variety of tasks. The follow-
ing list provides a quick overview of the functions used to import each of the 
datasets into your Python code:

 » fetch_openml(): An open repository for machine learning data and experi-
ments. Anyone can upload open datasets to allow access to them.

 » fetch_california_housing(): Regression analysis with the California 
housing dataset.

 » https://archive.ics.uci.edu/ml/machine-learning-databases/
statlog/german/: Analysis with the German Credit dataset described at 
https://archive.ics.uci.edu/ml/datasets/statlog+(german+ 
credit+data).

 » https://raw.githubusercontent.com/allisonhorst/palmerpenguins/
main/inst/extdata/penguins.csv: Analysis with the Palmer Penguins 
dataset described at https://allisonhorst.github.io/palmerpenguins/
articles/intro.html.

 » http://files.grouplens.org/datasets/movielens/ml-1m.zip:  
Analysis with the MovieLens dataset described at https://grouplens.org/ 
datasets/movielens/.

The technique for loading each of these datasets is similar across examples (some 
of them require extra code provided with the book). The following example shows 

https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://raw.githubusercontent.com/allisonhorst/palmerpenguins/main/inst/extdata/penguins.csv
https://raw.githubusercontent.com/allisonhorst/palmerpenguins/main/inst/extdata/penguins.csv
https://allisonhorst.github.io/palmerpenguins/articles/intro.html
https://allisonhorst.github.io/palmerpenguins/articles/intro.html
http://files.grouplens.org/datasets/movielens/ml-1m.zip
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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how to load the California Housing dataset. You can find the code in the 
P4DS4D3_03_Dataset_Load.ipynb notebook.

from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
print(housing.data.shape)

To see how the code works, click Run Cell. The output from the print call is 
(20640, 8). You can see the output shown in Figure 3-6. (Be patient; the dataset 
load can require a few seconds to complete.)

FIGURE 3-6: 
The housing 

object contains 
the loaded 

dataset.
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Chapter 4
Working with Google 
Colab

Colaboratory (https://colab.research.google.com/notebooks/welcome.
ipynb), or Colab for short, is a free Google cloud-based service that repli-
cates Jupyter Notebook in the cloud. You don’t have to install anything on 

your system to use it. In most respects, you use Colab as you would a desktop 
installation of Jupyter Notebook (often shortened to Notebook with an uppercase 
N throughout the book). This chapter explores Colab and discusses techniques for 
working with notebooks using either Jupyter Notebook or Colab.

Because you may not be using the same versions of products that appear in this 
book, the book’s example source code may or may not work precisely as described 
in the text when you use Colab. Also when using Colab, you may not see the results 
as presented in this book because of the differences in hardware between plat-
forms. The introductory sections of this chapter go into more detail about Colab 
and help you understand what you can expect from it. To use Colab, you must have 
a free Google account and then access Colab using your account. Otherwise, most 
of the Colab features won’t work.

As with Notebook, you can use Colab to perform specific tasks in a cell-oriented 
paradigm. The next sections of the chapter go through a range of task-related 
topics that start with the use of notebooks. If you’ve used Notebook in previous 
chapters, you notice a strong resemblance between Notebook and Colab. Of course, 

IN THIS CHAPTER

 » Understanding Google Colab

 » Accessing Google and Colab

 » Performing essential Colab tasks

 » Obtaining additional information

https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/notebooks/welcome.ipynb
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you also want to perform other sorts of tasks, such as creating various cell types 
and using them to create notebooks that look like those you create with Notebook.

Finally, this chapter can’t address every aspect of Colab, so the final section of the 
chapter serves as a handy resource for locating the most reliable information 
about Colab.

Defining Google Colab
Google Colab is the cloud version of Notebook. In fact, the Welcome page makes 
this fact apparent. It even uses IPython (the previous name for Jupyter) Notebook 
(.ipynb) files for the site. That’s right: You’re viewing a Notebook right there in 
your browser. Even though the two applications are similar and they both use 
.ipynb files, they do have some differences that you need to know about. The fol-
lowing sections help you understand the Colab differences.

Understanding what Google Colab does
You can use Colab to perform many tasks, but for the purpose of this book, you use 
it to write and run code, create its associated documentation, and display graph-
ics, just as you do with Notebook. The techniques you use are similar, in fact, to 
using Notebook, but later in the chapter, you find out the small differences 
between the two. Even so, the downloadable source for this book will run without 
much effort on your part.

Notebook is a localized application in that you use local resources with it. You could 
potentially use other sources, but doing so could prove inconvenient or impossible 
in some cases. For example, according to https://help.github.com/articles/ 
working-with-jupyter-notebook-files-on-github/, your Notebook files will 
appear as static HTML pages when you use a GitHub repository (https://docs.
github.com/en/get-started/quickstart/create-a-repo). In fact, some fea-
tures won’t work at all. Colab enables you to fully interact with your notebook files 
using GitHub as a repository. In fact, Colab supports a number of online storage 
options, so you can regard Colab as your online partner in creating Python code.

The other reason that you really need to know about Colab is that you can use it 
with your alternative device. During the writing process, some of the example 
code was tested on an Android-based tablet (an ASUS ZenPad 3S 10). The target 
tablet has Chrome installed and executes the code well enough to follow the 
examples. All this said, you likely won’t want to try to write code using a tablet of 
that size — the text was incredibly small, for one thing, and the lack of a keyboard 
could be a problem, too. The point is that you don’t absolutely have to have a 

https://help.github.com/articles/working-with-jupyter-notebook-files-on-github/
https://help.github.com/articles/working-with-jupyter-notebook-files-on-github/
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Windows, Linux, or OS X system to try the code, but the alternatives may not pro-
vide quite the performance you expect.

Google Colab generally doesn’t work with browsers other than Chrome or Firefox. 
In most cases, you see an error message and no other display if you try to start 
Colab in a browser that it doesn’t support. Your copy of Firefox may also need 
some configuration to work properly (see the “Using local runtime support” sec-
tion, later in this chapter, for details). The amount of configuration that you per-
form depends on which Colab features you choose to use. Many examples work 
fine in Firefox without any modification.

Considering the online coding difference
For the most part, you use Colab just as you would Notebook. However, some fea-
tures work differently. For example, to execute the code within a cell, you select 
that cell and click the Run button (right-facing arrow) for that cell. The current 
cell remains selected, which means that you must actually initiate the selection of 
the next cell as a separate action. A block next to the output lets you clear just that 
output without affecting any other cell. Hovering the mouse over the block tells 
you when someone executed the content. On the right side of the cell, you see a 
vertical ellipsis that you can click to see a menu of options for that cell. The result 
is the same as when using Notebook, but the process for achieving the result is 
different.

SOME FIREFOX ODDITIES
Even with online help, you may still find that your copy of Firefox displays a 
SecurityError: The operation is insecure. error message. The initial error 
dialog box will point to some unrelated issue, such as cookies, but you see this error 
message when you click Details. Simply dismissing the dialog box by clicking OK will 
make Colab appear to be working because it displays your code, but you won’t see 
results from running the code.

As a first step to fixing this problem, make sure that your copy of Firefox is current; 
older versions won’t provide the required support. After you’ve updated your copy,  
setting the network.websocket.allowInsecureFromHTTPS preference using 
About:Config to True should resolve the problem, but sometimes it doesn’t. In this 
case, verify that Firefox actually does allow third-party cookies by selecting Always for 
the Accept Third Party Cookies and Site Data option and selecting Remember History  
in the History section on the Privacy & Security tab of the Options dialog box. Restart 
Firefox after each change and then try Colab again. If none of these fixes works, you 
must use Chrome to work with Colab on your system.
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The actual process for working with the code also differs from Notebook. Yes, you 
still type the code as you always have and the resulting code executes without 
problem in Colab. The difference is in the way you can manage the code. You can 
upload code from your local drive as desired and then save it to a Google Drive or 
GitHub. The code becomes accessible from any device at this point by accessing 
those same sources. All you need to do is load Colab to access it.

If you use Chrome when working with Colab and choose to sync your copy of 
Chrome among various devices, all your code becomes available on any device you 
choose to work with. Syncing transfers your choices to all your devices as long as 
those devices are also set to synchronize their settings. Consequently, you can 
write code on your desktop, test it on your tablet, and then review it on your smart 
phone. It’s all the same code, all the same repository, and the same Chrome setup, 
just a different device.

What you may find, however, is that all this flexibility comes at the price of speed 
and ergonomics. In reviewing the various options, a local copy of Notebook gen-
erally executes the code in this book faster than a copy of Colab using any of the 
available configurations (even when working with a local copy of the .ipynb file). 
So, you trade speed for flexibility when working with Colab. In addition, viewing 
the source code on a tablet is hard; viewing it on a smart phone is nearly impos-
sible. If you make the text large enough to see, you can’t see enough of the code to 
make any sort of reasonable editing possible. At best, you could review the code 
one line at a time to determine how it works.

Using Notebook has other benefits, too. For example, when working with Colab, 
you have options to download your source files only as .ipynb or .py files. Colab 
doesn’t include all the other download options, including (but not limited to) 
HTML, LaTeX, and PDF.  Consequently, your options for creating presentations 
from the online content are also limited to some extent. In short, using Colab and 
Notebook provides different coding experiences to some degree. They’re not 
mutually exclusive, however, because they share file formats. Theoretically, 
switching between the two as needed is possible.

One thing to consider when using Notebook and Colab is that the two products use 
most of the same terminology and many of the same features, but they’re not 
completely the same. The methods used to perform tasks differ, and some of the 
terminology does as well. For example, a Markdown cell in Notebook is a Text cell 
in Colab. The “Performing Common Tasks” section of this chapter tells you about 
other differences you need to consider.



CHAPTER 4  Working with Google Colab      53

Using local runtime support
The only time you really need local runtime support is when you want to work 
within a team environment and you need the speed or resource access advantage 
offered by a local runtime. When using the local runtime support, Colab connects 
to a local copy of Notebook, so you have to have Notebook installed on your local 
system. Using a local runtime normally produces better speed than you obtain 
when relying on the cloud. In addition, a local runtime enables you to access files 
on your machine. A local runtime also gives you control over the version of Note-
book used to execute code. You can read more about local runtime support at 
https://research.google.com/colaboratory/local-runtimes.html.

You need to consider several issues when determining the need for local runtime 
support. The most obvious is that you need a local runtime, which means that this 
option won’t work with your laptop or tablet unless your laptop has Windows, 
Linux, or OS X and the appropriate version of Notebook installed. Your laptop or 
tablet will also need an appropriate browser; Internet Explorer is almost guaran-
teed to cause problems, assuming that it works at all.

The most important consideration when using a local runtime, however, is that 
your machine is now open to possible infection from Notebook code. You need to 
trust the party supplying the code. The local runtime option doesn’t open your 
machine to others that you share code with, however; they must either use their 
own local runtimes or rely on the cloud to execute code.

When working with Colab on using local runtime support and Firefox, you must 
perform some special setups. Make sure to read the Browser Specific Setups sec-
tion on the Local Runtimes page to ensure that you have Firefox configured cor-
rectly. Always verify your setup. Firefox may appear to work correctly with Colab. 
However, a configuration issue arises when you perform tasks with it, and Colab 
shows error messages that say the code didn’t execute (or something else that 
isn’t particularly helpful).

Working with Notebooks
As with Jupyter Notebook, the notebook forms the basis of interactions with Colab. 
In fact, Colab is built on notebooks, as previously mentioned. When you place the 
mouse on certain parts of the Welcome page at https://colab.research.
google.com/notebooks/welcome.ipynb, you see opportunities for interacting 
with the page by adding either code or text entries (which you can use for notes as 
needed). These entries are active, so you can interact with them. You can also 
move cells around and copy the resulting material to your Google Drive. Of course, 

https://research.google.com/colaboratory/local-runtimes.html
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while interacting with the Welcome page is both unexpected and fun, the real 
purpose of this chapter is to demonstrate how to interact with Colab notebooks. 
The following sections describe how to perform basic notebook-related tasks with 
Colab.

Creating a new notebook
To create a new notebook, choose File ➪ New Notebook. You see a new Python 3 
notebook like the one shown in Figure 4-1. The new notebook looks similar to, but 
not precisely the same as, those found in Notebook. However, all the same func-
tionality exists.

The notebook shown in Figure 4-1 lets you change the filename by clicking on it, 
just as you do when working in Notebook. Some features work differently but pro-
vide the same results. For example, to run the code in a particular cell, you click 
the right-pointing arrow on the left side of that cell. In contrast to Notebook, the 
cell focus doesn’t change to the next cell, so you must choose the next cell directly 
or by clicking the Next Cell or Previous Cell buttons on the toolbar.

Opening existing notebooks
You can open existing notebooks found in local storage, on Google Drive, or on 
GitHub. You can also open any of the Colab examples or upload files from sources 

FIGURE 4-1: 
Create a new 

Python 3 
Notebook using 

the same 
techniques as 

normal.
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that you can access, such as a network drive on your system. In all cases, you 
begin by choosing File ➪ Open Notebook. You see the dialog box shown in 
Figure 4-2.

The default view shows all the files you opened recently, regardless of location. 
The files appear in alphabetical order. You can filter the number of items dis-
played by typing a string into the Filter Notebooks field. Across the top are other 
options for opening notebooks.

Even if you’re not logged in, you can still access the Colab example projects. These 
projects help you understand Colab but won’t allow you to do anything with your 
own projects. Even so, you can still experiment with Colab without logging into 
Google first. The following sections discuss these options in more detail.

Using Google Drive for existing notebooks
Google Drive is the default location for many operations in Colab, and you can 
always choose it as a destination. When working with Drive, you see a list of files. 
To open a particular file, you click its link in the dialog box. The file opens in the 
current tab of your browser.

Using GitHub for existing notebooks
When working with GitHub, you initially need to provide the location of the source 
code online. Make sure to select Include Private Repos if you want to work with 
your private projects in addition to the public ones.

FIGURE 4-2: 
Use this dialog 

box to open 
existing 

notebooks.
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After you make the connection to GitHub, you see two lists: repositories, which 
are containers for code related to a particular project; and branches, a particular 
implementation of the code. Selecting a repository and branch displays a list of 
notebook files that you can load into Colab. Simply click the required link and it 
loads as if you were using a Google Drive.

Using local storage for existing notebooks
If you want to use the downloadable source for this book, or any local source for 
that matter, you select the Upload tab of the dialog box. In the center is a single 
button, Choose File. Clicking this button opens the File Open dialog box for your 
browser. You locate the file you want to upload, just as you normally would for 
opening any file.

Selecting a file and clicking Open uploads the file to Google Drive. If you make 
changes to the file, those changes appear on Google Drive, not on your local drive. 
Depending on your browser, you usually see a new window open with the code 
loaded. However, you could also simply see a success message, in which case you 
must now open the file using the same technique as you would when using Google 
Drive. In some cases, your browser asks whether you want to leave the current 
page. You should tell the browser to do so.

The File ➪ Upload Notebook command also uploads a file to Google Drive. In fact, 
uploading a notebook works like uploading any other kind of file, and you see the 
same dialog box. If you want to upload other kinds of files, using the File ➪ Upload 
Notebook command is likely faster.

Saving notebooks
Colab provides a significant number of options for saving your notebook. How-
ever, none of these options works with your local drive. After you upload content 
from your local drive to Google Drive or GitHub, Colab manages the content in the 
cloud and not on your local drive. To save updates to your local drive, you must 
download the file using the techniques found in the “Downloading notebooks” 
section, later in this chapter. The following sections review the cloud-based 
options for saving notebooks.

Using Drive to save notebooks
The default location for storing your data is Google Drive (https://drive.
google.com/). When you choose File ➪ Save, the content you create goes to the 
root directory of your Google Drive. If you want to save the content to a different 
folder, you need to select that folder in Google Drive.

https://drive.google.com/
https://drive.google.com/
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Colab tracks the versions of your project as you perform saves. However, as these 
revisions age, Colab removes the older versions. To save a version that won’t age, 
you use the File ➪ Save and Pin Revision command. To see the revisions for your 
project, choose File ➪ Revision History. You see the output shown in Figure 4-3. 
Notice that the first entry is pinned. You can also pin entries by checking the entry 
in the History list. The revision history also shows you the modification date, who 
made the revision, and the size of the resulting file.

Click the vertical ellipsis (three dots) next to an entry to see the additional options 
shown in Figure 4-3. You can name the revision, open it in Colab, or restore the 
current code to the selected revision. Naming a revision makes it easier to find, 
and you can use this technique for revisions that have special significance.

You can also save a copy of your project by choosing File ➪ Save a Copy In Drive. 
The copy receives the word Copy as part of its name. Of course, you can rename it 
later. Colab stores the copy in the current Google Drive folder.

Using GitHub to save notebooks
GitHub provides an alternative to Google Drive for saving content. It offers an 
organized method of sharing code for the purpose of discussion, review, and dis-
tribution. You can find GitHub at https://github.com/.

FIGURE 4-3: 
Colab maintains a 

history of the 
revisions for your 

project.

https://github.com/
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To save a file to GitHub, choose File ➪ Save a Copy in GitHub. If you aren’t  
already signed into GitHub, Colab displays a window that requests your sign-in 
information. After you sign in, you see a dialog box similar to the one shown in 
Figure 4-4.

The best way to work with GitHub is to create the repository on your GitHub 
account first, and then access it from Colab. This approach lets you do things like 
create the Readme.md file, set public or private access, invite others to view the 
code, and set up any required security. You can go to your repositories by clicking 
the button next to Repository, shown in Figure 4-4.

Using GitHub gists to save notebooks
You use GitHub gists as a means of sharing single files or other resources with 
other people. Some people use them for full projects as well, but the idea is that 
you have a concept that you want to share  — something that isn’t quite fully 
formed and doesn’t represent a usable application. You can read more about gists 
at https://help.github.com/articles/about-gists/.

As with GitHub’s public and private repositories, gists come in both public and 
secret (private) form. You can access both public and secret gists from Colab, but 
Colab automatically keeps your files secret. To save your current project as a gist, 
you choose File ➪ Save a Copy as a GitHub Gist. Unlike GitHub, you don’t need to 
create a repository or do anything fancy in this case. The file saves as a gist with-
out any extra effort. The resulting entry always contains an Open in Colab button 
link, as shown in Figure 4-5.

FIGURE 4-4: 
Using GitHub 

means storing 
your data in a 

repository.

https://help.github.com/articles/about-gists/
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Downloading notebooks
Colab supports two methods for downloading notebooks to your local drive: 
.ipynb files (using File ➪ Download .ipynb) and .py files (using File ➪ Download 
.py). In both cases, the file appears in the default download directory for your 
browser; Colab doesn’t offer a method for downloading the file to a specific 
directory.

Performing Common Tasks
Most tasks in Colab work similar to their Notebook counterparts. For example, you 
can create code cells just as you do in Notebook. Markdown cells come in three 
forms: text, heading, and table of contents. They work somewhat differently from 
the markdown cells found in Notebook, but the idea is the same. You can also edit 
and move cells, just as you do with Notebook. One important difference is that you 
can’t change a cell type. A cell that you create as a header can’t suddenly trans-
form into a code cell. The following sections provide a brief overview of the vari-
ous features.

FIGURE 4-5: 
Use gists to store 
individual files or 
other resources.
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Creating code cells
The first cell that Colab creates for you is a code cell. The code you create in Colab 
uses all the same features that you find in Notebook. However, off to the side of 
the cell, you see a menu of extras that you can use with Colab that aren’t present 
in Notebook. You can access some of these options by clicking the vertical ellipsis, 
shown at the rightmost end of the toolbar menu at the side of the cell in 
Figure 4-6.

You use the options shown in Figure 4-6 to augment your Colab code experience. 
The following list (shown in order of appearance in Figure 4-6) provides a short 
description of these features:

 » Move Cell Up: Moves the selected cell up in the hierarchy of cells by 
one position.

FIGURE 4-6: 
Colab code cells 

contain a few 
extras not found 

in Notebook.
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 » Move Cell Down: Moves the selected cell down in the hierarchy of cells by 
one position.

 » Copy Link to Cell: Places a link to the selected cell on the Clipboard. You can 
use this link to access a specific cell within the notebook. You can embed this 
link anywhere on a web page or within a notebook to allow someone to 
access that specific cell. The person still sees the entire notebook but doesn’t 
have to search for the cell you want to discuss.

 » Add a Comment: Creates a comment balloon to the right of the cell. This is 
not the same as a code comment, which exists in line with the code but affects 
the entire cell. You can edit, delete, or resolve comments. A resolved comment 
is one that has received attention and is no longer applicable.

 » Open Editor Settings: Displays the dialog box shown in Figure 4-7 that you 
can use to modify Colab’s behavior.

 » Mirror Cell in Tab: Creates a mirror view of the selected tab in a side window 
for more detailed editing.

 » Delete Cell: Removes the cell from the notebook.

FIGURE 4-7: 
Use the Editor tab 

of the Settings 
dialog box to 

modify the 
behavior of the 

editor.
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 » Ellipsis Entries: Click the vertical ellipsis to see these entries:

• Select Cell: Selects all the text in the cell.

• Copy Cell: Copies the selected content in the current cell and places it on 
the Clipboard.

• Cut Cell: Removes the selected content from the current cell and places it 
on the Clipboard.

• Clear Output: Removes the output from the cell. You must run the code 
again to regenerate the output.

• View Output Fullscreen: Displays the output (not the entire cell or any 
other part of the notebook) in full-screen mode on the host device. This 
option is useful when displaying a significant amount of content or when a 
detailed view of graphics helps explain a topic. Press Esc to exit full-screen 
mode.

• Add a Form: Inserts a form into the cell to the right of the code. You use 
forms to provide a graphical input for parameters. Forms don’t appear in 
Notebook, but because of how you create them, they won’t prevent you 
from running the code in Notebook. You can read more about forms at 
https://colab.research.google.com/notebooks/forms.ipynb.

Code cells also tell you about the code and its execution. The little run icon next to 
the output displays information about the execution when you hover your mouse 
over it, as shown in Figure 4-8. Clicking the output icon below it clears the output. 
You must run the code again to regenerate the output.

Creating text cells
Text cells work much like Markup cells in Notebook. However, Figure 4-9 shows 
that you receive additional help in formatting the text using a graphical interface. 
The markup is the same, but you have the option of allowing the GUI to help you 
create the markup. For example, in this case, to create the # sign for a heading, 
you click the double T icon that appears first in the list. Clicking the double T icon 
again would increase the header level. To the right, you see how the text will 
appear in the notebook.

Notice the menu to the right of the text cell. This menu contains many of the same 
options that a code cell does. For example, you can create a list of links to help 
people access specific parts of your notebook through an index. Unlike Notebook, 
you can’t execute text cells to resolve the markup they contain.

https://colab.research.google.com/notebooks/forms.ipynb
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Creating special cells
The special cells that Colab provides are variations of the text cell. These special 
cells, which you access using the Insert menu option, make creating the required 
cells faster. Of these additions, section headers are the most interesting. When you 
choose Insert ➪ Section Header Cell, you see a new cell created below the currently 
selected cell that has the appropriate header level 1 entry in it. You can increase 
the heading level by clicking the double T icon. The GUI looks the same as the one 
in Figure 4-9, so you have all the standard formatting features for your text.

FIGURE 4-8: 
Colab code cells 

contain a few 
extras not found 

in Notebook.

FIGURE 4-9: 
Use the GUI to 

make formatting 
your text easier.
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Editing cells
Both Colab and Notebook have Edit and View menus that contain the options you 
expect, such as the ability to cut, copy, and paste cells. The two products have 
some interesting differences. For example, Notebook allows you to split and merge 
cells. Colab contains an option to show or hide the code as a toggle. These differ-
ences give the products slightly different flavors but don’t really change your 
ability to use them to create and modify Python code.

Moving cells
The same technique you use for moving cells in Notebook also works with Colab. 
The only difference is that Colab relies exclusively on toolbar buttons, while Note-
book also has cell movement options on the Edit menu.

Using Hardware Acceleration
Your Colab code executes on a Google server. All your computing device does is 
host a browser that displays the code and its results. Consequently, any special 
hardware on your computing device is ignored unless you choose to execute code 
locally.

Fortunately, you do have another option when working with Colab. Choose 
Edit ➪ Notebook Settings to display the Notebook Settings dialog box shown in 
Figure 4-10. This dialog box gives you a way to add GPU and TPU execution for 
your code. The article at https://research.google.com/colaboratory/faq.
html#gpu-availability provides additional details on how this feature works. 
The availability of a GPU isn’t an invitation to run large computations using Colab. 
The research site article tells you about the limitations of the Colab hardware 
acceleration (including that it may not be available when you need it).

FIGURE 4-10: 
Hardware 

acceleration 
speeds code 

execution.

https://research.google.com/colaboratory/faq.html#gpu-availability
https://research.google.com/colaboratory/faq.html#gpu-availability
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The Notebook Settings dialog box also lets you choose whether to include cell out-
put when saving the notebook. Given that you store your notebook in the cloud in 
most cases and that loading large files into your browser can be time consuming, 
this feature enables you to restart a session more quickly. Of course, the trade-off 
is that you must now regenerate all the outputs you need.

Executing the Code
For your notebook to be useful, you need to run it at some point. Previous sections 
have mentioned the right-pointing arrow that appears in the current cell. Clicking 
it runs just the current cell. Of course, you have other options than clicking the 
right-pointing arrow, and all these options appear on the Runtime menu. The fol-
lowing list summarizes these options:

 » Running the current cell: Besides clicking the right-pointing arrow, you can 
also choose Runtime ➪ Run the Focused Cell to execute the code in the 
current cell.

 » Running other cells: Colab provides options on the Runtime menu for 
executing the code in the next cells, the previous cells, or a selection of cells. 
Simply choose the option that matches the cell or set of cells you want to 
execute.

 » Running all the cells: In some cases, you want to execute all the code in a 
notebook. In this case, choose Runtime ➪ Run All. Execution starts at the top 
of the notebook, in the first cell containing code, and continues to the last cell 
that contains code in the notebook. You can stop execution at any time by 
choosing Runtime ➪ Interrupt Execution.

Choosing Runtime ➪ Manage Sessions displays a dialog box containing a list of all 
the sessions that are currently executing for your account on Colab. You can use 
this dialog box to determine when the code in that notebook last executed and how 
much memory the notebook consumes. Click Terminate to end execution for a 
particular notebook. Click Close to close the dialog box and return to your current 
notebook.

Use the Runtime ➪ Restart Runtime command to restart your runtime after work-
ing with the code for a while. Doing so resets everything so that you can verify that 
your code works as intended after making a lot of changes.
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Viewing Your Notebook
A notebook has a Table of Contents icon in its right margin. Clicking this icon 
displays a pane containing tabs that show various kinds of information about your 
notebook. You can also choose specific pieces of information to see from the View 
menu. To close this pane, click the X in the upper-right corner of the pane. The 
following sections describe each of these pieces of information.

Displaying the table of contents
Choose View ➪ Table of Contents to see a table of contents for your notebook, as 
shown in Figure 4-11. Clicking any of the entries takes you to that section of the 
notebook.

At the bottom of the pane is a + Section button. Click this button to create a new 
header cell below the currently selected cell.

Getting notebook information
When you choose View ➪ Notebook Info, you see a dialog box open as shown in 
Figure 4-12. This dialog box contains the notebook size, settings, and owner.

FIGURE 4-11: 
Use the table of 

contents to 
navigate your 

notebook.
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The Notebook Info tab also includes a link to Open Notebook Settings (see  
Figure 4-10) in which you can choose whether the notebook relies on hardware 
acceleration, as described in the “Using Hardware Acceleration” section, earlier in 
this chapter.

Checking code execution
Colab keeps track of your code as you execute it. Choose View ➪ Executed Code 
History to display the Executed Code tab in the pane at the right of the window. 
Note that the number associated with the entries in the Executed Code tab may not 
match the numbers associated with the associated cells. In addition, each unique 
execution of code receives a separate number.

Sharing Your Notebook
You can share your Colab notebooks in a number of ways. For example, you can 
save them to GitHub or GitHub gists. However, the two most direct methods are 
the following:

 » Create a share message and send it to the recipient.

 » Obtain a link to the code and send the link to the recipient.

In both cases, you click the Share button in the upper right of the Colab window. 
The Share dialog box opens (see Figure 4-13).

FIGURE 4-12: 
The notebook 

information 
includes both size 

and settings.
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When you enter one or more names in the People field, an additional field opens 
in which to add a sharing message. You can type a message and click Send to send 
the link immediately. If you click Advanced (when available) instead, you see 
another dialog box, where you can define how to share the notebook.

At the bottom of the Share dialog box, you see the Copy Link button. Clicking Copy 
Link places the URL on the Clipboard for your device, and you can paste it into 
messages or other forms of communication with others.

Getting Help
The most obvious place to obtain help with Colab is from the Colab Help menu. 
This menu contains all the usual entries for accessing frequently asked questions 
(FAQs) pages. The menu doesn’t have a link to general help, but you can find gen-
eral help at https://colab.research.google.com/notebooks/welcome.ipynb 
(which requires you to log into the Colab site). The menu also provides options for 
submitting a bug and sending feedback.

FIGURE 4-13: 
Send a message 
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One of the more intriguing Help menu entries is Search Code Snippets. This option 
opens the pane shown in Figure 4-14, in which you can search for example code 
that could meet your needs with a little modification. Clicking the Insert button 
inserts the code at the current cursor location in the cell that has focus. Each of the 
entries also shows an example of the code.

FIGURE 4-14: 
Use code 

snippets to write 
your applications 

more quickly.
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Chapter 5
Working with Jupyter 
Notebook

Up to this point, the book spends a lot of time working with Python to  
perform data science tasks without actually engaging the tools provided by 
Anaconda much. Yes, a good deal of what you do involves typing in code 

and seeing what happens. However, if you don’t actually know how to use your 
tools well, you miss opportunities to perform tasks easier and faster. Automation 
is an essential part of performing data science tasks in Python.

This chapter is about working with Jupyter Notebook. Earlier chapters give you 
some experience with this tool, but those chapters don’t explore Jupyter Notebook 
in any detail, and you need to know it a lot better for upcoming chapters. The 
skills you develop in this chapter will help you perform tasks in later chapters 
with greater speed and far less effort.

The chapter also looks at tasks you can perform with your newfound skills. You 
develop even more skills as the book progresses, but these tasks help put your new 
skills into perspective and appreciate how you can use them to make working with 
Python even easier.

You don’t have to manually type the source code for this chapter. In fact, it’s a lot 
easier if you use the downloadable source. The source code for this chapter appears 
in the P4DS4D3_05_Understanding the Tools.ipynb source code file. (See the 
Introduction for details on where to locate this file.)

IN THIS CHAPTER

 » Working with Jupyter Notebook

 » Interacting with multimedia and 
graphics
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Using Jupyter Notebook
The Jupyter Notebook Integrated Development Environment (IDE) is part of the 
Anaconda suite of tools. The following sections help you understand some of the 
interesting things that Jupyter Notebook (simply called Notebook) can help you do.

Working with styles
Here’s one of the ways in which Notebook excels over just about any other IDE 
that you’ll ever use: It helps you to create nice-looking output. Rather than have 
a screen full of a whole bunch of plain-old code, you can use Notebook to create 
sections and add styles so that the output is nicely formatted. What you can end 
up with is a good-looking report that just happens to contain executable code. The 
reason for this improved output is the use of styles.

When you type code into Notebook, you place the code in a cell. Each section of 
code that you create goes into a separate cell. When you need to create a new cell, 
you click Insert Cell Below (the button with a plus sign) on the toolbar. Likewise, 
when you decide that you no longer need a cell, you select it and then click Cut Cell 
(the button with a scissors) to place the deleted cell on the Clipboard, or choose 
Edit ➪ Delete Cells to remove it completely.

The default style for a cell is Code. However, when you click the down arrow next 
to the Code entry, you see a listing of styles, as shown in Figure 5-1.

The various styles shown help you format content in various ways. The Markdown 
style is most definitely used to separate varies entries. To try it for yourself, choose 
Markdown from the drop-down list, type the heading for this main chapter sec-
tion, # Using Jupyter Notebook, in the first cell; next, click Run. The content 
changes to a heading. The single hash (#) tells Notebook that this is a first-level 
heading. Notice that clicking Run automatically adds a new cell and places the 
cursor in it. To add a second-level heading, choose Markdown from the drop-
down list, type ## Working with styles, and click Run. Figure 5-2 shows that the 
two entries are indeed headings and that the second entry is smaller than the first.

FIGURE 5-1: 
Notebook makes 

adding styles to 
your work easy.
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The Markdown style also lets you add HTML content. This markdown content can 
contain anything a web page contains with regard to standard HTML tags. Another 
way to create a first-level heading is to define the cell type as Markdown, type 
<h1>Using Jupyter Notebook</h1>, and then click Run. In general, you use HTML 
to provide documentation and links to outside material. Relying on HTML tags 
makes it possible to include things like lists or even pictures. In short, you can 
actually include an HTML document fragment as part of your notebook, which 
makes Notebook much more than a simple means of writing down code.

The use of the Raw NBConvert formatting option is outside the scope of this book. 
However, it provides you with the means for including information that shouldn’t 
be modified by the notebook converter (NBConvert). You can output notebooks in 
a variety of formats, and NBConvert performs this task for you. You can read about 
this feature at https://nbconvert.readthedocs.io/en/latest/. The goal of the 
Raw NBConvert style is to allow you to include special content, such as Lamport 
TeX (LaTeX) content. The LaTeX document system isn’t tied to a particular  
editor — it’s simply a means of encoding scientific documents.

Getting Python help
Notebook provides you with the resources to get the commonly required help you 
need. To obtain help, select one of the entries on the Help menu, shown in 
Figure 5-3.

As shown in Figure 5-3, you not only get help with Notebook and the markdown 
used to create entries for a Markdown cell, but you also get a complete Python 
reference and references to the most common libraries that developers use. When 
you choose an entry, a new web page opens containing the help information you 
require.

FIGURE 5-2: 
Adding headings 
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If you need additional help working with the Notepad interface, choose Help ➪   User 
Interface Tour. Use the right and left arrows to move between helpful balloons 
showing the various Notepad features. When you’re finished with your review, 
press Esc to exit the tour.

Using magic functions
Amazingly, you really can get magic on your computer! Jupyter provides a special 
feature called magic functions. The functions let you perform all sorts of amazing 
tasks with your Jupyter console. The following sections provide an overview of the 
magic functions. Some of them are used later in the book as well. However, it pays 
to spend some time checking out these functions for yourself.

Obtaining the magic functions list
The best way to start working with magic functions is to obtain a list of them by 
typing %quickref and pressing Enter. You see a help (pager) window similar to 
the one shown in Figure 5-4. The listing can be a little confusing to read, so make 
sure to take your time with it.

When you’ve finished reviewing the material, click the X in the pager window that 
appears in the lower half of Figure 5-4. To the left of the X is another button that 
lets you open the pager window in its own tab in the browser for easier reading.

FIGURE 5-3: 
The Help menu 

contains a 
selection of 

common help 
topics.
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Working with magic functions
Most magic functions start with either a single percent sign (%) or two percent 
signs (%%). Those with a single percent sign work at the command-line level, 
and the ones with two percent signs work at the cell level. You generally use magic 
functions with a single percent sign.

Most of the magic functions display status information when you use them by 
themselves. For example, when you type %cd and click Run, you see the current 
directory. To change directories, you type %cd plus the new directory location on 
your system.

Discovering objects
Python is all about objects. In fact, you can’t do anything in Python without work-
ing with some sort of object. With this in mind, it’s a good idea to know how to 
discover precisely what object you’re working with and what features it provides. 
The following sections help you discover the Python objects you use as you code.

Getting object help
You can request information about specific objects using the object name and a 
question mark (?). For example, if you want to know more about a list object 

FIGURE 5-4: 
Take your time 

going through the 
magic function 

help, which  
has a lot of 

information.



78      PART 2  Getting Your Hands Dirty with Data

named mylist, simply type mylist? and click Run. You see a pager window show-
ing the mylist type, content in string form, length, and a document string pro-
viding a quick overview of mylist.

When you need detailed help about mylist, you type help(mylist) and click Run 
instead. You see the same help provided as when requesting information about the 
Python list. However, you receive the information that’s appropriate to the par-
ticular object you need help with, rather than having to first discover the object 
type and then request information for that type. In addition, this information 
appears as part of the cell output, rather than in a separate pager window, which 
can make referencing the help information easier later.

Obtaining object specifics
The dir() function is often overlooked, but it’s an essential way to learn about 
object specifics. To see a list of properties and methods associated with any object, 
use dir(<object name>). For example, if you create a list called mylist and want 
to know what sorts of things you can do with it, type dir(mylist) and click Run. 
The cell displays a list of methods and properties that are specific to mylist.

Using extended Python object help
Using a single question mark causes Python to clip long content. If you want to 
obtain the full content for an object, you need to use the double question mark 
(??). For example, type mylist?? and click Run to see any clipped details (although 
there may not be any additional details). Whenever possible, Python provides you 
with the full source code for the object (assuming that the source code is 
available).

You can also use magic functions with objects. These functions simplify the help 
output and provide only the information you need, as shown here:

 » %pdoc: Displays the docstring for the object

 » %pdef: Shows how to call the object (assuming that the object is callable)

 » %psource: Displays the source code for the object (assuming that the source 
is available)

 » %pfile: Outputs the name of the file that contains the source code for the 
object

 » %pinfo: Displays detailed information about the object (often more than is 
provided by help alone)

 » %pinfo2: Displays extra detailed information about the object (when 
available)
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Restarting the kernel
Every time you perform a task in your notebook, you create variables, import 
modules, and perform a wealth of other tasks that modify the environment. At 
some point, you can’t really be sure that something is working as it should. To 
overcome this problem, you save your document by clicking Save and Checkpoint 
(the button containing a floppy disk symbol), and then click Restart Kernel (the 
button with an open circle with an arrow at one end). You can then run your code 
again to ensure that it does work as you thought it would.

Sometimes an error also causes the kernel to crash. Your document starts acting 
oddly, updates slowly, or shows other signs of corruption. Again, the answer is to 
restart the kernel to ensure that you have a clean environment and that the kernel 
is running as it should.

Whenever you click Restart Kernel, you see a warning message. Make sure to pay 
attention to the warning because you could lose temporary changes during a ker-
nel restart. Always save your document before you restart the kernel.

Restoring a checkpoint
At some point, you may find that you made a mistake. Notebook is notably miss-
ing an Undo button: You won’t find one anywhere. Instead, you create checkpoints 
each time you finish a task. Creating checkpoints when your document is stable 
and working properly helps you recover faster from mistakes.

To restore your setup to the condition contained in a checkpoint, choose 
File ➪ Revert to Checkpoint. You see a listing of available checkpoints. Simply 
select the one you want to use. When you select the checkpoint, you see a warning 
message. When you click Revert, any old information is gone and the information 
found in the checkpoint becomes the current information.

Performing Multimedia and  
Graphic Integration

Pictures say a lot of things that words can’t say (or at least they do it with far less 
effort). Notebook is both a coding platform and a presentation platform. You may 
be surprised at just what you can do with it. The following sections provide a brief 
overview of some of the more interesting features.
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Embedding plots and other images
At some point, you might have spotted a notebook with multimedia or graphics 
embedded into it and wondered why you didn’t see the same effects in your own 
files. In fact, all the graphics examples in the book appear as part of the code. 
Fortunately, you can perform some more magic by using the %matplotlib magic 
function. The possible values for this function are: 'gtk', 'gtk3', 'inline', 
'nbagg', 'osx', 'qt', 'qt4', 'qt5', 'tk', and 'wx', each of which defines a dif-
ferent plotting backend (the code used to actually render the plot) used to present 
information onscreen.

When you run %matplotlib inline, any plots you create appear as part of the 
document. That’s how Figure 8-1 (see the section about using NetworkX basics in 
Chapter 8) shows the plot that it creates immediately below the affected code.

Note that, according to https://stackoverflow.com/questions/65934740/is- 
matplotlib-inline-still-needed, there are situations in which you no longer 
need to run %matplotlib inline with newer versions of Python and its associ-
ated libraries. However, the documentation at https://pypi.org/project/ 
matplotlib-inline/ still includes this feature and states outright that third-
party libraries may continue to need it, so the book will continue to use %mat 
plotlib inline to ensure that the examples work as intended.

Loading examples from online sites
Because some examples you see online can be hard to understand unless you have 
them loaded on your own system, you should also keep the %load magic function 
in mind. All you need is the URL of an example you want to see on your system. 
For example, try %load https://matplotlib.org/_downloads/pyplot_text.py. 
When you click Run Cell, Notebook loads the example directly in the cell and com-
ments the %load call out. You can then run the example and see the output from 
it on your own system.

Obtaining online graphics and multimedia
A lot of the functionality required to perform special multimedia and graphics 
processing appears within Jupyter.display. By importing a required class, you 
can perform tasks such as embedding images into your notebook. Here’s an exam-
ple of embedding one of the pictures from the author’s blog into the notebook for 
this chapter:

from urllib.request import Request, urlopen
from IPython import display

https://stackoverflow.com/questions/65934740/is-matplotlib-inline-still-needed
https://stackoverflow.com/questions/65934740/is-matplotlib-inline-still-needed
https://pypi.org/project/matplotlib-inline/
https://pypi.org/project/matplotlib-inline/
https://matplotlib.org/_downloads/pyplot_text.py
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req = Request('http://blog.johnmuellerbooks.com/' +
    'wp-content/uploads/2015/04/Layer-Hens.jpg', 
              headers={'User-Agent': 'XYZ/3.0'})
image = urlopen(req, timeout=10).read()
 
display.Image(image)

The code begins by importing the required resources. It then makes a request for 
the file from the website. Notice the inclusion of the headers property. If you 
don’t include this property, the call will fail with an error message. The call to 
urlopen() actually retrieves the image, which is then displayed using display.
Image(). The output you see from this example appears in Figure 5-5.

When working with embedded images on a regular basis, you might want to set 
the form in which the images are embedded. For example, you may prefer to 
embed them as PDFs. To perform this task, you use code similar to this:

from IPython.display import set_matplotlib_formats
set_matplotlib_formats('pdf', 'svg')

FIGURE 5-5: 
Embedding 

images can dress 
up your notebook 

presentation.
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You have access to a wide number of formats when working with a notebook. The 
commonly supported formats are 'png', 'retina', 'jpeg', 'svg', and 'pdf'.

Note, you may or may not see a warning message when running certain code in 
this book. That’s because Python relies on a huge number of libraries that are all 
updated on different schedules, so that if you’re using a copy of Python that’s one 
minor version different from the product used in this book, you can see these 
messages. The blog post at https://blog.johnmuellerbooks.com/2023/05/08/ 
warning-messages-in-jupyter-notebook-example-code/ tells you a lot more 
about these messages and what to do with them. Warning messages are just that, 
warnings — they don’t keep the downloadable source from running and are gen-
erally nothing to worry about.

The IPython display system is nothing short of amazing, and this section hasn’t 
even begun to scratch the surface for you. For example, you can import a YouTube 
video and place it directly into your notebook as part of your presentation if you 
want. You can see quite a few more of the display features demonstrated at 
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/ 
notebooks/Part%205%20-%20Rich%20Display%20System.ipynb.

https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb
http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Part%205%20-%20Rich%20Display%20System.ipynb
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Chapter 6
Working with Real Data

Data science applications require data by definition. It would be nice if you 
could simply go to a data store somewhere, purchase the data you need in 
an easy-open package, and then write an application to access that data. 

However, data is messy. It appears in all sorts of places, in many different forms, 
and you can interpret it in many different ways. Every organization has a different 
method of viewing data and stores it in a different manner as well. Even when the 
data management system used by one company is the same as the data manage-
ment system used by another company, the chances are slim that the data will 
appear in the same format or even use the same data types. In short, before you 
can do any data science work, you must discover how to access the data in all its 
myriad forms. Real data requires a lot of work to use, and fortunately, Python is 
up to the task of manipulating it as needed.

This chapter helps you understand the techniques required to access data in a 
number of forms and locations. For example, memory streams represent a form of 
data storage that your computer supports natively; flat files exist on your hard 
drive; relational databases commonly appear on networks (although smaller rela-
tional databases, such as those found in Access, could appear on your hard drive 
as well); and web-based data usually appears on the internet. You won’t visit 
every form of data storage available (such as that stored on a point-of-sale, or 
POS, system). An entire book on the topic probably wouldn’t suffice to cover the 
topic of data formats in any detail. However, the techniques in this chapter dem-
onstrate how to access data in the formats you most commonly encounter when 
working with real-world data.

IN THIS CHAPTER

 » Manipulating data streams

 » Working with flat and unstructured 
files

 » Interacting with relational databases

 » Using NoSQL as a data source

 » Interacting with web-based data
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The Scikit-learn library includes a number of toy datasets (small datasets meant 
for you to play with). These datasets are complex enough to perform a number of 
tasks, such as experimenting with Python to perform data science tasks. Because 
this data is readily available and it’s a bad idea to make the examples too compli-
cated to understand, this book relies on toy datasets as input for many of the 
examples. Still, the demonstrated techniques work equally well on real-world data.

You don’t have to type the source code for this chapter, and in fact, using the 
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_06_Dataset_ 
Load.ipynb file.

The Colors.txt, Titanic.csv, Values.xls, Colorblk.jpg, and XMLData.xml 
files that come with the downloadable source code must appear in the same folder 
(directory) as your Notebook files. Otherwise, the examples in the following sec-
tions fail with an input/output (IO) error. The file location varies according to the 
platform you’re using. For example, on a Windows system, you find the notebooks 
stored in the C:\Users\Username\P4DS4D3 folder, where Username is your login 
name. (The book assumes that you’ve used the prescribed folder location of 
P4DS4D3, as described in the “Defining the code repository” section of Chapter 3.) 
To make the examples work, simply copy the four files from the downloadable 
source folder into your Notebook folder.

Uploading, Streaming, and Sampling Data
Storing data in local computer memory represents the fastest and most reliable 
means to access it. The data could reside anywhere. However, you don’t actually 
interact with the data in its storage location. You load the data into memory from 
the storage location and then interact with it in memory. This is the technique the 
book uses to access all the toy datasets found in the Scikit-learn library, so you see 
this technique used relatively often in the book.

Data scientists call the columns in a database features or variables. The rows are 
cases. Each row represents a collection of variables that you can analyze.

Uploading small amounts  
of data into memory
The most convenient method that you can use to work with data is to load it 
directly into memory. This technique shows up a couple of times earlier in the 
book but uses the toy dataset from the Scikit-learn library. This section uses the 
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Colors.txt file, which contains the following color names and numeric 
equivalents:

Color Value Color Value

Red 1 Orange 2

Yellow 3 Green 4

Blue 5 Purple 6

Black 7 White 8

The example also relies on native Python functionality to get the task done. When 
you load a file (of any type), the entire dataset is available at all times and the 
loading process is quite short. Here is an example of how this technique works.

with open("Colors.txt", 'r') as open_file:
    print('Colors.txt content:\n' + open_file.read())

The example begins by using the open() method to obtain a file object. The 
open() function accepts the filename and an access mode. In this case, the access 
mode is read (r). It then uses the read() method of the file object to read all the 
data in the file. If you were to specify a size argument as part of read(), such as 
read(15), Python would read only the number of characters that you specify or 
stop when it reaches the End Of File (EOF). When you run this example, you see the 
following output:

Colors.txt content:
Color     Value
Red       1
Orange    2
Yellow    3
Green     4
Blue      5
Purple    6
Black     7
White     8

The entire dataset is loaded from the library into free memory. Of course, the 
loading process will fail if your system lacks sufficient memory to hold the data-
set. When this problem occurs, you need to consider other techniques for working 
with the dataset, such as streaming it or sampling it. In short, before you use this 
technique, you must ensure that the dataset will actually fit in memory. You won’t 
normally experience any problems when working with the toy datasets in the 
Scikit-learn library.
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Streaming large amounts of data into 
memory
Some datasets will be so large that you won’t be able to fit them entirely in mem-
ory at one time. In addition, you may find that some datasets load slowly because 
they reside on a remote site. Streaming solves both issues by enabling you to work 
with the data a little at a time. You download individual pieces so that you can 
work with just part of the data as you receive it, rather than waiting for the entire 
dataset to download. Here’s an example of how you can stream data using Python:

with open("Colors.txt", 'r') as open_file:
    for observation in open_file:
        print('Reading Data: ' + observation , end="")

This example relies on the Colors.txt file, which contains a header and then a 
number of records that associate a color name with a value. The open_file file 
object contains a pointer to the open file.

As the code performs data reads in the for loop, the file pointer moves to the next 
record. Each record appears one at a time in observation. The code outputs the 
value in observation using a print statement. You should receive this output:

Reading Data: Color    Value
Reading Data: Red      1
Reading Data: Orange   2
Reading Data: Yellow   3
Reading Data: Green    4
Reading Data: Blue     5
Reading Data: Purple   6
Reading Data: Black    7
Reading Data: White    8

Python streams each record from the source. This means that you must perform a 
read for each record you want.

Generating variations on image data
Sometimes you need to import and analyze image data. The source and type of the 
image does make a difference. A number of examples of working with images 
appear throughout the book, but a good starting point is to simply read a local 
image in, obtain statistics about that image, and display the image onscreen, as 
shown in the following code:
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import matplotlib.image as img
import matplotlib.pyplot as plt
%matplotlib inline
 
image = img.imread("Colorblk.jpg")
print(image.shape)
print(image.size)
plt.imshow(image)
plt.show()

The example begins by importing two matplotlib libraries, image and pyplot. 
The image library reads the image into memory, and the pyplot library displays it 
onscreen.

After the code reads the file, it begins by displaying the image shape property — 
the number of horizontal pixels, vertical pixels, and pixel depth (the number of 
bits used to represent colors). Figure 6-1 shows that the image is 100 x 100 x 3 
channels (one for each color component: red, green, and blue). The image size 
property is the combination of these three elements, or 30,000 bytes.

The next step is to load the image for plotting by using imshow(). The final call, 
plt.show(), displays the image onscreen, as shown in Figure 6-1. This technique 
represents just one of a number of methods for interacting with images using 
Python so that you can analyze them in some manner.

FIGURE 6-1: 
The test image  

is 100 pixels  
high and  

100 pixels long.
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Sampling data in different ways
Data streaming obtains all the records from a data source. You may find that you 
don’t need all the records. In that case, you can save time and resources by simply 
sampling the data (retrieving records a set number of records apart, such as every 
fifth record) or by making random samples. The following code shows how to 
retrieve every other record in the Colors.txt file:

n = 2
with open("Colors.txt", 'r') as open_file:
    for j, observation in enumerate(open_file):
        if j % n==0:
            print('Reading Line: ' + str(j) +
                  ' Content: ' + observation , end="")

The basic idea of sampling is the same as streaming. However, in this case, the 
application uses enumerate() to retrieve a row number. When j % n == 0, the 
row is one that you want to keep and the application outputs the information. In 
this case, you see the following output:

Reading Line: 0 Content: Color    Value
Reading Line: 2 Content: Orange   2
Reading Line: 4 Content: Green    4
Reading Line: 6 Content: Purple   6
Reading Line: 8 Content: White    8

The value of n is important in determining which records appear as part of the 
dataset. Try changing n to 3. The output will change to sample just the header 
(Line: 0) and rows 3 and 6.

You can perform random sampling as well. All you need to do is randomize the 
selector, like this:

from random import random
sample_size = 0.25
with open("Colors.txt", 'r') as open_file:
    for j, observation in enumerate(open_file):
        if random()<=sample_size:
            print('Reading Line: ' + str(j) +
                  ' Content: ' + observation, end="")

To make this form of selection work, you must import the random class. The  
random() method outputs a value between 0 and 1. However, Python randomizes 
the output so that you don’t know what value you receive (assuming you receive 
any at all). The sample_size variable contains a number between 0 and 1 to deter-
mine the sample size. For example, 0.25 selects 25 percent of the items in the file.
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The output will still appear in numeric order. For example, you won’t see Green 
come before Orange. However, the items selected are random, and you won’t 
always get precisely the same number of return values. Here is an example of what 
you may see as output (although your output will likely vary):

Reading Line: 1 Content: Red      1
Reading Line: 4 Content: Green    4
Reading Line: 8 Content: White    8

Accessing Data in Structured Flat-File Form
In many cases, the data you need to work with won’t appear within a library, such 
as the toy datasets in the Scikit-learn library. Real-world data usually appears in 
a file of some type, and a flat file presents the easiest kind of file to work with. In 
a flat file, the data appears as a simple list of entries that you can read one at a 
time, if desired, into memory. Depending on the requirements for your project, 
you can read all or part of the file.

A problem with using native Python techniques is that the input isn’t intelligent. 
For example, when a file contains a header, Python simply reads it as yet more 
data to process, rather than as a header. You can’t easily select a particular column 
of data. The pandas library used in the sections that follow makes it much easier 
to read and understand flat-file data. Classes and methods in the pandas library 
interpret (parse) the flat-file data to make it easier to manipulate.

The least formatted and therefore easiest-to-read flat-file format is the text file. 
However, a text file also treats all data as strings, so you often have to convert 
numeric data into other forms. A comma-separated value (CSV) file provides more 
formatting and more information, but it requires a little more effort to read. At the 
high end of flat-file formatting are custom data formats, such as an Excel file, 
which contains extensive formatting and could include multiple datasets in a  
single file.

The following sections describe these three levels of flat-file dataset and show 
how to use them. These sections assume that the file structures the data in some 
way. For example, the CSV file uses commas to separate data fields. A text file 
might rely on tabs to separate data fields. An Excel file uses a complex method to 
separate data fields and to provide a wealth of information about each field. You 
can work with unstructured data as well, but working with structured data is 
much easier because you know where each field begins and ends.
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Reading from a text file
Text files can use a variety of storage formats. However, a common format is to 
have a header line that documents the purpose of each field, followed by another 
line for each record in the file. The file separates the fields using tabs. Refer to the 
“Streaming large amounts of data into memory” section, earlier in this chapter, 
for an example of the Colors.txt file used for the example in this section.

Native Python provides a wide variety of methods you can use to read such a file. 
However, it’s far easier to let someone else do the work. In this case, you can use 
the pandas library to perform the task. Within the pandas library, you find a set of 
parsers, or code used to read individual bits of data and determine the purpose of 
each bit according to the format of the entire file. Using the correct parser is 
essential if you want to make sense of file content. In this case, you use the read_
table() method to accomplish the task, as shown in the following code:

import pandas as pd
color_table = pd.io.parsers.read_table("Colors.txt")
print(color_table)

The code imports the pandas library, uses the read_table() method to read  
Colors.txt into a variable named color_table, and then displays the resulting 
memory data onscreen using the print function. Here’s the output you can expect 
to see from this example.

  Color  Value
0 Red        1
1 Orange     2
2 Yellow     3
3 Green      4
4 Blue       5
5 Purple     6
6 Black      7
7 White      8

Notice that the parser correctly interprets the first row as consisting of field names. 
It numbers the records from 0 through 7. Using read_table() method arguments, 
you can adjust how the parser interprets the input file, but the default settings 
usually work best. You can read more about the read_table() arguments at 
https://pandas.pydata.org/docs/reference/api/pandas.read_table.html.

Reading CSV delimited format
A CSV file provides more formatting than a simple text file. In fact, CSV files can 
become quite complicated. There is a standard that defines the format of CSV files, 

https://pandas.pydata.org/docs/reference/api/pandas.read_table.html
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and you can see it at https://tools.ietf.org/html/rfc4180. The CSV file used 
for this example is quite simple:

 » A header defines each of the fields

 » Fields are separated by commas

 » Records are separated by linefeeds

 » Strings are enclosed in double quotes

 » Integers and real numbers appear without double quotes

Figure 6-2 shows the raw format for the Titanic.csv file used for this example. You 
can see the raw format using any text editor.

Applications such as Excel can import and format CSV files so that they become 
easier to read. Figure 6-3 shows the same file in Excel.

Excel actually recognizes the header as a header. If you were to use features such 
as data sorting, you could select header columns to obtain the desired result. For-
tunately, pandas also makes it possible to work with the CSV file as formatted 
data, as shown in the following example:

import pandas as pd
titanic = pd.io.parsers.read_csv("Titanic.csv")
X = titanic[['age']]
print(X)

FIGURE 6-2: 
The raw format of 

a CSV file is still 
text and quite 

readable.

https://tools.ietf.org/html/rfc4180
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Notice that the parser of choice this time is read_csv(), which understands CSV 
files and provides you with new options for working with it. (You can read more 
about this parser at https://pandas.pydata.org/docs/reference/api/ 
pandas.read_csv.html.) Selecting a specific field is quite easy — you just supply 
the field name as shown. The output from this example looks like this (some  
values omitted for the sake of space):

           age
0      29.0000
1       0.9167
2       2.0000
3      30.0000
4      25.0000
...
1304   14.5000
1305 9999.0000
1306   26.5000
1307   27.0000
1308   29.0000
[1309 rows x 1 columns]

Of course, a human-readable output like this one is nice when working through 
an example, but you may also need the output as a list. To create the output as a 
list, you simply change the third line of code to read X = titanic[['age']].
values. Notice the addition of the values property. The output changes to some-
thing like this (some values omitted for the sake of space):

 [[29.        ]
 [ 0.91670001]
 [ 2.        ]
 ...

FIGURE 6-3: 
Use an 

 application such 
as Excel to create 
a formatted CSV 

presentation.

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
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 [26.5       ]
 [27.        ]
 [29.        ]] 

Reading Excel and other  
Microsoft Office files
Excel and other Microsoft Office applications provide highly formatted content. 
You can specify every aspect of the information these files contain. The Values.
xls file used for this example provides a listing of sine, cosine, and tangent values 
for a random list of angles. You can see this file in Figure 6-4.

When you work with Excel or other Microsoft Office products, you begin to experi-
ence some complexity. For example, an Excel file can contain more than one 
worksheet, so you need to tell pandas which worksheet to process. In fact, you can 
choose to process multiple worksheets, if desired. When working with other Office 
products, you have to be specific about what to process. Just telling pandas to 
process something isn’t good enough. Here’s an example of working with the 
Values.xls file.

import pandas as pd
xls = pd.ExcelFile("Values.xls")
trig_values = xls.parse('Sheet1', index_col=None,
                        na_values=['NA'])
print(trig_values)

FIGURE 6-4: 
An Excel file is 

highly formatted 
and might 

contain 
 information of 
various types.
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Note that you may have to install the xlrd library to read the .xls file. The down-
loadable source contains a special line, !pip install xlrd, to perform this task.

The code begins by importing the pandas library as normal. It then creates a 
pointer to the Excel file using the ExcelFile() constructor. This pointer, xls, lets 
you access a worksheet, define an index column, and specify how to present empty 
values. The index column is the one that the worksheet uses to index the records. 
Using a value of None means that pandas should generate an index for you. The 
parse() method obtains the values you request. You can read more about the 
Excel parser options at https://pandas.pydata.org/docs/reference/api/ 
pandas.ExcelFile.parse.html.

You don’t absolutely have to use the two-step process of obtaining a file pointer 
and then parsing the content. You can also perform the task using a single step 
like this: trig_values = pd.read_excel("Values.xls", 'Sheet1', index_ 
col=None, na_values=['NA']). Because Excel files are more complex, using the 
two-step process is often more convenient and efficient because you don’t have to 
reopen the file for each read of the data.

Sending Data in Unstructured File Form
Unstructured data files consist of a series of bits. The file doesn’t separate the bits 
from each other in any way. You can’t simply look into the file and see any struc-
ture because there isn’t any to see. Unstructured file formats rely on the file user 
to know how to interpret the data. For example, each pixel of a picture file could 
consist of three 32-bit fields. Knowing that each field is 32-bits is up to you.  
A header at the beginning of the file may provide clues about interpreting the file, 
but even so, it’s up to you to know how to interact with the file.

The example in this section shows how to work with a picture as an unstructured 
file. The example image is a public domain offering from https://commons. 
wikimedia.org/wiki/Main_Page. To work with images, you need to access the 
Scikit-image library (https://scikit-image.org/), which is a free-of-charge 
collection of algorithms used for image processing. You can find a tutorial for this 
library at http://scipy-lectures.org/packages/scikit-image/. The first task 
is to be able to display the image onscreen using the following code. (This code can 
require a little time to run. The image is ready when the busy indicator disappears 
from the Notebook tab.)

from skimage.io import imread
from skimage.transform import resize

https://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.parse.html
https://pandas.pydata.org/docs/reference/api/pandas.ExcelFile.parse.html
https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Main_Page
https://scikit-image.org/
http://scipy-lectures.org/packages/scikit-image/
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from matplotlib import pyplot as plt
import matplotlib.cm as cm
 
example_file = ("https://upload.wikimedia.org/" +
    "wikipedia/commons/7/7d/Dog_face.png")
image = imread(example_file, as_gray=True)
plt.imshow(image, cmap=cm.gray)
plt.show()

The code begins by importing a number of libraries. It then creates a string that 
points to the example file online and places it in example_file. This string is part 
of the imread() method call, along with as_gray, which is set to True. The as_
gray argument tells Python to turn any color images into gray scale. Any images 
that are already in gray scale remain that way.

Now that you have an image loaded, it’s time to render it (make it ready to display 
onscreen). The imshow() function performs the rendering and uses a grayscale 
color map. The show() function actually displays image for you, as shown in 
Figure 6-5.

You now have an image in memory, and you may want to find out more about it. 
When you run the following code, you discover the image type and size:

print("data type: %s, shape: %s" %
      (type(image), image.shape))

FIGURE 6-5: 
The image 

appears onscreen 
after you render 

and show it.
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The output from this call tells you that the image type is a numpy.ndarray and 
that the image size is 90 pixels by 90 pixels. The image is actually an array of 
pixels that you can manipulate in various ways. For example, if you want to crop 
the image, you can use the following code to manipulate the image array:

image2 = image[5:70,0:70]
plt.imshow(image2, cmap=cm.gray)
plt.show()

The numpy.ndarray in image2 is smaller than the one in image. However, you may 
find that Notebook compensates by making the output appear larger (even though 
it’s actually smaller, as shown by the markings). Figure 6-6 shows typical results. 
The purpose of cropping the image is to make it a specific size. Both images must 
be the same size for you to analyze them. Cropping is one way to ensure that the 
images are the correct size for analysis.

Another method that you can use to change the image size is to resize it. The fol-
lowing code resizes the image to a specific size for analysis:

image3 = resize(image2, (30, 30), mode='symmetric')
plt.imshow(image3, cmap=cm.gray)
print("data type: %s, shape: %s" %
      (type(image3), image3.shape))

The output from the print() function tells you that the image is now 30 pixels by 
30 pixels in size. You can compare it to any image with the same dimensions.

FIGURE 6-6: 
Cropping the 
image makes  

it smaller.
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After you have all the images the right size, you need to flatten them. A dataset 
row is always a single dimension, not two dimensions. The image is currently an 
array of 30 pixels by 30 pixels, so you can’t make it part of a dataset. The following 
code flattens image3 so that it becomes an array of 900 elements that is stored in 
image_row.

image_row = image3.flatten()
print("data type: %s, shape: %s" %
      (type(image_row), image_row.shape))

Notice that the type is still a numpy.ndarray. You can add this array to a dataset 
and then use the dataset for analysis purposes. The size is 900 elements, as 
anticipated.

Managing Data from Relational Databases
Databases come in all sorts of forms. For example, AskSam (http://asksam.
en.softonic.com/) is a kind of free-form textual database. However, the vast 
majority of data used by organizations rely on relational databases because these 
databases provide the means for structuring massive amounts of complex data in 
an organized manner that makes the data easy to manipulate. The goal of a data-
base manager is to make data easy to manipulate. The focus of most data storage 
is to make data easy to retrieve.

Relational databases accomplish both the manipulation and data retrieval objec-
tives with relative ease. However, because data storage needs come in all shapes 
and sizes for a wide range of computing platforms, there are many different rela-
tional database products. In fact, for the data scientist, the proliferation of differ-
ent Database Management Systems (DBMSs) using various data layouts is one of 
the main problems you encounter with creating a comprehensive dataset for 
analysis.

The one common denominator between many relational databases is that they all 
rely on a form of the same language to perform data manipulation, which makes 
the data scientist’s job easier. The Structured Query Language (SQL) (pronounced 
“sequel”) lets you perform all sorts of management tasks in a relational database, 
retrieve data as needed, and even shape it in a particular way so that performing 
additional shaping is unnecessary.

http://asksam.en.softonic.com/
http://asksam.en.softonic.com/
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Creating a connection to a database can be a complex undertaking. For one thing, 
you need to know how to connect to that particular database. However, you can 
divide the process into smaller pieces. The first step is to gain access to the data-
base engine. You use two lines of code similar to the following code (but the code 
presented here is not meant to execute and perform a task):

from sqlalchemy import create_engine
engine = create_engine('sqlite:///:memory:')

After you have access to an engine, you can use the engine to perform tasks spe-
cific to that DBMS. The output of a read method is always a DataFrame object that 
contains the requested data. To write data, you must create a DataFrame object or 
use an existing DataFrame object. You normally use these methods to perform 
most tasks:

 » read_sql_table(): Reads data from a SQL table to a DataFrame object

 » read_sql_query(): Reads data from a database using a SQL query to a 
DataFrame object

 » read_sql(): Reads data from either a SQL table or query to a DataFrame 
object

 » DataFrame.to_sql(): Writes the content of a DataFrame object to the 
specified tables in the database

The sqlalchemy library provides support for a broad range of SQL databases. The 
following list contains just a few of them:

 » SQLite

 » MySQL

 » PostgreSQL

 » SQL Server

 » Other relational databases, such as those you can connect to using Open 
Database Connectivity (ODBC)

You can discover more about working with databases at https://docs. 
sqlalchemy.org/en/latest/core/engines.html. The techniques that you dis-
cover in this book using the toy databases also work with relational databases.

https://docs.sqlalchemy.org/en/latest/core/engines.html
https://docs.sqlalchemy.org/en/latest/core/engines.html
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Interacting with Data from  
NoSQL Databases

In addition to standard relational databases that rely on SQL, you find a wealth of 
databases of all sorts that don’t have to rely on SQL. These Not only SQL (NoSQL) 
databases are used in large data storage scenarios in which the relational model 
can become overly complex or can break down in other ways. The databases gen-
erally don’t use the relational model. Of course, you find fewer of these DBMSes 
used in the corporate environment because they require special handling and 
training. Still, some common DBMSes are used because they provide special func-
tionality or meet unique requirements. The process is essentially the same for 
using NoSQL databases as it is for relational databases:

1. Import required database engine functionality.

2. Create a database engine.

3. Make any required queries using the database engine and the functionality 
supported by the DBMS.

The details vary quite a bit, and you need to know which library to use with your 
particular database product. For example, when working with MongoDB (https://
www.mongodb.org/), you must obtain a copy of the PyMongo library (https://
pypi.org/project/pymongo/) and use the MongoClient class to create the 
required engine. The MongoDB engine relies heavily on the find() function to 
locate data. Following is a pseudo-code example of a MongoDB session. (You 
won’t be able to execute this code in Notebook; it’s shown only as an example.)

import pymongo
import pandas as pd
from pymongo import Connection
connection = Connection()
db = connection.database_name
input_data = db.collection_name
data = pd.DataFrame(list(input_data.find()))

https://www.mongodb.org/
https://www.mongodb.org/
https://pypi.org/project/pymongo/
https://pypi.org/project/pymongo/
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Accessing Data from the Web
It would be incredibly difficult (perhaps impossible) to find an organization today 
that doesn’t rely on some sort of web-based data. Most organizations use web 
services of some type. A web service is a kind of web application that provides a 
means to ask questions and receive answers. Web services usually host a number 
of input types. In fact, a particular web service may host entire groups of query 
inputs.

Another type of query system is the microservice. Unlike the web service,  
microservices have a specific focus and provide only one specific query input and 
output. Using microservices has specific benefits that are outside the scope of this 
book to address, but essentially they work like tiny web services, so that’s how 
this book addresses them.

One of the most beneficial data access techniques to know when working with web 
data is accessing XML. All sorts of content types rely on XML, even some web 
pages. Working with web services and microservices means working with XML (in 
most cases). With this in mind, the example in this section works with XML data 
found in the XMLData.xml file, shown in Figure 6-7. In this case, the file is simple 
and uses only a couple of levels. XML is hierarchical and can become quite a few 
levels deep.

APIs AND OTHER WEB ENTITIES
A data scientist may have a reason to rely on various web Application Programming 
Interfaces (APIs) to access and manipulate data. In fact, the focus of an analysis might 
be the API itself. This book doesn’t discuss APIs in any detail because each API is unique, 
and APIs operate outside the normal scope of what a data scientist might do. For exam-
ple, you might use a product such as jQuery (https://jquery.com/) to access data 
and manipulate it in various ways when working with a web application. However, the 
techniques for doing so are more along the lines of writing an application than employ-
ing a data science technique.

It’s important to realize that APIs can be data sources and that you may need to use one 
to achieve some data input or data-shaping goals. In fact, you find many data entities 
that resemble APIs but don’t appear in this book. Windows developers can create 
Component Object Model (COM) applications that output data onto the web that you 
could possibly use for analysis purposes. In fact, the number of potential sources is 
nearly endless. This book focuses on the sources that you use most often and in the 
most conventional manner. Keeping your eyes open for other possibilities, though,  
is always a good idea.

https://jquery.com/
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The technique for working with XML, even simple XML, can be a bit harder than 
anything else you’ve worked with so far. Here’s the code for this example:

from lxml import objectify
import pandas as pd
 
xml = objectify.parse(open('XMLData.xml'))
root = xml.getroot()
 
df = pd.DataFrame(columns=('Number', 'String',
                           'Boolean'))
 
for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'],
                   [obj[0].text, obj[1].text,
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    row_s = row_s.to_frame().transpose()
    df = pd.concat([df, row_s])
 
print(df)

FIGURE 6-7: 
XML is a 

hierarchical 
format that can 

become quite 
complex.

http://row_s.name
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The example begins by importing libraries and parsing the data file using the 
objectify.parse() method. Every XML document must contain a root node, 
which is <MyDataset>, as shown here:

<MyDataset>
    <Record>
        <Number>1</Number>
        <String>First</String>
        <Boolean>True</Boolean>
    </Record>
    <Record>
        <Number>2</Number>
        <String>Second</String>
        <Boolean>False</Boolean>
    </Record>
    <Record>
        <Number>3</Number>
        <String>Third</String>
        <Boolean>True</Boolean>
    </Record>
    <Record>
        <Number>4</Number>
        <String>Fourth</String>
        <Boolean>False</Boolean>
    </Record>
</MyDataset>

The root node encapsulates the rest of the content, and every node under it is a 
child. To do anything practical with the document, you must obtain access to the 
root node using the getroot() method.

The next step is to create an empty DataFrame object that contains the correct 
column names for each record entry: Number, String, and Boolean. As with all 
other pandas data handling, XML data handling relies on a DataFrame. The for 
loop fills the DataFrame with the four records from the XML file (each in a 
<Record> node).

The process looks complex but follows a logical order. The obj variable contains 
all the children for one <Record> node. These children are loaded into a dictionary 
object in which the keys are Number, String, and Boolean to match the DataFrame 
columns.
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At this point, row is converted to a Series, row_s. A numeric name value is added 
to row_s, which is then converted to a DataFrame using the to_frame() function. 
If you looked at row_s at this point, you’d see that it has the wrong orientation, so 
a call to transpose() aligns it with DataFrame df.

There is now a DataFrame object that contains the row data. It then concatenates 
the row to df using the pd.concat() function. To see that everything worked as 
expected, the code prints the result, which looks like this:

  Number  String Boolean
0      1   First    True
1      2  Second   False
2      3   Third    True
3      4  Fourth   False

USING THE JSON ALTERNATIVE
You shouldn’t get the idea that all data you work with on the web is in XML format. You 
may need to consider other popular alternatives as part of your development plans. 
One of the most popular today is JavaScript Object Notation (JSON) (https://www.
json.org/json-en.html). JSON proponents state that JSON takes less space, is faster 
to use, and is easier to work with than XML (see https://www.w3schools.com/js/
js_json_xml.asp for details). Consequently, you may find that your next project relies 
on JSON data, rather than XML, when dealing with certain web services and 
microservices.

If your data formatting choices consisted of just XML and JSON, you might feel that 
interacting with data is quite manageable. However, a lot of other people have ideas of 
how to format data so that you can parse it quickly and easily. In addition, developers 
now have a stronger emphasis on understanding the data stream, so some formatting 
techniques emphasize human readability. You can read about some of these other 
alternatives at https://slashdot.org/software/p/XML/alternatives. One of 
the more important of these alternatives is Yet Another Markup Language or YAML Ain’t 
Markup Language (YAML), depending on whom you talk to and which resources you 
use (https://yaml.org/spec/1.2.2/), but be prepared to do your homework when 
working through the particulars of any new projects.

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/js/js_json_xml.asp
https://slashdot.org/software/p/XML/alternatives
https://yaml.org/spec/1.2.2/
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Chapter 7
Processing Your Data

The characteristics, content, type, and other elements that define your data 
in its entirety forms the data shape. The shape of your data determines the 
kinds of tasks you can perform with it. In order to make your data amenable 

to certain types of analysis, you must shape it into a different form. Think of the 
data as clay and you as the potter, because that’s the sort of relationship you have 
with it. Instead of using your hands to shape the data, you rely on functions and 
algorithms to perform the task. This chapter helps you understand the tools you 
have available to shape data and the ramifications of shaping it.

Note that shaping data doesn’t mean changing its value. Think more along the 
lines of rearranging the data so that you can work with it in an easier manner. It’s 
akin to rearranging the contents of a shelf in your home so that you can see the 
shelf contents more easily.

Also in this chapter, you consider the problems associated with shaping. For 
example, you need to know what to do when data is missing from a dataset. It’s 
important to shape the data correctly to avoid ending up with an analysis that 
simply doesn’t make sense. Likewise, some data types, such as dates, can present 
problems. Again, you need to tread carefully to ensure that you get the desired 
result so that the dataset becomes more useful and amenable to analysis of vari-
ous sorts.

IN THIS CHAPTER

 » Working with NumPy and pandas

 » Working with symbolic variables

 » Considering the effect of dates

 » Fixing missing data

 » Slicing, combining, and modifying 
data elements
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The goal of some types of data shaping is to create a larger dataset. In many cases, 
the data you need to perform an analysis doesn’t appear in a single database or in 
a particular form. You need to shape the data and then combine it so that you have 
a single dataset in a known format before you can begin the analysis. Combining 
data successfully can be an art form because data often defies simple analysis or 
quick fixes.

You don’t have to type the source code for this chapter; using the downloadable 
source is a lot easier. The source code for this chapter appears in the P4DS4D3_07_
Getting_Your_Data_in_Shape.ipynb file. See the Introduction for the location of 
this file.

Make sure that the XMLData2.xml file that comes with the downloadable source 
code appears in the same folder (directory) as your Notebook files. Otherwise, the 
examples in the following sections fail with an input/output (I/O) error. The file 
location varies according to the platform you’re using. For example, on a Windows 
system, you find the notebooks stored in the C:\Users\Username\P4DS4D3 folder, 
where Username is your login name. (The book assumes that you’ve used the pre-
scribed folder location of P4DS4D3, as described in the “Defining the code repos-
itory” section of Chapter  3.) To make the examples work, simply copy the file 
from the downloadable source folder into your Notebook folder. See the Introduc-
tion for instructions on downloading the source code.

Juggling between NumPy and pandas
There is no question that you need NumPy at all times. The pandas library is actu-
ally built on top of NumPy. However, you do need to make a choice between 
NumPy and pandas when performing tasks. You need the low-level functionality 
of NumPy to perform some tasks, but pandas makes things so much easier that 
you want to use it as often as possible. The following sections describe when to 
use each library in more detail.

Knowing when to use NumPy
Developers built pandas on top of NumPy. As a result, every task you perform 
using pandas also goes through NumPy. To obtain the benefits of pandas, you pay 
a performance penalty in most cases (see https://towardsdatascience.com/
speed-testing-pandas-vs-numpy-ffbf80070ee7). Given that computer hard-
ware can make up for a lot of performance differences today, the speed issue may 
not be a concern at times, but when speed is essential, NumPy is always the better 
choice.

https://towardsdatascience.com/speed-testing-pandas-vs-numpy-ffbf80070ee7
https://towardsdatascience.com/speed-testing-pandas-vs-numpy-ffbf80070ee7
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Knowing when to use pandas
You use pandas to make writing code easier and faster. Because pandas does a lot 
of the work for you, you could make a case for saying that using pandas also 
reduces the potential for coding errors. The essential consideration, though, is 
that the pandas library provides rich time-series functionality, data alignment, 
NA-friendly statistics, and groupby(), merge(), and join() methods. Normally, 
you need to code these features when using NumPy, which means you keep rein-
venting the wheel.

As the book progresses, you discover just how useful pandas can be performing 
such tasks as binning (a data preprocessing technique designed to reduce the effect 
of observational errors) and working with a dataframe (a two-dimensional labeled 
data structure with columns that can potentially contain different data types) so 
that you can calculate statistics on it. For example, in Chapter 9, you discover how 
to perform both discretization and binning. Chapter 13 shows actual binning exam-
ples, such as obtaining a frequency for each categorical variable of a dataset. In fact, 
many of the examples in Chapter 13 don’t work without binning. In other words, 
don’t worry too much right now about knowing precisely what binning is or why 
you need to use it — examples later in the book discuss the topic in detail. All you 
really need to know is that pandas does make your work considerably easier.

IT’S ALL IN THE PREPARATION
This book may seem to spend a lot of time massaging data and little time in actually 
analyzing it. However, the majority of a data scientist’s time is actually spent preparing 
data because the data is seldom in any order to actually perform analysis. To prepare 
data for use, a data scientist must

• Get the data

• Aggregate the data

• Create data subsets

• Clean the data

• Develop a single dataset by merging various datasets together

Fortunately, you don’t need to die of boredom while wading your way through these 
various tasks. Using Python and the various libraries it provides makes the task a lot 
simpler, faster, and more efficient, which is the point of spending all of the time on 
seemingly mundane topics in these early chapters. The better you know how to use 
Python to speed your way through these repetitive tasks, the sooner you begin having 
fun performing various sorts of analysis on the data.
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Validating Your Data
When it comes to data, no one really knows what a large database contains. Yes, 
everyone has seen bits and pieces of it, but when you consider the size of some 
databases, viewing it all would be physically impossible. Because you don’t know 
what’s in there, you can’t be sure that your analysis will actually work as desired 
and provide valid results. In short, you must validate your data before you use it 
to ensure that the data is at least close to what you expect it to be. This means 
performing tasks such as removing duplicate records before you use the data for 
any sort of analysis (duplicates would unfairly weight the results).

However, you do need to consider what validation actually does for you. It doesn’t 
tell you that the data is correct or that there won’t be values outside the expected 
range. In fact, later chapters help you understand the techniques for handling 
these sorts of issues. What validation does is ensure that you can perform an 
analysis of the data and reasonably expect that analysis to succeed. Later, you 
need to perform additional massaging of the data to obtain the sort of results that 
you need in order to perform the task you set out to perform in the first place.

Figuring out what’s in your data
Figuring out what your data contains is important because checking data by hand 
is sometimes simply impossible due to the number of observations and variables. 
In addition, hand verifying the content is time consuming, error prone, and, most 
important, really boring. Finding duplicates is important because you end up

 » Spending more computational time to process duplicates, which slows your 
algorithms down.

 » Obtaining false results because duplicates implicitly overweight the results. 
Because some entries appear more than once, the algorithm considers these 
entries more important.

As a data scientist, you want your data to enthrall you, so it’s time to get it to talk 
to you — not literally, of course, but through the wonders of pandas, as shown in 
the following example:

from lxml import objectify
import pandas as pd
 
xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))
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for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'],
                   [obj[0].text, obj[1].text,
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    row_s = row_s.to_frame().transpose()
    df = pd.concat([df, row_s])
 
search = pd.DataFrame.duplicated(df)
print(df)
print(f"\n{search[search == True]}")

This example shows how to find duplicate rows. It relies on a modified version of 
the XMLData.xml file, XMLData2.xml, which contains a simple repeated row in it. 
A real data file contains thousands (or more) of records and possibly hundreds of 
repeats, but this simple example does the job. The example begins by reading the 
data file into memory using the same technique you explored in Chapter 6. It then 
places the data into a DataFrame.

At this point, your data is corrupted because it contains a duplicate row. However, 
you can get rid of the duplicated row by searching for it. The first task is to create 
a search object containing a list of duplicated rows by calling pd.DataFrame.
duplicated(). The duplicated rows contain a True next to their row number.

Of course, now you have an unordered list of rows that are and aren’t duplicated. 
The easiest way to determine which rows are duplicated is to create an index in 
which you use search == True as the expression. Following is the output you see 
from this example. Notice that row 3 is duplicated in the DataFrame output and 
that row 3 is also called out in the search results:

  Number  String Boolean
0      1   First    True
1      2  Second   False
2      3   Third    True
3      3   Third    True
 
3    True
dtype: bool
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Removing duplicates
To get a clean dataset, you want to remove the duplicates from it. Fortunately, you 
don’t have to write any weird code to get the job done — pandas does it for you, 
as shown in the following example:

from lxml import objectify
import pandas as pd
 
xml = objectify.parse(open('XMLData2.xml'))
root = xml.getroot()
df = pd.DataFrame(columns=('Number', 'String', 'Boolean'))
for i in range(0,4):
    obj = root.getchildren()[i].getchildren()
    row = dict(zip(['Number', 'String', 'Boolean'],
                   [obj[0].text, obj[1].text,
                    obj[2].text]))
    row_s = pd.Series(row)
    row_s.name = i
    row_s = row_s.to_frame().transpose()
    df = pd.concat([df, row_s])
 
print(df.drop_duplicates())

As with the previous example, you begin by creating a DataFrame that contains 
the duplicate record. To remove the errant record, all you need to do is call drop_
duplicates(). Here’s the result you get.

  Number  String Boolean
0      1   First    True
1      2  Second   False
2      3   Third    True

Creating a data map and data plan
You need to know about your dataset — that is, how it looks statistically. A data 
map is an overview of the dataset. You use it to spot potential problems in your 
data, such as

 » Redundant variables

 » Possible errors
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 » Missing values

 » Variable transformations

Checking for these problems goes into a data plan, which is a list of tasks you have 
to perform to ensure the integrity of your data. The following example shows a 
data map, A, with two datasets, B and C:

import pandas as pd
pd.set_option('display.width', 55)
 
df = pd.DataFrame({'A': [0,0,0,0,0,1,1],
                   'B': [1,2,3,5,4,2,5],
                   'C': [5,3,4,1,1,2,3]})
 
a_group_desc = df.groupby('A').describe()
print(a_group_desc)

In this case, the data map uses 0s for the first series and 1s for the second series. 
The groupby() function places the datasets, B and C, into groups. To determine 
whether the data map is viable, you obtain statistics using describe(). What you 
end up with is a dataset B with two series 0 and 1 and a dataset C also with two 
series 0 and 1, as shown in the following output.

      B                                            \
  count mean       std  min   25%  50%   75%  max   
A                                                   
0   5.0  3.0  1.581139  1.0  2.00  3.0  4.00  5.0   
1   2.0  3.5  2.121320  2.0  2.75  3.5  4.25  5.0   
 
      C                                            
  count mean       std  min   25%  50%   75%  max  
A                                                  
0   5.0  2.8  1.788854  1.0  1.00  3.0  4.00  5.0  
1   2.0  2.5  0.707107  2.0  2.25  2.5  2.75  3.0  

These statistics tell you about the two dataset series. The breakup of the two data-
sets using specific cases is the data plan. As you can see, the statistics tell you that 
this data plan may not be viable because some statistics are relatively far apart.
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The default output from describe() shows the data unstacked (printed horizon-
tally). Unfortunately, the unstacked data can print out with an unfortunate break, 
making it very hard to read. To keep this from happening, you set the width you 
want to use for the data by calling pd.set_option('display.width', 55). You 
can set a number of pandas options this way by using the information found at 
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
set_option.html.

Although the unstacked data is relatively easy to read and compare, you may pre-
fer a more compact presentation. In this case, you can stack the data using the 
following code:

stacked = a_group_desc.stack()
print(stacked)

Using stack() creates a new presentation. Here’s the output shown in a compact 
form:

                B         C
A                          
0 count  5.000000  5.000000
  mean   3.000000  2.800000
  std    1.581139  1.788854
  min    1.000000  1.000000
  25%    2.000000  1.000000
  50%    3.000000  3.000000
  75%    4.000000  4.000000
  max    5.000000  5.000000
... Similar values for 1 ...

Of course, you may not want all the data that describe() provides. Perhaps you 
really just want to see the number of items in each series and their mean. Here’s 
how you reduce the size of the information output:

print(a_group_desc.loc[:,(slice(None),['count','mean']),])

Using loc lets you obtain specific columns. Here’s the final output from the exam-
ple showing just the information you absolutely need to make a decision:

      B          C     
  count mean count mean
A                      
0   5.0  3.0   5.0  2.8
1   2.0  3.5   2.0  2.5

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html
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Manipulating Categorical Variables
In data science, a categorical variable is one that has a specific value from a limited 
selection of values. The number of values is usually fixed. Many developers will 
know categorical variables by the moniker enumerations. Each of the potential val-
ues that a categorical variable can assume is a level.

To understand how categorical variables work, say that you have a variable 
expressing the color of an object, such as a car, and that the user can select blue, 
red, or green. To express the car’s color in a way that computers can represent and 
effectively compute, an application assigns each color a numeric value, so blue is 
1, red is 2, and green is 3. Normally when you print each color, you see the value 
rather than the color.

If you use pandas.DataFrame (https://pandas.pydata.org/pandas-docs/dev/
reference/api/pandas.DataFrame.html), you can still see the symbolic value 
(blue, red, and green), even though the computer stores it as a numeric value. 
Sometimes you need to rename and combine these named values to create new 
symbols. Symbolic variables are just a convenient way of representing and storing 
qualitative data.

CHECKING YOUR VERSION OF PANDAS
The categorical variable examples in this section depend on your having a minimum 
version of pandas 1.5.0 installed on your system. However, your version of Anaconda 
may have a previous pandas version installed instead. Use the following code to check 
your version of pandas:

import pandas as pd
print(pd.__version__)

You see the version number of pandas you have installed. Another way to check the 
version is to open the Anaconda Prompt, type pip show pandas, and press Enter. If you 
have an older version, open the Anaconda Prompt, type pip install pandas --upgrade, 
and press Enter. The update process will occur automatically, along with a check  
of associated packages. When working with Windows, you may need to open the 
Anaconda Prompt using the Administrator option (right click the Anaconda Prompt 
entry in the Start menu and choose Run as Administrator from the context menu).

https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html
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When using categorical variables for machine learning, it’s important to consider 
the algorithm used to manipulate the variables. Some algorithms, such as trees 
and ensembles of three, can work directly with the numeric variables behind the 
symbols. Other algorithms, such as linear and logistic regression and SVM, require 
that you encode the categorical values into binary variables. For example, if you 
have three levels for a color variable (blue, red, and green), you have to create 
three binary variables:

 » One for blue (1 when the value is blue, 0 when it is not)

 » One for red (1 when the value is red, 0 when it is not)

 » One for green (1 when the value is green, 0 when it is not)

Creating categorical variables
Categorical variables have a specific number of values, which makes them incred-
ibly valuable in performing a number of data science tasks. For example, imagine 
trying to find values that are out of range in a huge dataset. In this example, you 
see one method for creating a categorical variable and then using it to check 
whether some data falls within the specified limits:

import pandas as pd
 
car_colors = pd.Series(['Blue', 'Red', 'Green'],
                       dtype='category')
 
car_data = pd.Series(
    pd.Categorical(
        ['Yellow', 'Green', 'Red', 'Blue', 'Purple'], 
        categories=car_colors, ordered=False))
 
find_entries = pd.isnull(car_data)
 
print(car_colors)
print(f"\n{car_data}")
print(f"\n{find_entries[find_entries == True]}")

The example begins by creating a categorical variable, car_colors. The variable 
contains the values Blue, Red, and Green as colors that are acceptable for a car. 
Notice that you must specify a dtype property value of category.

The next step is to create another series. This one uses a list of actual car colors, 
named car_data, as input. Not all the car colors match the predefined acceptable 
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values. When this problem occurs, pandas outputs Not a Number (NaN) instead of 
the car color.

Of course, you could search the list manually for the nonconforming cars, but the 
easiest method is to have pandas do the work for you. In this case, you ask pandas 
which entries are null using isnull() and place them in find_entries. You can 
then output just those entries that are actually null. Here’s the output you see 
from the example:

0     Blue
1      Red
2    Green
dtype: category
Categories (3, object): ['Blue', 'Green', 'Red']
 
0      NaN
1    Green
2      Red
3     Blue
4      NaN
dtype: category
Categories (3, object): ['Blue', 'Green', 'Red']
 
0    True
4    True
dtype: bool

Looking at the list of car_data outputs, you can see that entries 0 and 4 equal NaN. 
The output from find_entries verifies this fact for you. If this were a large data-
set, you could quickly locate and correct errant entries in the dataset before per-
forming an analysis on it.

Renaming levels
There are times when the naming of the categories you use is inconvenient or 
otherwise wrong for a particular need. Fortunately, you can rename the categories 
as needed using the technique shown in the following example.

import pandas as pd
 
car_colors = pd.Series(['Blue', 'Red', 'Green'],
                       dtype='category')
car_data = pd.Series(
    pd.Categorical(
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        ['Blue', 'Green', 'Red', 'Blue', 'Red'],
        categories=car_colors, ordered=False))
 
car_data = car_data.cat.rename_categories(
    ["Purple", "Yellow", "Mauve"])
 
print(car_data)

All you really need to do is set the cat property to a new value, as shown. Here is 
the output from this example:

0    Purple
1    Yellow
2     Mauve
3    Purple
4     Mauve
dtype: category
Categories (3, object): ['Purple', 'Yellow', 'Mauve']

Combining levels
A particular categorical level may be too small to offer significant data for analy-
sis. Perhaps there are only a few of the values, which may not be enough to create 
a statistical difference. In this case, combining several small categories may offer 
better analysis results. The following example shows how to combine categories:

import pandas as pd
 
car_colors = pd.Series(['Blue', 'Red', 'Green'],
    dtype='category')
car_data = pd.Series(
    pd.Categorical(
       ['Blue', 'Green', 'Red', 'Green', 'Red', 'Green'],
       categories=car_colors, ordered=False))
 
car_data = car_data.cat.set_categories(
    ["Blue", "Red", "Green", "Blue_Red"])
print(car_data.loc[car_data.isin(['Red'])])
car_data.loc[car_data.isin(['Red'])] = 'Blue_Red'
car_data.loc[car_data.isin(['Blue'])] = 'Blue_Red'
 
car_data = car_data.cat.set_categories(
    ["Green", "Blue_Red"])
print(f"\n{car_data}")
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What this example shows you is that there is only one Blue item and only two Red 
items, but there are three Green items, which places Green in the majority. Com-
bining Blue and Red together is a two-step process. First, you add the Blue_Red 
category to car_data. Then you change the Red and Blue entries to Blue_Red, 
which creates the combined category. As a final step, you can remove the unneeded 
categories.

However, before you can change the Red entries to Blue_Red entries, you must 
find them. This is where a combination of calls to isin(), which locates the Red 
entries, and loc[], which obtains their index, provides precisely what you need. 
The first print() statement shows the result of using this combination. Here’s 
the output from this example.

2    Red
4    Red
dtype: category
Categories (4, object): ['Blue', 'Red', 'Green', 'Blue_Red']
 
0    Blue_Red
1       Green
2    Blue_Red
3       Green
4    Blue_Red
5       Green
dtype: category
Categories (2, object): ['Green', 'Blue_Red']

Notice that there are now three Blue_Red entries and three Green entries. The 
Blue and Red categories are no longer in use. The result is that the levels are now 
combined as expected.

Dealing with Dates in Your Data
Dates can present problems in data. For one thing, dates are stored as numeric 
values. However, the precise value of the number depends on the representation 
for the particular platform and could even depend on the users’ preferences. For 
example, Excel users can choose to start dates in 1900 or 1904 (https://support.
microsoft.com/en-us/help/214330/differences-between-the-1900-and- 
the-1904-date-system-in-excel). The numeric encoding for each is different, 
so the same date can have two numeric values depending on the starting date.

https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
https://support.microsoft.com/en-us/help/214330/differences-between-the-1900-and-the-1904-date-system-in-excel
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In addition to problems of representation, you also need to consider how to work 
with time values. Creating a time value format that represents a value the user can 
understand is hard. For example, you may need to use Greenwich Mean Time 
(GMT) in some situations but a local time zone in others. Transforming between 
various times is also problematic. With this in mind, the following sections pro-
vide you with details on dealing with time issues.

Formatting date and time values
Obtaining the correct date and time representation can make performing analysis 
a lot easier. For example, you often have to change the representation to obtain a 
correct sorting of values. Python provides two common methods of formatting 
date and time. The first technique is to call str(), which simply turns a datetime 
value into a string without any formatting. The strftime() function requires 
more work because you must define how you want the datetime value to appear 
after conversion. When using strftime(), you must provide a string containing 
special directives that define the formatting. You can find a listing of these direc-
tives at https://strftime.org/.

Now that you have some idea of how time and date conversions work, it’s time to 
see an example. The following example creates a datetime object and then con-
verts it into a string using two different approaches:

import datetime as dt
 
now = dt.datetime.now()
 
print(str(now))
print(now.strftime('%a, %d %B %Y'))

In this case, you can see that using str() is the easiest approach. However, as 
shown by the following output, it may not provide the output you need. Using 
strftime() is infinitely more flexible, even though the output from str() is 
storable.

2023-05-20 10:29:47.290505
Sat, 20 May 2023

Using the right time transformation
Time zones and differences in  local time can cause all sorts of problems when 
performing analysis. For that matter, some types of calculations simply require a 

https://strftime.org/
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time shift in order to get the right results. No matter what the reason, you may 
need to transform one time into another time at some point. The following exam-
ples show some techniques you can employ to perform the task:

import datetime as dt
 
now = dt.datetime.now()
timevalue = now + dt.timedelta(hours=2)
 
print(now.strftime('%H:%M:%S'))
print(timevalue.strftime('%H:%M:%S'))
print(timevalue - now)

The timedelta() function makes the time transformation straightforward. You 
can use any of these parameter names with timedelta() to change a time and 
date value: days, seconds, microseconds, milliseconds, minutes, hours, and 
weeks.

You can also manipulate time by performing addition or subtraction on time val-
ues. You can even subtract two time values to determine the difference between 
them. Here’s the output from this example (note that the output shows the effect 
of Daylight Saving Time, or DST):

10:34:40
12:34:40
2:00:00

Note that now is the local time, timevalue is two time zones different from this 
one, and there is a two-hour difference between the two times. You can perform 
all sorts of transformations using these techniques to ensure that your analysis 
always shows precisely the time-oriented values you need.

Dealing with Missing Data
Sometimes the data you receive is missing information in specific fields. For 
example, a customer record may be missing an age. If enough records are missing 
entries, any analysis you perform will be skewed and the results of the analysis 
weighted in an unpredictable manner. Having a strategy for dealing with missing 
data is important. The following sections give you some ideas on how to work 
through these issues and produce better results.
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Finding the missing data
Finding missing data in your dataset is essential to avoid getting incorrect results 
from your analysis. The following code shows how you can obtain a listing of 
missing values without too much effort:

import pandas as pd
import numpy as np
 
s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])
 
print(s.isnull())
print(f"\n{s[s.isnull()]}")

A dataset can represent missing data in several ways. In this example, you see 
missing data represented as np.NaN (NumPy Not a Number) and the Python None 
value.

Use the isnull() method to detect the missing values. The output shows True 
when the value is missing. By adding an index into the dataset, you obtain just the 
entries that are missing. The example shows the following output:

0    False
1    False
2    False
3     True
4    False
5    False
6     True
dtype: bool
 
3   NaN
6   NaN
dtype: float64

Encoding missingness
After you figure out that your dataset is missing information, you need to consider 
what to do about it. The three possibilities are to ignore the issue, fill in the miss-
ing items, or remove (drop) the missing entries from the dataset. Ignoring the 
problem could lead to all sorts of problems for your analysis, so it’s the option you 
use least often. The following example shows one technique for filling in missing 
data or dropping the errant entries from the dataset:
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import pandas as pd
import numpy as np
 
s = pd.Series([1, 2, 3, np.NaN, 5, 6, None])
 
print(s.fillna(int(s.mean())))
print(f"\n{s.dropna()}")

The two methods of interest are fillna(), which fills in the missing entries, and 
dropna(), which drops the missing entries. When using fillna(), you must pro-
vide a value to use for the missing data. This example uses the mean of all the 
values, but you could choose a number of other approaches. Here’s the output 
from this example:

0    1.0
1    2.0
2    3.0
3    3.0
4    5.0
5    6.0
6    3.0
dtype: float64
 
0    1.0
1    2.0
2    3.0
4    5.0
5    6.0
dtype: float64

Working with a series is straightforward because the dataset is so simple. When 
working with a DataFrame, however, the problem becomes significantly more 
complicated. You still have the option of dropping the entire row. When a column 
is sparsely populated, you may drop the column instead. Filling in the data also 
becomes more complex because you must consider the dataset as a whole, in 
addition to the needs of the individual feature.

Imputing missing data
The previous section hints at the process of imputing missing data (ascribing 
characteristics based on how the data is used). The technique you use depends on 
the sort of data you’re working with. For example, when working with a tree 
ensemble (you can find discussions of trees in the “Performing Hierarchical  
Clustering” section of Chapter 15 and the “Starting with a Plain Decision Tree” 
section of Chapter 20), you may simply replace missing values with a –1 and rely 
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on the imputer (a transformer algorithm used to complete missing values) to 
define the best possible value for the missing data. The following example shows 
a technique you can use to impute missing data values:

import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
 
s = pd.DataFrame([1, 2, 3, np.nan, 5, 6, np.nan])
 
imp = SimpleImputer(missing_values=np.nan,
                    add_indicator=True,
                    strategy='mean')
 
imp.fit(s)
x = imp.transform(s)
print(x)

In this example, s is missing some values. The code creates an Imputer to replace 
these missing values. The missing_values parameter defines what to look for, 
which is np.nan. The add_indicator parameter creates a new binary feature that 
will mark the imputed values, which is incredibly useful for many machine learn-
ing models to show both the original values and the manipulated ones. Finally, the 
strategy parameter defines how to replace the missing values. (You can discover 
more about the Imputer parameters at https://scikit-learn.org/stable/ 
modules/generated/sklearn.impute.SimpleImputer.html.)

 » mean: Replaces the values by using the mean

 » median: Replaces the values by using the median

 » most_frequent: Replaces the values by using the most frequent value

Before you can impute anything, you must provide statistics for the Imputer to 
use by calling fit(). The code then calls transform() on s to fill in the missing 
values. Here’s the result of the process with the missing values filled in and the 
additional binary indicator:

[[1.  0. ]
 [2.  0. ]
 [3.  0. ]
 [3.4 1. ]
 [5.  0. ]
 [6.  0. ]
 [3.4 1. ]] 

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
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Slicing and Dicing: Filtering  
and Selecting Data

You may not need to work with all the data in a dataset. In fact, looking at just one 
particular column may be beneficial, such as age, or a set of rows with a signifi-
cant amount of information. You perform two steps to obtain just the data you 
need to perform a particular task:

1. Filter rows to create a subset of the data that meets the criterion you select 
(such as all the people between the ages of 5 and 10).

2. Select data columns that contain the data you need to analyze. For example, 
you probably don’t need the individuals’ names unless you want to perform 
some analysis based on name.

The act of slicing and dicing data, gives you a subset of the data suitable for analy-
sis. The following sections describe various ways to obtain specific pieces of data 
to meet particular needs.

Slicing rows
Slicing can occur in multiple ways when working with data, but the technique of 
interest in this section is to slice data from a row of 2-D or 3-D data. A 2-D array 
may contain temperatures (x axis) over a specific time frame (y axis). Slicing a 
row would mean seeing the temperatures at a specific time. In some cases, you 
may associate rows with cases in a dataset.

A 3-D array may include an axis for place (x axis), product (y axis), and time  
(z axis) so that you can see sales for items over time. Perhaps you want to  
track whether sales of an item are increasing, and specifically where they are 
increasing. Slicing a row would mean seeing all the sales for one specific product 
for all locations at any time. The following example demonstrates how to perform 
this task:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
             [[11,12,13], [14,15,16], [17,18,19],],
             [[21,22,23], [24,25,26], [27,28,29]]])
x[1] 
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In this case, the example builds a 3-D array. It then slices row 1 of that array to 
produce the following output:

array([[11, 12, 13],
       [14, 15, 16],
       [17, 18, 19]])

Slicing columns
Using the examples from the previous section, slicing columns would obtain data 
at a 90-degree angle from rows. In other words, when working with the 2-D 
array, you would want to see the times at which specific temperatures occurred. 
Likewise, you may want to see the sales of all products for a specific location at 
any time when working with the 3-D array. In some cases, you may associate 
columns with features in a dataset. The following example demonstrates how to 
perform this task using the same array as in the previous section:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
             [[11,12,13], [14,15,16], [17,18,19],],
             [[21,22,23], [24,25,26], [27,28,29]]])
x[:,1]

Note that the indexing now occurs at two levels. The first index refers to the row. 
Using the colon (:) for the row means to use all the rows. The second index refers 
to a column. In this case, the output will contain column 1. Here’s the output 
you see:

array([[ 4,  5,  6],
       [14, 15, 16],
       [24, 25, 26]])

This is a 3-D array. Therefore, each of the columns contains all the z axis ele-
ments. What you see is every row — 0 through 2 for column 1 with every z axis 
element 0 through 2 for that column.

Dicing
The act of dicing a dataset means to perform both row and column slicing such 
that you end up with a data wedge. For example, when working with the 3-D 
array, you may want to see the sales of a specific product in a specific location at 
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any time. The following example demonstrates how to perform this task using the 
same array as in the previous two sections:

x = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9],],
             [[11,12,13], [14,15,16], [17,18,19],],
             [[21,22,23], [24,25,26], [27,28,29]]])
print(x[1,1])
print(x[:,1,1])
print(x[1,:,1])
print(f"\n{x[1:2, 1:2]}")

This example dices the array in four different ways. First, you get row 1, column 1. 
Of course, what you may actually want is column 1, z axis 1. If that’s not quite 
right, you could always request row 1, z axis 1 instead. Then again, you may want 
rows 1 and 2 of columns 1 and 2. Here’s the output of all four requests:

[14 15 16]
[ 5 15 25]
[12 15 18]
 
[[[14 15 16]]]

Concatenating and Transforming
Data used for data science purposes seldom comes in a neat package. You may 
need to work with multiple databases in various locations — each of which has its 
own data format. It’s impossible to perform analysis on such disparate sources of 
information with any accuracy. To make the data useful, you must create a single 
dataset (by concatenating, or combining, the data from various sources).

Part of the process is to ensure that each field you create for the combined dataset 
has the same characteristics. For example, an age field in one database may appear 
as a string, but another database could use an integer for the same field. For the 
fields to work together, they must appear as the same type of information.

The following sections help you understand the process involved in concatenating 
and transforming data from various sources to create a single dataset. After you 
have a single dataset from these sources, you can begin to perform tasks such as 
analysis on the data. Of course, the trick is to create a single dataset that truly 
represents the data in all those disparate datasets.



126      PART 2  Getting Your Hands Dirty with Data

Adding new cases and variables
You often find a need to combine datasets in various ways or even to add new 
information for the sake of analysis purposes. The result is a combined dataset 
that includes either new cases or variables. The following example shows tech-
niques for performing both tasks:

import pandas as pd
 
df = pd.DataFrame({'A': [2,3,1],
                   'B': [1,2,3],
                   'C': [5,3,4]})
 
df1 = pd.DataFrame({'A': [4],
                    'B': [4],
                    'C': [4]})
 
df = pd.concat([df, df1])
df = df.reset_index(drop=True)
print(df)
 
df.loc[df.last_valid_index() + 1] = [5, 5, 5]
print(f"\n{df}")
 
df2 = pd.DataFrame({'D': [1, 2, 3, 4, 5]})
 
df = pd.DataFrame.join(df, df2)
print(f"\n{df}")

The easiest way to add more data to an existing DataFrame is to rely on the  
concat() method. In this case, the three cases found in df are added to the single 
case found in df1. To ensure that the data is appended as anticipated, the columns 
in df and df1 must match. When you append two DataFrame objects in this  
manner, the new DataFrame contains the old index values. Use the reset_index() 
method to create a new index to make accessing cases easier.

You can also add another case to an existing DataFrame by creating the new case 
directly. Any time you add a new entry at a position that is one greater than the 
last_valid_index(), you get a new case as a result.

Sometimes you need to add a new variable (column) to the DataFrame. In this 
case, you rely on join() to perform the task. The resulting DataFrame will match 
cases with the same index value, so indexing is important. In addition, unless you 
want blank values, the number of cases in both DataFrame objects must match. 
Here’s the output from this example:
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   A  B  C
0  2  1  5
1  3  2  3
2  1  3  4
3  4  4  4
 
   A  B  C
0  2  1  5
1  3  2  3
2  1  3  4
3  4  4  4
4  5  5  5
 
   A  B  C  D
0  2  1  5  1
1  3  2  3  2
2  1  3  4  3
3  4  4  4  4
4  5  5  5  5

Removing data
At some point, you may need to remove cases or variables from a dataset because 
they aren’t required for your analysis. In both cases, you rely on the drop() 
method to perform the task. The difference in removing cases or variables is in 
how you describe what to remove, as shown in the following example:

import pandas as pd
 
df = pd.DataFrame({'A': [2,3,1],
                   'B': [1,2,3],
                   'C': [5,3,4]})
 
df = df.drop(df.index[[1]])
print(df)
 
df = df.drop(columns=['B'])
print(f"\n{df}")

The example begins by removing a case from df. Notice how the code relies on an 
index to describe what to remove. You can remove just one case (as shown), ranges 
of cases, or individual cases separated by commas. The main concern is to ensure 
that you have the correct index numbers for the cases you want to remove.
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Removing a column is different. This example shows how to remove a column 
using a column name. Here’s the output from this example:

   A  B  C
0  2  1  5
2  1  3  4
 
   A  C
0  2  5
2  1  4

Sorting and shuffling
Sorting and shuffling are two ends of the same goal — to manage data order. In 
the first case, you put the data into order, while in the second, you remove any 
systematic patterning from the order. In general, you don’t sort datasets for the 
purpose of analysis because doing so can cause you to get incorrect results. How-
ever, you may want to sort data for presentation purposes. The following example 
shows both sorting and shuffling:

import pandas as pd
import numpy as np
 
df = pd.DataFrame({'A': [2,1,2,3,3,5,4],
                   'B': [1,2,3,5,4,2,5],
                   'C': [5,3,4,1,1,2,3]})
 
df = df.sort_values(by=['A', 'B'], ascending=[True, True])
df = df.reset_index(drop=True)
print(df)
 
index = df.index.tolist()
np.random.shuffle(index)
df = df.loc[df.index[index]]
df = df.reset_index(drop=True)
print(f"\n{df}")

It turns out that sorting the data is a bit easier than shuffling it. To sort the data, 
you use the sort_values() method and define which columns to use for indexing 
purposes. You can also determine whether the sort order is in ascending or 
descending order. Make sure to always call reset_index() when you’re done so 
that the index appears in order for analysis or other purposes.
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To shuffle the data, you first acquire the current index using df.index.tolist() 
and place it in index. A call to random.shuffle() creates a new order for the 
index. You then apply the new order to df using loc[]. As always, you call reset_
index() to finalize the new order. Here’s the output from this example (but note 
that the second output may not match your output because it has been shuffled):

   A  B  C
0  1  2  3
1  2  1  5
2  2  3  4
3  3  4  1
4  3  5  1
5  4  5  3
6  5  2  2
 
   A  B  C
0  4  5  3
1  1  2  3
2  3  5  1
3  2  3  4
4  5  2  2
5  3  4  1
6  2  1  5

Aggregating Data at Any Level
Aggregation is the process of combining or grouping data together into a set, bag, 
or list. The data may or may not be alike. However, in most cases, an aggregation 
function combines several rows together statistically using algorithms such as 
average, count, maximum, median, minimum, mode, or sum. There are several 
reasons to aggregate data:

 » Make it easier to analyze

 » Reduce the ability of anyone to deduce the data of an individual from the 
dataset for privacy or other reasons

 » Create a combined data element from one data source that matches a 
combined data element in another source
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The most important use of data aggregation is to promote anonymity in order to 
meet legal or other concerns. Sometimes even data that should be anonymous 
turns out to provide identification of an individual using the proper analysis tech-
niques. Here’s an example that shows how to perform aggregation tasks:

import pandas as pd
 
df = pd.DataFrame({'Map': [0,0,0,1,1,2,2],
                   'Values': [1,2,3,5,4,2,5]})
 
df['S'] = df.groupby('Map')['Values'].transform(np.sum)
df['M'] = df.groupby('Map')['Values'].transform(np.mean)
df['V'] = df.groupby('Map')['Values'].transform(np.var)
 
print(df)

In this case, you have two initial features for this DataFrame. The values in Map 
define which elements in Values belong together. For example, when calculating 
a sum for Map index 0, you use the Values 1, 2, and 3.

To perform the aggregation, you must first call groupby() to group the Map  
values. You then index into Values and rely on transform() to create the aggre-
gated data using one of several algorithms found in NumPy, such as np.sum. Here 
are the results of this calculation:

   Map  Values  S    M    V
0    0       1  6  2.0  1.0
1    0       2  6  2.0  1.0
2    0       3  6  2.0  1.0
3    1       5  9  4.5  0.5
4    1       4  9  4.5  0.5
5    2       2  7  3.5  4.5
6    2       5  7  3.5  4.5



CHAPTER 8  Reshaping Data      131

Chapter 8
Reshaping Data

The previous chapter, Chapter 7, demonstrates techniques for working with 
data as an entity — as something you work with in Python. But data doesn’t 
exist in a vacuum. It doesn’t just suddenly appear within Python for  

absolutely no reason at all. As demonstrated in Chapter  6, you load the data;  
however, loading may not be enough — you may have to reshape the data as part 
of loading it. That’s the purpose of this chapter. You discover how to work with a 
variety of container types in a way that enables you to load data from a number of 
complex container types.

As you progress through the book, you discover that data takes all kinds of forms 
and shapes. As far as the computer is concerned, data consists of 0s and 1s. 
Humans give the data meaning by formatting, storing, and interpreting it in a 
certain way. The same group of 0s and 1s could be a number, date, or text, depend-
ing on the interpretation. The data container provides clues as to how to interpret 
the data, which is why this chapter is so important to you as a data scientist using 
Python to discover data patterns. You find that you can discover patterns in places 
where you may have thought patterns couldn’t exist.

You don’t have to type the source code for this chapter manually; using the  
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_08_Shaping_ 
Data.ipynb file.

IN THIS CHAPTER

 » Understanding the bag of 
words model

 » Working with n-grams for sequencing 
your data items

 » Implementing Term Frequency times 
Inverse Document Frequency (TF-IDF) 
transformations

 » Manipulating graph data
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Using the Bag of Words Model  
to Tokenize Data

The goal of most data imports is to perform some type of analysis. Before you can 
perform analysis on textual data, you must tokenize (break into linguistic pieces) 
every word within the dataset. The act of tokenizing the words creates a bag of 
words. You can then use the bag of words to train classifiers, a special kind of algo-
rithm used to break words down into categories. The following sections provide 
additional insights into the bag of words model and show you how to work with it. 
You also discover how to perform various kinds of data-shaping tasks after you 
have a bag of words to use.

Understanding the bag of words model
As mentioned in the introduction, in order to perform textual analysis of various 
sorts, you need to first tokenize the words and create a bag of words from them. 
The bag of words uses numbers to represent words, word frequencies, and word 
locations that you can manipulate mathematically to see patterns in the way that 
the words are structured and used. The bag of words model ignores grammar and 
even word order, instead focusing on simplifying the text so that you can easily 
analyze it.

GETTING THE 20 NEWSGROUPS DATASET
The examples in the sections that follow rely on the 20 Newsgroups dataset (http:// 
qwone.com/~jason/20Newsgroups/) that’s part of the Scikit-learn installation. The 
host site provides some additional information about the dataset, but essentially it’s a 
good dataset to use to demonstrate various kinds of text analysis.

You don’t have to do anything special to work with the dataset because Scikit-learn 
already knows about it. However, when you run the first example, you see the message 
“WARNING:sklearn.datasets.twenty_newsgroups: Downloading dataset from http:// 
people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz 
(14MB).” All this message tells you is that you need to wait for the data download to 
complete. There is nothing wrong with your system. Look at the left side of the code cell 
in IPython Notebook and you see the familiar In [*]: entry. When this entry changes to 
show a number, the download is complete. The message doesn’t go away until the next 
time you run the cell.

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
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The creation of a bag of words revolves around Natural Language Processing 
(NLP) and Information Retrieval (IR). Before you perform this sort of processing, 
you normally remove any special characters (such as HTML formatting from a 
web source), remove the stop words (nonmeaningful words, such as “to”), and 
possibly perform stemming (reduce words to their root form) as well. For the pur-
pose of this example, you use the 20 Newsgroups dataset directly. Here’s an 
example of how you can obtain textual input and create a bag of words from it:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import *
 
categories = ['comp.graphics', 'misc.forsale', 
              'rec.autos', 'sci.space']
twenty_train = fetch_20newsgroups(subset='train',
                                  categories=categories, 
                                  shuffle=True, 
                                  random_state=42)
 
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(
    twenty_train.data)
 
print("BOW shape:", X_train_counts.shape)
caltech_idx = count_vect.vocabulary_['caltech']
print('"Caltech": %i' % X_train_counts[0, caltech_idx])

A number of the examples you see online are unclear as to where the list of  
categories they use come from. Helpfully, the host site at http://qwone.
com/~jason/20Newsgroups/ lists the categories you can use. The category list 
doesn’t come from a magic hat somewhere, but many examples online simply 
don’t bother to document some information sources. Always refer to the host site 
when you have questions about issues such as dataset categories.

The call to fetch_20newsgroups() loads the dataset into memory. You see the 
resulting training object, twenty_train, described as a bunch. At this point, you 
have an object that contains a listing of categories and associated data, but the 
application hasn’t tokenized the data, and the algorithm used to work with the 
data isn’t trained.

Now that you have a bunch of data to use, you can begin creating a bag of  
words with it. The first step is to create a matrix of token counts using the Count 
Vectorizer() object, count_vect. The bag of words process begins by assigning 
an integer value (an index of a sort) to each unique word in the training set. In 
addition, each document receives an integer value. The next step is to count every 
occurrence of these words in each document and create a list of document and 

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
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count pairs so that you know which words appear and how often in each 
document.

Naturally, some words from the master list aren’t used in some documents, 
thereby creating a high-dimensional sparse dataset. The scipy.sparse matrix is a 
data structure that lets you store only the nonzero elements of the list in order to 
save memory. When the code makes the call to count_vect.fit_transform(), it 
places the resulting bag of words into X_train_counts. You can see the resulting 
number of entries by accessing the shape property and the counts for the word 
"Caltech" in the first document:

BOW shape: (2356, 34750)
"Caltech": 3

Sequencing text items with n-grams
An n-gram is a continuous sequence of items in the text you want to analyze. The 
items are phonemes, syllables, letters, words, or base pairs. The n in n-gram 
refers to a size. An n-gram that has a size of one, for example, is a unigram. The 
example in this section uses a size of three, making a trigram. You use n-grams in 
a probabilistic manner to perform tasks such as predicting the next sequence in a 
series, which wouldn’t seem very useful until you start thinking about applica-
tions such as search engines that try to predict the word you want to type based 
on the previous letters you’ve supplied. However, the technique has all sorts of 
applications, such as in DNA sequencing and data compression. The following 
example shows how to create n-grams from the 20 Newsgroups dataset:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import *
 
categories = ['sci.space']
 
twenty_train = fetch_20newsgroups(subset='train', 
                                  categories=categories, 
                                  remove=('headers', 
                                          'footers', 
                                          'quotes'),
                                  shuffle=True, 
                                  random_state=42)
 
count_chars = CountVectorizer(analyzer='char_wb', 
                              ngram_range=(3,3), 
                              max_features=10)
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count_chars.fit(twenty_train['data'])
 
count_words = CountVectorizer(analyzer='word', 
                              ngram_range=(2,2),
                              max_features=10,
                              stop_words='english')
 
count_words.fit(twenty_train['data'])
 
X = count_chars.transform(twenty_train.data)
 
print(count_chars.get_feature_names_out())
print(X[1].todense())
print(count_words.get_feature_names_out())

The beginning code is the same as in the previous section, “Understanding the 
bag of words model.” You still begin by fetching the dataset and placing it into a 
bunch. However, in this case, the vectorization process takes on new meaning. 
The arguments process the data in a special way.

In this case, the first parameter, analyzer, determines how the application cre-
ates the n-grams. You can choose words (word), characters (char), or characters 
within word boundaries (char_wb). The second parameter, ngram_range, requires 
two inputs in the form of a tuple (the storing of multiple data items in a single 
variable): The first argument determines the minimum n-gram size, and the sec-
ond determines the maximum n-gram size. The third parameter, max_features, 
determines how many features the vectorizer returns. In the second vectorizer 
call, the stop_words argument removes the terms contained in the English pickle, 
which is a method of serializing an object in Python so that you can store it on 
disk, as explained at https://docs.python.org/3/library/pickle.html). At 
this point, the application fits the data to the transformation algorithm.

The example provides three outputs. The first shows the top ten trigrams for 
characters from the document. The second is the n-gram for the first document. 
It shows the frequency of the top ten trigrams. The third is the top ten trigrams 
for words. Here’s the output from this example:

[' an', ' in', ' of', ' th', ' to', 'he ', 'ing', 'ion',
 'nd ', 'the']
[[0 0 2 5 1 4 2 2 0 5]]
['anonymous ftp', 'commercial space', 'gamma ray',
 'nasa gov', 'national space', 'remote sensing',
 'sci space', 'space shuttle', 'space station',
 'washington dc']

https://docs.python.org/3/library/pickle.html
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Implementing TF-IDF transformations
The Term Frequency times Inverse Document Frequency (TF-IDF) transformation is a 
technique used to help compensate for words found relatively often in different 
documents, which makes it hard to distinguish between the documents because 
the words are too common (stop words are a good example). What this transfor-
mation is really telling you is the importance of a particular word to the unique-
ness of a document. The greater the frequency of a word in a document, the more 
important it is to that document. However, the measurement is offset by the doc-
ument size — the total number of words the document contains — and by how 
often the word appears in other documents.

Even if a word appears many times inside a document, that frequency doesn’t 
imply that the word is important for understanding the document itself; in many 
documents, you find stop words with the same frequency as the words that relate 
to the document’s general topics. For example, if you analyze documents with sci-
ence fiction–related discussions (such as in the 20 Newsgroups dataset), you may 
find that many of them deal with UFOs; therefore, the acronym UFO can’t repre-
sent a distinction between different documents. Moreover, longer documents 
contain more words than shorter ones, and repeated words are easily found when 
the text is abundant.

In fact, a word found a few times in a single document (or possibly a few others) 
could prove quite distinctive and helpful in determining the document type. If 
you’re working with documents discussing sci fi and automobile sales, the acro-
nym UFO can be distinctive because it easily separates the two topic types in your 
documents.

Search engines often need to weight words in a document in a way that helps 
determine when the word is important in the text. You use words with the higher 
weight to index the document so that when you search for those words, the search 
engine will retrieve that document. This is the reason that the TD-IDF transfor-
mation is used quite often in search engine applications.

Getting into more details, the TF part of the TF-IDF equation determines how fre-
quently the term appears in the document, and the IDF part of the equation deter-
mines the term’s importance because it represents the inverse of the frequency of 
that word among all the documents. A large IDF implies a seldom-found word and 
that the TF-IDF weight will also be larger. A small IDF means that the word is 
common, and that will result in a small TF-IDF weight. You can see some actual 
calculations of this particular measure at https://tfidf.com/. Here’s an exam-
ple of how to calculate TF-IDF using Python:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import *
 

https://tfidf.com/
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categories = ['comp.graphics', 'misc.forsale', 
              'rec.autos', 'sci.space']
twenty_train = fetch_20newsgroups(subset='train',
                                  categories=categories, 
                                  shuffle=True, 
                                  random_state=42)
 
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(
    twenty_train.data)
 
tfidf = TfidfTransformer().fit(X_train_counts)
X_train_tfidf = tfidf.transform(X_train_counts)
 
caltech_idx = count_vect.vocabulary_['caltech']
print('"Caltech" scored in a BOW:')
print('count: %0.3f' % X_train_counts[0, caltech_idx])
print('TF-IDF: %0.3f' % X_train_tfidf[0, caltech_idx])

This example begins much the same as the other examples in this section have, by 
fetching the 20 Newsgroups dataset. It then creates a word bag, much like the 
example in the “Understanding the bag of words model” section, earlier in this 
chapter. However, now you see something you can do with the word bag.

In this case, the code calls upon TfidfTransformer() to convert the raw news-
group documents into a matrix of TF-IDF features. The use_idf controls the use 
of inverse-document-frequency reweighting, which it turned on in this case. The 
vectorized data is fitted to the transformation algorithm. The next step, calling 
tfidf.transform(), performs the actual transformation process. Here’s the 
result you get from this example:

"Caltech" scored in a BOW:
count: 3.000
TF-IDF: 0.123

Notice how the word Caltech now has a lower value in the first document compared 
to the example in the previous paragraph, where the counting of occurrences for 
the same word in the same document scored a value of 3. To understand how 
counting occurrences relates to TF-IDF, compute the average word count and 
average TF-IDF:

import numpy as np
count = np.mean(X_train_counts[X_train_counts>0])
tfif = np.mean(X_train_tfidf[X_train_tfidf>0])
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print('mean count: %0.3f' % np.mean(count))
print('mean TF-IDF: %0.3f' % np.mean(tfif))

The results demonstrate that no matter how you count occurrences of Caltech in 
the first document or use its TF-IDF, the value is always double the average word, 
revealing that it is a keyword for modeling the text:

mean count: 1.698
mean TF-IDF: 0.064

TF-IDF helps you to locate the most important word or n-grams and exclude the 
least important one or ones. It is also very helpful as an input for linear models, 
because they work better with TF-IDF scores than word counts. At this point, you 
normally train a classifier and perform various sorts of analysis. Don’t worry 
about this next part of the process just yet. Starting with Chapters 12 and 15, you 
get introduced to classifiers. In Chapter 17, you begin working with classifiers in 
earnest.

Working with Graph Data
Imagine data points that are connected to other data points, such as how one web 
page is connected to another web page through hyperlinks. Each of these data 
points is a node. The nodes connect to each other using links (also called edges). 
Not every node links to every other node, so the node connections become impor-
tant. By analyzing the nodes and their links, you can perform all sorts of interest-
ing tasks in data science, such as defining the best way to get from work to your 
home using streets and highways. The following sections describe how graphs 
work and how to perform basic tasks with them.

Understanding the adjacency matrix
An adjacency matrix represents the connections between nodes of a graph. When a 
connection exists between one node and another, the matrix indicates it as a value 
greater than 0. The precise representation of connections in the matrix depends 
on whether the graph is directed (where the direction of the connection matters) 
or undirected.

A problem with many online examples is that the authors keep them simple for 
explanation purposes. However, real-world graphs are often immense and defy 
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easy analysis simply through visualization. Just think about the number of nodes 
that even a small city would have when considering street intersections (with the 
links being the streets themselves). Many other graphs are far larger, and simply 
looking at them will never reveal any interesting patterns. Data scientists call the 
problem in presenting any complex graph using an adjacency matrix a hairball.

One key to analyzing adjacency matrices is to sort them in specific ways. For 
example, you may choose to sort the data according to properties other than the 
actual connections. A graph of street connections may include the date the street 
was last paved with the data, enabling you to look for patterns that direct someone 
based on the streets that are in the best repair. In short, making the graph  
data useful becomes a matter of manipulating the organization of that data in 
specific ways.

Using NetworkX basics
Working with graphs could become difficult if you had to write all the code from 
scratch. Fortunately, the NetworkX package for Python makes it easy to create, 
manipulate, and study the structure, dynamics, and functions of complex  
networks (or graphs). Even though this book covers only graphs, you can use the 
package to work with digraphs and multigraphs as well.

The main emphasis of NetworkX is to avoid the whole issue of hairballs (explained 
in the previous section, “Understanding the adjacency matrix”). The use of simple 
calls hides much of the complexity of working with graphs and adjacency matrices 
from view. The following example shows how to create a basic adjacency matrix 
from one of the NetworkX-supplied graphs:

import networkx as nx
G = nx.cycle_graph(10)
A = nx.adjacency_matrix(G)
print(A.todense())

Note that you may see a FutureWarning when running this code (see the blog  
post at https://blog.johnmuellerbooks.com/2023/05/08/warning-messages- 
in-jupyter-notebook-example-code/ for details). The example begins by 
importing the required package. It then creates a graph using the cycle_graph() 
template. The graph contains ten nodes. Calling adjacency_matrix() creates the 

https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
https://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
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adjacency matrix from the graph. The final step is to print the output as a matrix, 
as shown here:

 [[0 1 0 0 0 0 0 0 0 1]
  [1 0 1 0 0 0 0 0 0 0]
  [0 1 0 1 0 0 0 0 0 0]
  [0 0 1 0 1 0 0 0 0 0]
  [0 0 0 1 0 1 0 0 0 0]
  [0 0 0 0 1 0 1 0 0 0]
  [0 0 0 0 0 1 0 1 0 0]
  [0 0 0 0 0 0 1 0 1 0]
  [0 0 0 0 0 0 0 1 0 1]
  [1 0 0 0 0 0 0 0 1 0]]

You don’t have to build your own graph from scratch for testing purposes. The 
NetworkX site documents a number of standard graph types that you can use, all 
of which are available within IPython. The list appears at https://networkx.
github.io/documentation/latest/reference/generators.html.

It’s interesting to see how the graph looks after you generate it. The following 
code displays the graph for you. Figure 8-1 shows the result of the plot.

import matplotlib.pyplot as plt
%matplotlib inline
nx.draw_networkx(G)
plt.show()

FIGURE 8-1: 
Plotting the 

original graph.

https://networkx.github.io/documentation/latest/reference/generators.html
https://networkx.github.io/documentation/latest/reference/generators.html
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The plot shows that you can add an edge between nodes 1 and 5. Here’s the code 
needed to perform this task using the add_edge() function. Figure 8-2 shows the 
result. (The plot you see will likely vary in appearance from the one in Figure 8-2, 
but the connections and nodes will be the same.)

G.add_edge(1,5)
nx.draw_networkx(G)
plt.show()

FIGURE 8-2: 
Plotting the  

graph addition.
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Chapter 9
Putting What You 
Know into Action

Previous chapters have all been preparatory in nature. You have discovered 
how to perform essential data science tasks using Python. In addition, you 
spent time working with the various tools that Python provides to make 

data science tasks easier. All this information is essential, but it doesn’t help you 
see the big picture — where all the pieces go. This chapter shows you how to 
employ the techniques you discovered in previous chapters to solve real data sci-
ence problems.

This chapter isn’t the end of the journey — it’s the beginning. Think of previous 
chapters in the same way as you think about packing your bags, making reserva-
tions, and creating an itinerary before you go on a trip. This chapter is the trip to 
the airport, during which you start to see everything come together.

The chapter begins by looking at the aspects you normally have to consider when 
trying to solve a data science problem. You can’t just jump in and start perform-
ing an analysis; you must understand the problem first, as well as consider the 
resources (in the form of data, algorithms, computational resources) to solve it. 
Putting the problem into a context, a setting of a sort, helps you understand the 
problem and define how the data relates to that problem. The context is essential 
because, like language, context alters the meaning of both the problem and its 
associated data. For example, when you say, “I have a red rose” to your 

IN THIS CHAPTER

 » Putting data science problems and 
data into perspective

 » Defining and using feature creation 
to your benefit

 » Working with arrays
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significant other, the meaning behind the sentence has one connotation. If you 
say the same sentence to a fellow gardener, the connotation is different. The red 
rose is a sort of data, and the person you’re speaking to is the context. There is no 
meaning to saying, “I have a red rose” unless you know the context in which the 
statement is made. Likewise, data has no meaning; it doesn’t answer any question 
until you know the context in which the data is used. Saying “I have data” 
expresses the question, “What does the data mean?”

In the end, you’ll need one or more datasets. Two-dimensional datatables (data-
sets) consist of cases (the rows) and features (the columns). You can also refer to 
features as variables when using a statistical terminology. The features you decide 
to use for any given dataset determine the kinds of analysis you can perform, the 
ways in which you can manipulate the data, and ultimately the sorts of results 
you obtain. Determining what sorts of features you can create from source data 
and how you must transform the data to ensure that it works for the analysis you 
want to perform is an essential part of developing a data science solution.

After you get a picture of what your problem is, the resources you have to solve it, 
and the inputs you need to work with to solve it, you’re ready to perform some 
actual work. The last section of this chapter shows you how to perform simple 
tasks efficiently. You can usually perform tasks using more than one methodol-
ogy, but when working with big data, the fastest routes are better. By working 
with arrays and matrices to perform specific tasks, you’ll notice that certain 
operations can take a long time unless you leverage some computational tricks. 
Using computational tricks is one of the most basic forms of manipulation you 
perform, but knowing about them from the beginning is essential. Applying these 
techniques paves the road to later chapters when you start to look at the magic 
that data science can truly accomplish in helping you see more in the data you 
have than is nominally apparent.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions). 
The source code for this chapter appears in the P4DS4D3_09_Operations_On_ 
Arrays_and_Matrices.ipynb file.

Contextualizing Problems and Data
Putting your problem in the correct context is an essential part of developing a 
data science solution for any given problem and associated data. Data science is 
definitively applied science, and abstract manual approaches may not work all 
that well on your specific situation. Running a Hadoop cluster or building a deep 
neural network may sound cool in front of fellow colleagues, and make you feel 
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as though you’re doing great data science projects, but they may not provide what 
you need to solve your problem. Putting the problem in the correct context isn’t 
just a matter of deliberating on whether to use a certain algorithm or transform 
the data in a certain way — it’s the art of critically examining the problem and 
available resources and creating an environment in which to solve the problem 
and obtain a desired solution.

The key point here is the desired solution, in that you could come up with solu-
tions that aren’t desirable because they don’t tell you what you need to know — 
or, when they do tell you what you need to know, they waste too much time and 
resources. The following sections provide an overview of the process you follow 
to contextualize both problems and data.

Evaluating a data science problem
When working through a data science problem, you need to start by considering 
your goal and the resources you have available for achieving that goal. The 
resources are data, computational resources such as available memory, CPUs, and 
disk space. In the real world, no one will hand you ready-made data and tell you 
to perform a particular analysis on it. Most of the time, you have to face completely 
new problems, and you have to build your solution from scratch. During your first 
evaluation of a data science problem, you need to consider the following:

 » The data available in terms of accessibility, quantity, and quality. You 
must also consider the data in terms of possible biases that could influence  
or even distort its characteristics and content. Data never contains absolute 
truths, only relative truths that offer you a more or less useful view of a 
problem (see the “Considering the five mistruths in data” sidebar for details). 
Always be aware of the truthfulness of data and apply critical reasoning as 
part of your analysis of it.

 » The methods you can feasibly use to analyze the dataset. Consider 
whether the methods are simple or complex. You must also decide how well 
you know a particular methodology. Start by using simple approaches, and 
never fall in love with any particular technique. There are neither free lunches 
nor Holy Grails in data science.

 » The questions you want to answer by performing your analysis and how 
you can quantitatively measure whether you achieved a satisfactory 
answer to them. “If you can’ not measure it, you can not improve it,” as Lord 
Kelvin stated (see https://zapatopi.net/kelvin/quotes/). If you can 
measure performance, you can determine the impact of your work and even 
make a monetary estimation. Stakeholders will be delighted to know that 
you’ve figured out what to do and what benefits your data science project  
will bring about.

https://zapatopi.net/kelvin/quotes/
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CONSIDERING THE FIVE MISTRUTHS 
IN DATA
Humans are used to seeing data for what it is in many cases: an opinion. In fact, in some 
cases, people skew data to the point where it becomes useless, a mistruth. A computer 
can’t tell the difference between truthful and untruthful data; all it sees is data. 
Consequently, as you perform analysis with data, you must consider the truth value of 
that data as part of your analysis. The best you can hope to achieve is to see the errant 
data as outliers and then filter it out, but that technique doesn’t necessarily solve the 
problem because a human would still use the data and attempt to determine a truth 
based on the mistruths it contains. Here are the five mistruths you commonly find in 
data (using a car accident reporting process as an illustration):

• Commission: Mistruths of commission are those that reflect an outright attempt to 
substitute truthful information for untruthful information. For example, when filling 
out an accident report, someone could state that the sun momentarily blinded 
them, making it impossible to see someone they hit. In reality, perhaps the person 
was distracted by something else or wasn’t actually thinking about driving (possibly 
considering a nice dinner). If no one can disprove this theory, the person might get 
by with a lesser charge. However, the point is that the data would also be 
contaminated.

• Omission: Mistruths of omission occur when a person tells the truth in every stated 
fact but leaves out an important fact that would change the perception of an inci-
dent as a whole. Thinking again about the accident report, say that someone strikes 
a deer, causing significant damage to their car. The driver truthfully says that the 
road was wet; it was near twilight so the light wasn’t as good as it could be; was a  
little late in pressing on the brake; and the deer simply ran out from a thicket at the 
side of the road. The conclusion would be that the incident is simply an accident. 
However, the person has left out an important fact. The driver was texting at the 
time. If law enforcement knew about the texting, it would change the reason for the 
accident to inattentive driving. The driver might be fined and the insurance adjuster 
would use a different reason when entering the incident into the database.

• Perspective: Mistruths of perspective occur when multiple parties view an incident 
from multiple vantage points. For example, in considering an accident involving a 
struck pedestrian, the person driving the car, the person getting hit by the car, and 
a bystander who witnessed the event would all have different perspectives. An offi-
cer taking reports from each person would understandably get different facts from 
each one, even assuming that each person tells the truth as each knows it. In fact, 
experience shows that this is almost always the case, and what the officer submits 
as a report is the middle ground of what each of those involved state, augmented 
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Researching solutions
Data science is a complex system of knowledge at the intersection of computer 
science, math, statistics, and business. Very few people can know everything 
about it, and, if someone has already faced the same problem or dilemmas as you 
face, reinventing the wheel makes little sense. Now that you have contextualized 

by personal experience. In other words, the report will be close to the truth, but not 
completely true. When dealing with perspective, it’s important to consider vantage 
point. The driver of the car can see the dashboard and knows the car’s condition  
at the time of the accident. This is information that the other two parties lack. 
Likewise, the person getting hit by the car has the best vantage point for seeing the 
driver’s facial expression (intent). The bystander might be in the best position to see 
whether the driver made an attempt to stop, and assess issues such as whether the 
driver tried to swerve. Each party will have to make a report based on seen data 
without the benefit of hidden data.

• Bias: Mistruths of bias occur when someone is able to see the truth, but personal 
concerns or beliefs distort or obscure that vision. For example, when thinking about 
an accident, a driver might focus attention so completely on the middle of the road 
that the deer at the edge of the road becomes virtually invisible. Consequently, the 
driver has no time to react when the deer suddenly decides to bolt out into the 
middle of the road in an effort to cross. A problem with bias is that it can be incredi-
bly hard to categorize. For example, a driver who fails to see the deer can have a 
genuine accident, meaning that the deer was hidden from view by shrubbery. 
However, the driver might also be guilty of inattentive driving because of incorrect 
focus. The driver might also experience a momentary distraction. In short, the fact 
that the driver didn’t see the deer isn’t the question; instead, it’s a matter of why the 
driver didn’t see the deer. In many cases, confirming the source of bias becomes 
important when creating an algorithm designed to avoid a bias source.

• Frame of reference: Of the five mistruths, frame of reference need not actually be 
the result of any sort of error, but one of understanding. A frame-of-reference  
mistruth occurs when one party describes something, such as an event like an  
accident, and the second party’s lack of experience with the event makes the details 
muddled or completely misunderstood. Comedy routines abound that rely on 
frame-of-reference errors. One famous example is from Abbott and Costello,  
Who’s On First?, as shown at https://www.youtube.com/watch?v=kTcRRaXV- 
fg. Getting one person to understand what a second person is saying can be 
impossible when the first person lacks experiential knowledge — the frame of 
reference.

https://www.youtube.com/watch?v=kTcRRaXV-fg
https://www.youtube.com/watch?v=kTcRRaXV-fg
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your project, you know what you’re looking for and you can search for it in dif-
ferent ways.

 » Check the Python documentation. You might be able to find examples that 
suggest a possible solution. NumPy (https://docs.scipy.org/doc/numpy/
user/), SciPy (https://docs.scipy.org/doc/), pandas (http://pandas.
pydata.org/pandas-docs/version/2.0.2/), and especially Scikit-learn 
(https://scikit-learn.org/stable/user_guide.html) have detailed 
in-line and online documentation with plenty of data science–related  
examples.

 » Seek out online articles and blogs that hint at how other practitioners 
solved similar problems. Q&A websites such as Quora (https://www.
quora.com/), Stack Overflow (https://stackoverflow.com/), and Cross 
Validated (https://stats.stackexchange.com/) can provide you with 
plenty of answers to similar problems.

 » Consult academic papers. For example, you can query your problem on 
Google Scholar at https://scholar.google.it/ or Microsoft Academic at 
https://www.microsoft.com/en-us/research/project/academic/. You 
can find a series of scientific papers that can tell you about preparing the data, 
or they can detail the kind of algorithms that work better for a particular 
problem.

It may seem trivial, but the solutions you create have to reflect the problem you’re 
trying to solve. As you research solutions, you may find that some of them seem 
promising at first, but then you can’t successfully apply them to your case because 
something in their context is different. For instance, your dataset may be incom-
plete or may not provide enough input to solve the problem. In addition, the 
analysis model you select may not actually provide the answer you need or the 
answer might prove inaccurate. As you work through the problem, don’t be afraid 
to perform your research multiple times as you discover, test, and evaluate pos-
sible solutions that you could apply given the resources available and your actual 
constraints.

Formulating a hypothesis
At some point, you have everything you think you need to solve the problem. Of 
course, it’s a mistake to assume now that the solutions you create can actually 
solve the problem. You have a hypothesis, rather than a solution, because you 
have to demonstrate the efficacy of the potential solution in a scientific way. In 
order to form and test a hypothesis, you must train a model using a training 
dataset and then test it using an entirely different dataset. Later chapters in the 
book spend a great deal of time helping you through the process of training and 

https://docs.scipy.org/doc/numpy/user/
https://docs.scipy.org/doc/numpy/user/
https://docs.scipy.org/doc/
http://pandas.pydata.org/pandas-docs/version/2.0.2/
http://pandas.pydata.org/pandas-docs/version/2.0.2/
https://scikit-learn.org/stable/user_guide.html
https://www.quora.com/
https://www.quora.com/
https://stackoverflow.com/
https://stats.stackexchange.com/
https://scholar.google.it/
https://www.microsoft.com/en-us/research/project/academic/
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testing the algorithms used to perform analysis, so don’t worry too much if you 
don’t understand this aspect of the process right now.

Preparing your data
After you have some idea of the problem and its solution, you know the inputs 
required to make the algorithm work. Unfortunately, your data probably appears 
in multiple forms, you get it from multiple sources, and some data is missing 
entirely. Moreover, the developers of the features that existing data sources pro-
vide may have devised them for different purposes (such as accounting or mar-
keting) than yours and you have to transform them so that you can use your 
algorithm at its fullest power. To make the algorithm work, you must prepare the 
data. This means checking for missing data, creating new features as needed, and 
possibly manipulating the dataset to get it into a form that your algorithm can 
actually use to make a prediction.

Considering the Art of Feature Creation
Features have to do with the columns in your dataset. Of course, you need to 
determine what those columns should contain. They might not end up looking 
precisely like the data in the original data source. The original data source may 
present the data in a form that leads to inaccurate analysis or even prevent you 
from getting a desired outcome because it’s not completely suited to your algo-
rithm or your objectives. For example, the data may contain too much informa-
tion redundancy inside multiple variables, which is a problem called multivariate 
correlation. The task of making the columns work in the best manner for data 
analysis purposes is feature creation (also called feature engineering). The follow-
ing sections help you understand feature creation and why it’s important. (Future 
chapters provide all sorts of examples of how you actually employ feature cre-
ation to perform analysis.)

Defining feature creation
Feature creation may seem a bit like magic or weird science to some people, but it 
really does have a firm basis in math. The task is to take existing data and trans-
form it into something that you can work with to perform an analysis. For exam-
ple, numeric data could appear as strings in the original data source. To perform 
an analysis, you must convert the string data to numeric values in many cases. 
The immediate goal of feature creation is to achieve better performance from the 
algorithms used to accomplish the analysis than you can when using the original 
data.
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In many cases, the transformation is less than straightforward. You may have to 
combine values in some way or perform math operations on them. The informa-
tion you can access may appear in all sorts of forms, and the transformation 
process lets you work with the data in new ways so that you can see patterns in 
it. For example, consider this popular Kaggle competition: https://www.kaggle.
com/competitions/predict-student-performance-from-game-play. The goal 
is to use all sorts of statistics to predict student performance during game-based 
learning in real-time. Imagine trying to derive disparate measures from various 
game sources that interact with students in different ways, and you can begin to 
grasp the need to create features in a dataset.

As you might imagine, feature creation truly is an art form, and everyone has an 
opinion on precisely how to perform it. This book provides you with some good 
basic information on feature creation as well as a number of examples, but it 
leaves advanced techniques to experimentation and trial. As Pedro Domingos, 
professor at the University of Washington, Seattle, stated in his data science 
paper, “A Few Useful Things to Know about Machine Learning” (see https://
homes.cs.washington.edu/~pedrod/papers/cacm12.pdf), feature engineering 
is “easily the most important factor” in determining the success or failure of a 
machine-learning project, and nothing can really replace the “smarts you put 
into feature engineering.”

Combining variables
Data often comes in a form that doesn’t work at all for an algorithm. Consider a 
simple real-life situation in which you need to determine whether one person can 
lift a board at a lumber yard. You receive two datatables. The first contains the 
height, width, thickness, and wood types of boards. The second contains a list  
of wood types and the amount they weigh per board foot (a piece of wood 12" x  
12" x 1"). Not every wood type comes in every size, and some shipments come 
unmarked, so you don’t actually know what type of wood you’re working with. 
The goal is to create a prediction so that the company knows how many people to 
send to work with the shipments.

In this case, you create a two-dimensional dataset by combining variables. The 
resulting dataset contains only two features. The first feature contains just the 
length of the boards. It’s reasonable to expect a single person to carry a board  
that is up to ten feet long, but you want two people carrying a board ten feet or 
longer. The second feature is the weight of the board. A board that is 10 feet long, 
12 inches wide, and 2 inches thick contains 20 board feet. If the board is made of 
ponderosa pine (with a board foot rating, BFR, of 2.67), the overall weight of the 
board is 53.4 pounds, and one person could probably lift it. However, when the 
board is made of hickory (with a BFR of 4.25), the overall weight is now  
85 pounds. Unless you have the Hulk working for you, you really do need two 

https://www.kaggle.com/competitions/predict-student-performance-from-game-play
https://www.kaggle.com/competitions/predict-student-performance-from-game-play
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
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people lifting that board, even though the board is short enough for one  
person to lift.

Getting the first feature for your dataset is easy. All you need is the lengths of 
each of the boards that you stock. However, the second feature requires that you 
combine variables from both tables:

Length (feet) * Width (feet) * Thickness (inches) * BFR

The resulting dataset will contain the weight for each length of each kind of wood 
you stock. Having this information means that you can create a model that pre-
dicts whether a particular task will require one, two, or even three people to 
perform.

Understanding binning and discretization
To perform some types of analysis, you need to break numeric values into classes. 
For example, you might have a dataset that includes entries for people from ages 
0 to 80. To derive statistics that work in this case (such as running the Naïve 
Bayes algorithm), you might want to view the variable as a series of levels in ten-
year increments. The process of dividing the dataset into these ten-year incre-
ments is binning. Each bin is a numeric category that you can use.

Binning may improve the accuracy of predictive models by reducing noise or by 
helping model nonlinearity. In addition, it allows easy identification of outliers 
(values outside the expected range) and invalid or missing values of numerical 
variables.

Binning works exclusively with single numeric features. Discretization is a more 
complex process, in which you place combinations of values from different fea-
tures in a bucket — limiting the number of states in any given bucket. In contrast 
to binning, discretization works with both numeric and string values. It’s a more 
generalized method of creating categories. For example, you can obtain a dis-
cretization as a byproduct of cluster analysis.

Using indicator variables
Indicator variables are features that can take on a value of 0 or 1. Another name for 
indicator variables is dummy variables. No matter what you call them, these vari-
ables serve an important purpose in making data easier to work with. For exam-
ple, if you want to create a dataset in which individuals under 25 are treated one 
way and individuals 25 and over are treated another, you could replace the age 
feature with an indicator variable that contains a 0 when the individual is under 
25 or a 1 when the individual is 25 and older.
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Using an indicator variable lets you perform analysis faster and categorize cases 
with greater accuracy than you can without this variable. The indicator variable 
removes shades of gray from the dataset. Someone is either under 25 or 25 and 
older — there is no middle ground. Because the data is simplified, the algorithm 
can perform its task faster, and you have less ambiguity to contend with.

The practice of using indicator variables can also assist in meeting data-cleaning 
requirements now enforced by many countries. Saying that someone is 25 years 
old is personally identifiable; saying that they’re in group 1 is less so. So, using 
indicator variables can help you meet legal requirements as well.

Transforming distributions
A distribution is an arrangement of the values of a variable that shows the fre-
quency at which various values occur. After you know how the values are distrib-
uted, you can begin to understand the data better. All sorts of distributions exist 
(see a gallery of distributions at https://www.itl.nist.gov/div898/handbook/
eda/section3/eda366.htm), and most algorithms can easily deal with them. 
However, you must match the algorithm to the distribution.

Pay particular attention to uniform and skewed distributions. They are quite dif-
ficult to deal with for different reasons. The bell-shaped curve, the normal dis-
tribution, is always your friend. When you see a distribution shaped differently 
from a bell distribution, you should think about performing a transformation.

When working with distributions, you might find that the distribution of values 
is skewed in some way and that, because of the skewed values, any algorithm 
applied to the set of values produces output that simply won’t match your expec-
tations. Transforming a distribution means to apply some sort of function to the 
values in order to achieve specific objectives, such as fixing the data skew, so that 
the output of your algorithm is closer to what you expected. In addition, trans-
formation helps make the distribution friendlier, such as when you transform a 
dataset to appear as a normal distribution. Transformations that you should 
always try on your numeric features are

 » Logarithm np.log(x) and exponential np.exp(x)

 » Inverse 1/x, square root np.sqrt(x), and cube root x**(1.0/3.0)

 » Polynomial transformations such as x**2, x**3, and so on

https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm
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Performing Operations on Arrays
A basic form of data manipulation is to place the data in an array or matrix and 
then use standard math-based techniques to modify its form. Using this approach 
puts the data in a convenient form to perform other operations done at the level 
of every single observation, such as in iterations, because they can leverage your 
computer architecture and some highly optimized numerical linear algebra rou-
tines present in CPUs. These routines are callable from every operating system. 
The larger the data and the computations, the more time you can save. In addi-
tion, using these techniques also spares you from writing long and complex 
Python code. The following sections describe how to work with arrays for data 
science purposes.

Using vectorization
Your computer provides you with powerful routine calculations, and you can use 
them when your data is in the right format. NumPy’s ndarray is a multidimen-
sional data-storage structure that you can use as a dimensional datatable. In fact, 
you can use it as a cube or even a hypercube when there are more than three 
dimensions.

Using ndarray makes computations easy and fast. The following example creates 
a dataset of three observations with seven features for each observation. In this 
case, the example obtains the maximum value for each observation and subtracts 
it from the minimum value to obtain the range of values for each observation.

import numpy as np
dataset = np.array([[2, 4, 6, 8, 3, 2, 5],
                    [7, 5, 3, 1, 6, 8, 0],
                    [1, 3, 2, 1, 0, 0, 8]])
print(np.max(dataset, axis=1) - np.min(dataset, axis=1))

The print statement obtains the maximum value from each observation using 
np.max() and then subtracts it from the minimum value using np.min(). The 
maximum values for the observations are [8 8 8]. The minimum values for the 
observations are [2 0 0]. As a result, you get the following output:

[6 8 8]
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Performing simple arithmetic  
on vectors and matrices
Most operations and functions from NumPy that you apply to arrays leverage 
vectorization, so they’re fast and efficient — much more efficient than any other 
solution or handmade code. Even the simplest operations such as additions or 
divisions can take advantage of vectorization.

For instance, many times, the form of the data in your dataset won’t quite match 
the form you need. A list of numbers could represent percentages as whole num-
bers when you really need them as fractional values. In this case, you can usually 
perform some type of simple math to solve the problem, as shown here:

import numpy as np
a = np.array([15.0, 20.0, 22.0, 75.0, 40.0, 35.0])
a = a*.01
print(a)

The example creates an array, fills it with whole number percentages, and then 
uses 0.01 as a multiplier to create fractional percentages. You can then multiply 
these fractional values against other numbers to determine how the percentage 
affects that number. The output from this example is

[0.15 0.2 0.22 0.75 0.4 0.35]

Performing matrix vector multiplication
The most efficient vectorization operations are matrix manipulations in which 
you add and multiply multiple values against other multiple values. NumPy 
makes performing multiplication of a vector by a matrix easy, which is handy if 
you have to estimate a value for each observation as a weighted summation of the 
features. Here’s an example of this technique:

import numpy as np
a = np.array([2, 4, 6, 8])
b = np.array([[1, 2, 3, 4],
              [2, 3, 4, 5],
              [3, 4, 5, 6],
              [4, 5, 6, 7]])
c = np.dot(a, b)
print(c)
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Notice that the array formatted as a vector must appear before the array format-
ted as a matrix in the multiplication or you get an error. The example outputs 
these values:

[60 80 100 120]

To obtain the values shown, you multiply every value in the array against the 
matching column in the matrix; that is, you multiply the first value in the array 
against the first column, first row of the matrix. For example, the first value in 
the output is 2 * 1 + 4 * 2 + 6 * 3 + 8 * 4, which equals 60.

Performing matrix multiplication
You can also multiply one matrix against another. In this case, the output is the 
result of multiplying rows in the first matrix against columns in the second 
matrix. Here is an example of how you multiply one NumPy matrix against 
another:

import numpy as np
a = np.array([[2, 4, 6, 8],
              [1, 3, 5, 7]])
b = np.array ([[1, 2],
               [2, 3],
               [3, 4],
               [4, 5]])
c = np.dot(a, b)
print(c)

In this case, you end up with a 2-x-2 matrix as output. Here are the values you 
should see when you run the application:

 [[60 80]
  [50 66]]

Each row in the first matrix is multiplied by each column of the second matrix. 
For example, to get the value 50 shown in row 2, column 1 of the output, you 
match up the values in row two of matrix a with column 1 of matrix b, like this: 
1 * 1 + 3 * 2 + 5 * 3 + 7 * 4.
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Creating basic graphs and charts

Choosing the right graph or chart for the task

Putting time in a bottle with time series data

Making the world you own with geographical plots



CHAPTER 10  Getting a Crash Course in Matplotlib      159

Chapter 10
Getting a Crash Course 
in Matplotlib

Most people visualize information better when they see it in graphic,  
versus textual, format. Graphics help people see relationships and make 
comparisons with greater ease. Even if you can deal with the abstraction 

of textual data with ease, performing data analysis is all about communication. 
Unless you can communicate your ideas to other people, the act of obtaining, 
shaping, and analyzing the data has little value beyond your own personal needs. 
Fortunately, Python makes the task of converting your textual data into graphics 
relatively easy using Matplotlib, which is actually a simulation of the MATLAB 
application. You can see a comparison of the two at https://pyzo.org/python_ 
vs_matlab.html. (If you don’t know how to use MATLAB, see MATLAB For 
Dummies, by John Paul Mueller [Wiley]), if you’d like to learn.)

If you already know how to use MATLAB, moving over to Matplotlib is relatively 
easy because they both use the same sort of state machine to perform tasks, and 
they have a similar method of defining graphic elements. A number of people  
feel that Matplotlib is superior to MATLAB because you can do things like  
perform tasks using less code when working with Matplotlib than when using 
MATLAB (see https://phillipmfeldman.org/Python/Advantages_of_Python_ 
Over_Matlab.html). Others have noted that the transition from MATLAB to  
Matplotlib is relatively straightforward (see https://realpython.com/matlab- 
vs-python/). However, what matters most is what you think. You may find that 

IN THIS CHAPTER

 » Creating a basic graph

 » Adding measurement lines to your 
graph

 » Dressing your graph up with styles 
and color

 » Documenting your graph with labels, 
annotations, and legends

https://pyzo.org/python_vs_matlab.html
https://pyzo.org/python_vs_matlab.html
https://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
https://phillipmfeldman.org/Python/Advantages_of_Python_Over_Matlab.html
https://realpython.com/matlab-vs-python/
https://realpython.com/matlab-vs-python/
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you like to experiment with data using MATLAB and then create applications 
based on your findings using Python with Matplotlib. It’s a matter of personal 
taste rather than a question of which one is correct.

This chapter focuses on getting you up to speed quickly with Matplotlib. You do 
use Matplotlib quite a few times later in the book, so this short overview of how it 
works is important, even if you already know how to work with MATLAB. That 
said, the MATLAB experience will be incredibly helpful as you progress through 
the chapter, and you may find that you can simply skim through some sections. 
Make sure to keep this chapter in mind as you start working with Matplotlib in 
more detail later in the book.

You don’t have to type the source code for this chapter manually; in fact, using the 
downloadable source code is a lot easier. The source code for this chapter appears 
in the P4DS4D3_10_Getting_a_Crash_Course_in_MatPlotLib.ipynb file (see the 
Introduction for where to find this code).

Starting with a Graph
A graph or chart is simply a visual representation of numeric data. Matplotlib makes 
a large number of graph and chart types available to you. Of course, you can choose 
any of the common graph and graph types such as bar charts, line graphs, or pie 
charts. As with MATLAB, you can also access a huge number of statistical plot types, 
such as boxplots, error bar charts, and histograms. You can see a gallery of the var-
ious graph types that Matplotlib supports at https://matplotlib.org/gallery.
html. Remember, though, that you can combine graphic elements in an almost  
infinite number of ways to create your own presentation of data no matter how com-
plex that data may be. The following sections describe how to create a basic graph, 
but you have access to a lot more functionality than these sections tell you about.

Defining the plot
Plots show graphically what you’ve defined numerically. To define a plot, you 
need some values, the matplotlib.pyplot module, and an idea of what you want 
to display, as shown in the following code:

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.plot(range(1,11), values)
plt.show()

https://matplotlib.org/gallery.html
https://matplotlib.org/gallery.html
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In this case, the code tells the plt.plot() function to create a plot using x-axis 
values between 1 and 11 and y-axis values as they appear in the values variable. 
Calling plot.show() displays the plot in a separate dialog box, as shown in  
Figure 10-1. Notice that the output is a line graph. Chapter 11 shows you how to 
create other chart and graph types.

The %matplotlib inline magic function (see the “Embedding plots and other 
images” section of Chapter 5) has become optional in newer versions of Python. 
However, including it is still a good idea, especially if you share your code with 
other people.

Drawing multiple lines and plots
You encounter many situations in which you must use multiple plot lines, such as 
when comparing two sets of values. To create such plots using Matplotlib, you 
simply call plt.plot() multiple times — once for each plot line, as shown in the 
following example:

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values)

FIGURE 10-1: 
Creating a basic 
plot that shows 

just one line.
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plt.plot(range(1,11), values2)
plt.show()

When you run this example, you see two plot lines, as shown in Figure 10-2. Even 
though you can’t see it in the printed book, the line graphs are different colors 
(chosen for you by the library) so that you can tell them apart.

Saving your work to disk
Jupyter Notebook makes it easy to include your graphs within the notebooks you 
create, enabling you to define reports that everyone can easily understand. When 
you need to save a copy of your work to disk for later reference or to use it as  
part of a larger report, you save the graphic programmatically using the  
plt.savefig() function, as shown in the following code:

import matplotlib.pyplot as plt
%matplotlib auto
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.plot(range(1,11), values)
plt.ioff()
plt.savefig('MySamplePlot.png', format='png')

In this case, you must provide a minimum of two inputs. The first input is the 
filename. You may optionally include a path for saving the file. The second input is 
the file format. In this case, the example saves the file in Portable Network Graphic 

FIGURE 10-2: 
Defining a plot 

that contains 
multiple lines.
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(PNG) format, but you have other options: Portable Document Format (PDF), Post-
script (PS), Encapsulated Postscript (EPS), and Scalable Vector Graphics (SVG).

Note the presence of the %matplotlib auto magic in this case. Using this call 
removes the inline display of the graph. You do have options for other Matplotlib 
backends, depending on which version of Python and Matplotlib you use. For 
example, some developers prefer the notebook backend to the inline backend 
because it provides additional functionality. However, to use the notebook back-
end, you must also restart the kernel, and you may not always see what you expect. 
To see the backend list, use the %matplotlib -l magic. In addition, calling plt.
ioff() turns plot interaction off.

Setting the Axis, Ticks, and Grids
It’s hard to know what the data actually means unless you provide a unit of mea-
sure or at least some means of performing comparisons. The use of axes, ticks, 
and grids makes it possible to illustrate graphically the relative size of data ele-
ments so that the viewer gains an appreciation of comparative measure. You won’t 
use these features with every graphic, and you may employ the features differ-
ently based on viewer needs, but it’s important to know that these features exist 
and how you can use them to help document your data within the graphic 
environment.

The following examples use the %matplotlib notebook magic so that you can see 
the difference between it and the %matplotlib inline magic. The two inline  
displays rely on a different graphic engine. Consequently, you must choose  
Kernel ➪ Restart to restart the kernel before you run any of the examples in the 
sections that follow.

Getting the axes
The axes define the x and y plane of the graphic. The x axis runs horizontally, and 
the y axis runs vertically. In many cases, you can allow Matplotlib to perform any 
required formatting for you. However, sometimes you need to obtain access to the 
axes and format them manually. The following code shows how to obtain access 
to the axes for a plot:

import matplotlib.pyplot as plt
%matplotlib notebook
 
values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
ax = plt.axes()
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plt.plot(range(1,11), values)
plt.show()

The reason you place the axes in a variable, ax, instead of manipulating them 
directly is to make writing the code simpler and more efficient. In this case, you 
simply turn on the default axes by calling plt.axes(); then you place a handle to 
the axes in ax. A handle is a sort of pointer to the axes. Think of it as you would a 
frying pan. You wouldn’t lift the frying pan directly but would instead use its han-
dle when picking it up.

Formatting the axes
Simply displaying the axes won’t be enough in many cases. Instead, you may want 
to change the way Matplotlib displays them. For example, you may not want the 
highest value to reach to the top of the graph. The following example shows just a 
small number of tasks you can perform after you have access to the axes:

import matplotlib.pyplot as plt
%matplotlib notebook
plt.figure()
 
values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([-1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
plt.plot(range(1,11), values)
plt.show()

In this case, the set_xlim() and set_ylim() calls change the axes limits — the 
minimum and maximum coordinate values of each axis. The set_xticks() and 
set_yticks() calls change the ticks used to display data. The ways in which you 
can change a graph using these calls can become quite detailed. For example, you 
can choose to change individual tick labels if you want.

Notice also the call to plt.figure(). If you don’t make this call, the code will 
modify the first plot (figure) from the previous section (Figure 10-2), rather than 
create a new figure. In fact, what it will actually do is add to that previous figure, 
so what you end up with is a mess that no one can figure out! Figure 10-3 shows 
the output from this example. Notice how the changes affect how the line graph 
displays.
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As you can see by viewing the differences between Figures 10-1, 10-2, and 10-3, 
the %matlplotlib notebook magic produces a significantly different display. The 
controls at the bottom of the display let you pan and zoom the display, move 
between views you’ve created, and download the figure to disk when working with 
Jupyter Notebook (they may not work at all in Google Colab). The button to the 
right of the Figure 2 heading in Figure  10-3 lets you stop interacting with the 
graph after you’ve finished working with it. Any changes you’ve made to the pres-
entation of the graph remain afterward so that anyone looking at your notebook 
will see the graph in the manner you intended for them to see it. The ability to 
interact with the graph ends when you display another graph.

Adding grids
Grid lines enable you to see the precise value of each element of a graph. You can 
more quickly determine both the x and y coordinates, which allow you to perform 
comparisons of individual points with greater ease. Of course, grids also add noise 
(added information) and make seeing the actual flow of data harder. The point is 
that you can use grids to good effect to create particular effects. The following 
code shows how to add a grid to the graph in the previous section:

import matplotlib.pyplot as plt
%matplotlib notebook

FIGURE 10-3: 
Specifying how 

the axes should 
appear to the 

viewer.
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plt.figure()
 
values = [0, 5, 8, 9, 2, 0, 3, 10, 4, 7]
ax = plt.axes()
ax.set_xlim([0, 11])
ax.set_ylim([-1, 11])
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.set_yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
ax.grid()
plt.plot(range(1,11), values)
plt.show()

All you really need to do to add a grid to your plot is call the grid() function. As 
with many other Matplotlib functions, you can add parameters to create the grid 
precisely as you want to see it. For example, you can choose whether to add the x 
grid lines, y grid lines, or both. The output from this example appears in  
Figure 10-4. In this case, the figure shows the notebook backend with interaction 
turned off.

FIGURE 10-4: 
Adding grids 

makes the values 
easier to read.
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Defining the Line Appearance
Just drawing lines on a page won’t do much for you if you need to help the viewer 
understand the importance of your data. In most cases, you need to use different 
line styles to ensure that the viewer can tell one data grouping from another. 
However, to emphasize the importance or value of a particular data grouping, you 
need to employ color. The use of color communicates all sorts of ideas to the 
viewer. For example, green often denotes that something is safe, and red com-
municates danger. The following sections help you understand how to work with 
line style and color to communicate ideas and concepts to the viewer without 
using any text.

Working with line styles
Line styles help differentiate graphs by drawing the lines in various ways. Using a 
unique presentation for each line helps you distinguish each line so that you can 
call it out (even when the printout is in shades of gray). You could also call out a 
particular line graph by using a different line style for it (and using the same style 
for the other lines). Table 10-1 shows the various Matplotlib line styles.

The line style appears as a third argument to the plot() function call. You simply 
provide the desired string for the line type, as shown in the following example.

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values, '--')
plt.plot(range(1,11), values2, ':')
plt.show()

MAKING GRAPHICS ACCESSIBLE
Avoiding assumptions about someone’s ability to see your graphic presentation is 
essential. For example, someone who is color blind may not be able to tell that one  
line is green and the other red. Likewise, someone with low vision may not be able to 
distinguish between a dashed line and one that combines dashes and dots. Using  
multiple methods to distinguish each line helps ensure that everyone can see your  
data in a manner that is comfortable to each person.
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In this case, the first line graph uses a dashed line style, while the second line 
graph uses a dotted line style. (Note that you must restart the kernel again to 
switch from the %matplotlib notebook to the %matplotlib inline style.) You 
can see the results of the changes in Figure 10-5.

Using colors
Color is another way in which to differentiate line graphs. Of course, this method 
has certain problems. The most significant problem occurs when someone makes 
a black-and-white copy of your colored graph — hiding the color differences as 
shades of gray. Another problem is that someone with color blindness may not be 
able to tell one line from the other. All this said, color does make for a brighter, 
eye-grabbing presentation. Table 10-2 shows the colors that Matplotlib supports.

TABLE 10-1 Matplotlib Line Styles
Character Line Style

’-’ Solid line

’--’ Dashed line

’-.’ Dash-dot line

’:’ Dotted line

FIGURE 10-5: 
Line styles help 

differentiate 
between plots.
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As with line styles, the color appears in a string as the third argument to the 
plot() function call. In this case, the viewer sees two lines — one in red and the 
other in magenta. The data points are the same as those used for Figure 10-2, just 
with different colors. If you’re reading the printed version of the book, Figure 10-2 
appears in shades of gray instead of color, as does this new presentation.

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values, 'r')
plt.plot(range(1,11), values2, 'm')
plt.show()

Adding markers
Markers add a special symbol to each data point in a line graph. Unlike line style 
and color, markers tend to be a little less susceptible to accessibility and printing 
issues. Even when the specific marker isn’t clear, people can usually differentiate 
one marker from the other. Table 10-3 shows the list of markers that Matplotlib 
provides.

TABLE 10-2 Matplotlib Colors
Character Color

’b’ Blue

’g’ Green

’r’ Red

’c’ Cyan

’m’ Magenta

’y’ Yellow

’k’ Black

’w’ White
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As with line style and color, you add markers as the third argument to a plot() 
call. In the following example, you see the effects of combining line style with a 
marker to provide a unique line-graph presentation.

import matplotlib.pyplot as plt
%matplotlib inline
 

TABLE 10-3 Matplotlib Markers
Character Marker Type

’.’ Point

’,’ Pixel

’o’ Circle

’v’ Triangle 1 down

’^’ Triangle 1 up

’<’ Triangle 1 left

’>’ Triangle 1 right

’1’ Triangle 2 down

’2’ Triangle 2 up

’3’ Triangle 2 left

’4’ Triangle 2 right

’s’ Square

’p’ Pentagon

’*’ Star

’h’ Hexagon style 1

’H’ Hexagon style 2

’+’ Plus

’x’ X

’D’ Diamond

’d’ Thin diamond

’|’ Vertical line

’_’ Horizontal line
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values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
plt.plot(range(1,11), values, 'o--')
plt.plot(range(1,11), values2, 'v:')
plt.show()

Notice how the combination of line style and marker makes each line stand out in 
Figure 10-6. Even when printed in black and white, you can easily differentiate 
one line from the other, which is why you usually want to combine presentation 
techniques.

Using Labels, Annotations, and Legends
To fully document your graph, you usually have to resort to labels, annotations, 
and legends. Each of these elements has a different purpose, as follows:

 » Label: Provides positive identification of a particular data element or group-
ing. The purpose is to make it easy for the viewer to know the name or kind of 
data illustrated.

FIGURE 10-6: 
Markers help to 

emphasize 
individual values.
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 » Annotation: Augments the information the viewer can immediately see 
about the data with notes, sources, or other useful information. In contrast to 
a label, the purpose of annotation is to help extend the viewer’s knowledge of 
the data rather than simply identify it.

 » Legend: Presents a listing of the data groups within the graph and often 
provides cues (such as line type or color) to make identification of the data 
group easier. For example, all the red points may belong to group A, and all 
the blue points may belong to group B.

The following sections help you understand the purpose and usage of various doc-
umentation aids provided with Matplotlib. These documentation aids help you 
create an environment in which the viewer is certain of the source, purpose, and 
usage of data elements. Some graphs work just fine without any documentation 
aids, but in other cases, you may find that you need to use all three in order to 
communicate with your viewer fully.

Adding labels
Labels help people understand the significance of each axis of any graph you cre-
ate. Without labels, the values portrayed don’t have any significance. In addition 
to a moniker, such as rainfall, you can also add units of measure, such as inches 
or centimeters, so that your audience knows how to interpret the data shown. The 
following example shows how to add labels to your graph:

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.xlabel('Entries')
plt.ylabel('Values')
plt.plot(range(1,11), values)
plt.show()

The call to xlabel() documents the x axis of your graph, while the call the  
ylabel() documents the y axis of your graph. Figure 10-7 shows the output of this 
example.
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Annotating the chart
You use annotation to draw special attention to points of interest on a graph. For 
example, you may want to point out that a specific data point is outside the usual 
range expected for a particular dataset. The following example shows how to add 
annotation to a graph:

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
plt.annotate(xy=[1,1], text='First Entry')
plt.plot(range(1,11), values)
plt.show()

The call to annotate() provides the labeling you need. You must provide a loca-
tion for the annotation by using the xy parameter, as well as provide text to place 
at the location by using the text parameter. The annotate() function also pro-
vides other parameters that you can use to create special formatting or placement 
onscreen. Figure 10-8 shows the output from this example.

FIGURE 10-7: 
Use labels to 

identify the axes.
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Creating a legend
A legend documents the individual elements of a plot. Each line is presented in a 
table that contains a label for it so that people can differentiate between each line. 
For example, one line may represent sales for one year and another line may rep-
resent sales during the next year, so you include an entry in the legend for each 
line that is labeled with the years. The following example shows how to add a 
legend to your plot.

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [1, 5, 8, 9, 2, 0, 3, 10, 4, 7]
values2 = [3, 8, 9, 2, 1, 2, 4, 7, 6, 6]
line1 = plt.plot(range(1,11), values)
line2 = plt.plot(range(1,11), values2)
plt.legend(['First', 'Second'], loc=4)
plt.show()

The call to legend() occurs after you create the plots, not before, as with some of 
the other functions described in this chapter. The call contains a list of the labels 
you want to use in the order of the plots you generate. So, 'First' is associated 
with line1, and 'Second' is associated with line2.

FIGURE 10-8: 
Annotation can 

identify points of 
interest.
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The default location for the legend is the upper-right corner of the plot, which 
proved inconvenient for this particular example. Adding the loc parameter lets 
you place the legend in a different location. See the legend() function documen-
tation at https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.
pyplot.figlegend for additional legend locations. Figure 10-9 shows the output 
from this example.

FIGURE 10-9: 
Use legends  

to identify 
individual lines.

https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.pyplot.figlegend
https://matplotlib.org/2.0.2/api/pyplot_api.html#matplotlib.pyplot.figlegend
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Chapter 11
Visualizing the Data

Chapter 10 helps you understand the mechanics of working with Matplotlib, 
which is an important first step toward using it. This chapter takes the next 
step in helping you use Matplotlib to perform useful work. The main goal of 

this chapter is to help you visualize your data in various ways. Creating a graphic 
presentation of your data is essential if you want to help other people understand 
what you’re trying to say. Even though you can see what the numbers mean in 
your mind, other people will likely need graphics to see what point you’re trying 
to make by manipulating data in various ways.

The chapter starts by looking at some basic graph types that Matplotlib supports. 
You don’t find the full list of graphs and plots listed in this chapter — it could take 
an entire book to explore them all in detail. However, you do find the most  
common types.

In the remainder of the chapter, you begin exploring specific sorts of plotting as it 
relates to data science. Of course, no book on data science would be complete 
without exploring scatterplots, which are used to help people see patterns in 
seemingly unrelated data points. Because much of the data that you work with 
today is time related or geographic in nature, the chapter devotes two special  
sections to these topics. You also get to work with both directed and undirected 
graphs, which is fine for social media analysis.

You don’t have to type the source code for this chapter; in fact, using the down-
loadable source is a lot easier. The source code for this chapter appears in the 
P4DS4D3_11_Visualizing_the_Data.ipynb (see the Introduction for details on 
how to find that source file).

IN THIS CHAPTER

 » Selecting the right graph for the job

 » Working with advanced scatterplots

 » Exploring time-related and 
geographical data

 » Creating graphs
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Choosing the Right Graph
The kind of graph you choose determines how people view the associated data, so 
choosing the right graph from the outset is important. For example, when you 
want people to form opinions on how data elements compare through the use of 
precise counts, you use a bar chart. The idea is to choose a graph that naturally 
leads people to draw the conclusion that you need them to draw about the data 
that you’ve carefully massaged from various data sources. (You also have the 
option of using line graphs — a technique demonstrated in Chapter 10.) The fol-
lowing sections describe the various graph types and provide you with basic 
examples of how to use them.

Creating comparisons with bar charts
Bar charts make comparing values easy. The wide bars and segregated measure-
ments emphasize the differences between values, rather than the flow of one 
value to another as a line graph would do. Fortunately, you have all sorts of meth-
ods at your disposal for emphasizing specific values and performing other tricks. 
The following example shows just some of the things you can do with a vertical 
bar chart:

import matplotlib.pyplot as plt
%matplotlib inline
 
values = [5, 8, 9, 10, 4, 7]
widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]
colors = ['b', 'r', 'b', 'b', 'b', 'b']
plt.bar(range(0, 6), values, width=widths, 
        color=colors, align='center')
 
plt.show()

To create even a basic bar chart, you must provide a series of x coordinates and the 
heights of the bars. The example uses the range() function to create the x coor-
dinates, and values contains the heights.

Of course, you may want more than a basic bar chart, and Matplotlib provides a 
number of ways to get the job done. In this case, the example uses the width 
parameter to control the width of each bar, emphasizing the second bar by making 
it slightly larger. The larger width would show up even in a black-and-white 
printout. It also uses the color parameter to change the color of the target bar to 
red (the rest are blue).
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As with other chart types, the bar chart provides some special features that you 
can use to make your presentation stand out. The example uses the align param-
eter to center the data on the x coordinate (the standard position is to the left). 
You can also use other parameters, such as hatch, to enhance the visual appear-
ance of your bar chart. Figure 11-1 shows the output of this example.

This chapter helps you get started using Matplotlib to create a variety of chart and 
graph types. Of course, more examples are better, so you can also find some more 
advanced examples on the Matplotlib site at https://matplotlib.org/stable/
gallery/index.html. Some of the examples, such as those that demonstrate ani-
mation techniques, become quite advanced, but with practice you can use any of 
them to improve your own charts and graphs.

Showing distributions using histograms
Histograms categorize data by breaking it into bins, where each bin contains a 
subset of the data range. A histogram then displays the number of items in each 
bin so that you can see the distribution of data and the progression of data from 
bin to bin. In most cases, you see a curve of some type, such as a bell curve. The 
following example shows how to create a histogram with randomized data:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
 

FIGURE 11-1: 
Bar charts make 

it easier to 
perform 

comparisons.

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/index.html
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x = 20 * np.random.randn(10000)
 
plt.hist(x, 25, range=(-50, 50), histtype='stepfilled',
         align='mid', color='g', label='Test Data')
plt.legend()
plt.title('Step Filled Histogram')
plt.show()

In this case, the input values are a series of random numbers. The distribution of 
these numbers should show a type of bell curve. As a minimum, you must provide 
a series of values, x in this case, to plot. The second argument contains the num-
ber of bins to use when creating the data intervals. The default value is 10. Using 
the range parameter helps you focus the histogram on the relevant data and 
exclude any outliers.

You can create multiple histogram types. The default setting creates a bar chart. 
You can also create a stacked bar chart, stepped graph, or filled stepped graph (the 
type shown in the example). In addition, it’s possible to control the orientation of 
the output, with vertical as the default.

As with most other charts and graphs in this chapter, you can add special features 
to the output. For example, the align parameter determines the alignment of 
each bar along the baseline. Use the color parameter to control the colors of the 
bars. The label parameter doesn’t actually appear unless you also create a legend 
(as shown in this example). Figure 11-2 shows typical output from this example.

FIGURE 11-2: 
Histograms  
let you see 

distributions  
of numbers.
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Random data varies call by call. Every time you run the example, you see slightly 
different results because the random-generation process differs.

Depicting groups using boxplots
Boxplots provide a means of depicting groups of numbers through their quartiles 
(three points dividing a group into four equal parts). A boxplot may also have 
lines, called whiskers, indicating data outside the upper and lower quartiles. The 
spacing shown within a boxplot helps indicate the skew and dispersion of the 
data. The following example shows how to create a boxplot with randomized data:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
 
spread = 100 * np.random.rand(100)
center = np.ones(50) * 50
flier_high = 100 * np.random.rand(10) + 100
flier_low = -100 * np.random.rand(10)
data = np.concatenate((spread, center, 
                       flier_high, flier_low))
 
plt.boxplot(data, sym='gx', widths=.75, notch=True)
plt.show()

To create a usable dataset, you need to combine several different number- 
generation techniques, as shown at the beginning of the example. Here’s how 
these techniques work:

 » spread: Contains a set of random numbers between 0 and 100

 » center: Provides 50 values directly in the center of the range of 50

 » flier_high: Simulates outliers between 100 and 200

 » flier_low: Simulates outliers between 0 and –100

The code combines all these values into a single dataset using concatenate(). 
Being randomly generated with specific characteristics (such as a large number of 
points in the middle), the output will show specific characteristics but will work 
fine for the example.

The call to boxplot() requires only data as input. All other parameters have 
default settings. In this case, the code sets the presentation of outliers to green Xs 
by setting the sym parameter. You use widths to modify the size of the box (made 
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extra-large in this case to make the box easier to see). Finally, you can create a 
square box or a box with a notch using the notch parameter (which normally 
defaults to False). Figure 11-3 shows typical output from this example.

The box shows the three data points as the box, with the red line in the middle 
being the median. The two black horizontal lines connected to the box by whiskers 
show the upper and lower limits (for four quartiles). The outliers appear above 
and below the upper and lower limit lines as green Xs.

Seeing data patterns using scatterplots
Scatterplots show clusters of data rather than trends (as with line graphs) or dis-
crete values (as with bar charts). The purpose of a scatterplot is to help you see 
multidimensional data patterns. The following example shows how to create a 
scatterplot using randomized data:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
 
x1 = 5 * np.random.rand(40)
x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)
x = np.concatenate((x1, x2, x3))
 

FIGURE 11-3: 
Use boxplots to 

present groups of 
numbers.
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y1 = 5 * np.random.rand(40)
y2 = 5 * np.random.rand(40) + 25
y3 = 25 * np.random.rand(20)
y = np.concatenate((y1, y2, y3))
 
plt.scatter(x, y, s=[100], marker='^', c='m')
plt.show()

The example begins by generating random x and y coordinates. For each x coor-
dinate, you must have a corresponding y coordinate. It’s possible to create a scat-
terplot using just the x and y coordinates.

You can dress up a scatterplot in a number of ways. In this case, the s parameter 
determines the size of each data point. The marker parameter determines the data 
point shape. You use the c parameter to define the colors for all the data points, or 
you can define a separate color for individual data points. Figure 11-4 shows the 
output from this example.

Creating Advanced Scatterplots
Scatterplots are especially important for data science because they can show data 
patterns that aren’t obvious when viewed in other ways. You can see data group-
ings with relative ease and help the viewer understand when data belongs to a 
particular group. You can also show overlaps between groups and even demon-
strate when certain data is outside the expected range. Showing these various 

FIGURE 11-4: 
Use scatterplots 
to show groups 

of data points 
and their 

associated 
patterns.
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kinds of relationships in the data is an advanced technique that you need to know 
in order to make the best use of Matplotlib. The following sections demonstrate 
how to perform these advanced techniques on the scatterplot you created earlier 
in the chapter.

Depicting groups
Color is the third axis when working with a scatterplot. Using color lets you high-
light groups so that others can see them with greater ease. The following example 
shows how you can use color to show groups within a scatterplot:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
 
x1 = 5 * np.random.rand(50)
x2 = 5 * np.random.rand(50) + 25
x3 = 30 * np.random.rand(25)
x = np.concatenate((x1, x2, x3))
 
y1 = 5 * np.random.rand(50)
y2 = 5 * np.random.rand(50) + 25
y3 = 30 * np.random.rand(25)
y = np.concatenate((y1, y2, y3))
 
color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25
plt.scatter(x, y, s=[50], marker='D', c=color_array)
plt.show()

The example works essentially the same as the scatterplot example in the previ-
ous section, except that this example uses an array for the colors. Unfortunately, 
if you’re seeing this in the printed book, the differences between the shades of 
gray in Figure 11-5 will be hard to see. However, the first group is blue, followed 
by green for the second group. Any outliers appear in red.

Showing correlations
In some cases, you need to know the general direction that your data is taking 
when looking at a scatterplot. Even if you create a clear depiction of the groups, 
the actual direction that the data is taking as a whole may not be clear. In this 
case, you add a trendline to the output. Here’s an example of adding a trendline to 
a scatterplot that includes groups whose data points aren’t as clearly separated as 
in the scatterplot shown previously in Figure 11-5:
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import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pylab as plb
%matplotlib inline
 
x1 = 15 * np.random.rand(50)
x2 = 15 * np.random.rand(50) + 15
x3 = 30 * np.random.rand(25)
x = np.concatenate((x1, x2, x3))
 
y1 = 15 * np.random.rand(50)
y2 = 15 * np.random.rand(50) + 15
y3 = 30 * np.random.rand(25)
y = np.concatenate((y1, y2, y3))
 
color_array = ['b'] * 50 + ['g'] * 50 + ['r'] * 25
plt.scatter(x, y, s=[90], marker='*', c=color_array)
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plb.plot(x, p(x), 'm-')
plt.show()

The code for creating the scatterplot is essentially the same as in the example in 
the “Depicting groups” section, earlier in the chapter, but the plot doesn’t  
define the groups as clearly. Adding a trendline means calling the NumPy  
polyfit() function with the data, which returns a vector of coefficients, p, that 
minimizes the least-squares error. (Least-square regression is a method for  

FIGURE 11-5: 
Color arrays can 

make the 
scatterplot 

groups stand  
out better.
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finding a line that summarizes the relationship between two variables, x and y  
in this case, at least within the domain of the explanatory variable x. The third 
polyfit() parameter expresses the degree of the polynomial fit.)

The vector output of polyfit() is used as input to poly1d(), which calculates the 
actual y axis data points. The call to plot() creates the trendline on the scatter-
plot. You can see a typical result of this example in Figure 11-6.

Plotting Time Series
Nothing is truly static. When you view most data, you see an instant of time — a 
snapshot of how the data appeared at one particular moment. Of course, such 
views are both common and useful. However, sometimes you need to view data as 
it moves through time — to see it as it changes. Only by viewing the data as it 
changes can you expect to understand the underlying forces that shape it. The fol-
lowing sections describe how to work with data on a time-related basis.

Representing time on axes
Many times, you need to present data over time. The data could come in many 
forms, but generally you have some type of time tick (one unit of time), followed 
by one or more features that describe what happens during that particular tick. 
The following example shows a simple set of days and sales on those days for a 
particular item in whole (integer) amounts.

FIGURE 11-6: 
Scatterplot 

trendlines can 
show you the 
general data 

direction.
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import pandas as pd
import matplotlib.pyplot as plt
import datetime as dt
%matplotlib inline
 
start_date = dt.datetime(2023, 7, 29)
end_date = dt.datetime(2023, 8, 7)
daterange = pd.date_range(start_date, end_date)
sales = (np.random.rand(
    len(daterange)) * 50).astype(int)
df = pd.DataFrame(sales, index=daterange, 
                  columns=['Sales']) 
print(df)

The example begins by specifying the start_date and end_date, then using them 
to create daterange, the range of dates used for the output. It then creates a series 
of random values to use as data points and places them in sales. The number  
of values must match the length for daterange and normally you’d rely on actual 
data. The next step is to create a DataFrame to hold the information using  
daterange as an index and the values in sales as the data. So, what you end up 
with is a table of dates and associated values similar to this (the data values you 
see will vary):

            Sales
2023-07-29     14
2023-07-30     47
2023-07-31     17
2023-08-01      4
2023-08-02     38
2023-08-03     18
2023-08-04      0
2023-08-05     25
2023-08-06      9
2023-08-07      2

Now that you have some properly formatted data to use, it’s time to create a plot. 
The following code shows a typical method of plotting data in the DataFrame for-
mat shown previously:

df.loc['Jul 30 2023':'Aug 05 2023'].plot()
plt.ylim(0, 50)
plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time')
plt.show()
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Using df.loc accesses rows and columns in a DataFrame using labels, which are 
dates in string format in this case. So, the resulting plot won’t show all of the data 
in df, it will instead show just the data from 'Jul 30 2023' to 'Aug 05 2023'. 
The call to plot() creates a line graph containing the requested data. The rest  
of the code provides various formatting and labeling features for the plot, which 
is then displayed using plt.show(). Figure 11-7 shows the result.

Plotting trends over time
As with any other data presentation, sometimes you really can’t see what direc-
tion the data is headed in without help. The following example starts with the plot 
from the previous section and adds a trendline to it:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import datetime as dt
%matplotlib inline
 
start_date = dt.datetime(2023, 7, 29)
end_date = dt.datetime(2023, 8, 7)
daterange = pd.date_range(start_date, end_date)
sales = (np.random.rand(

FIGURE 11-7: 
Use line graphs to 

show the flow of 
data over time.
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    len(daterange)) * 50).astype(int)
df = pd.DataFrame(sales, index=daterange, 
                  columns=['Sales']) 
 
lr_coef = np.polyfit(range(0, len(df)), df['Sales'], 1)
lr_func = np.poly1d(lr_coef)
trend = lr_func(range(0, len(df)))
df['trend'] = trend
df.loc['Jul 30 2023':'Aug 05 2023'].plot()
 
plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time')
plt.legend(['Sales', 'Trend'])
plt.show()

The “Showing correlations” section, earlier in this chapter, shows how most  
people add a trendline to their graph. In fact, this is the approach that you often 
see used online. You’ll also notice that a lot of people have trouble using this 
approach in some situations. This example takes a slightly different approach by 
adding the trendline directly to the DataFrame. If you print df after the call to 
df['trend'] = trend, you see trendline data similar to the values shown here:

            Sales      trend
2023-07-29     41  28.181818
2023-07-30      6  26.896970
2023-07-31     14  25.612121
2023-08-01     29  24.327273
2023-08-02     46  23.042424
2023-08-03     14  21.757576
2023-08-04     33  20.472727
2023-08-05      6  19.187879
2023-08-06     28  17.903030
2023-08-07      7  16.618182

Using this approach makes it ultimately easier to plot the data. You call plot() 
only once and avoid relying on the matplotlib.pylab function shown in the 
example in the “Showing correlations” section.

When you plot the initial data, the call to plot() automatically generates a legend 
for you. Matplotlib doesn’t automatically add the trendline, so you must also cre-
ate a new legend for the plot. Figure 11-8 shows typical output from this example 
using randomly generated data.
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Plotting Geographical Data
Knowing where data comes from or how it applies to a specific place can be impor-
tant. For example, if you want to know where food shortages have occurred and 
plan how to deal with them, you need to match the data you have to geographical 
locations. The same holds true for predicting where future sales will occur. You 
may find that you need to use existing data to determine where to put new stores. 
Otherwise, you could put a store in a location that won’t receive much in the way 
of sales, and the effort will lose money rather than make it. The following sections 
describe how to work with Cartopy (https://pypi.org/project/Cartopy/) to 
interact with geographical data.

You must shut the Notebook environment down before you make any changes to 
it or else conda will complain that some files are in use. To shut the Notebook 
environment down, close and halt the kernel for any Notebook files you have open 
and then click Quit in the Jupyter page or press Ctrl+C in the Notebook terminal 
window. Wait a few seconds to give the files time to close properly before you 
attempt to do anything.

If you’re working with Google Colab, you can skip the process of creating an envi-
ronment described in the “Using an environment in Notebook” section that fol-
lows. All you need to do is add a cell at the beginning of the downloadable source 
that contains a single line: !pip install Cartopy and run it every time you want 
to use Cartopy. Although this means having to reinstall Cartopy before every use, 
it does simplify the initial setup somewhat.

FIGURE 11-8: 
Add a trendline to 
show the average 

direction of 
change in a chart 

or graph.

https://pypi.org/project/Cartopy/
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Using an environment in Notebook
Some of the packages you install have a tendency to also change your Notebook 
environment by installing other packages that may not work well with your base-
line setup. Consequently, you see problems with code that functioned earlier. Nor-
mally, these problems consist mostly of warning messages, such as deprecation 
warnings as discussed in the “Avoiding outdated libraries: The Basemap Toolkit” 
section, later in this chapter. The “Warning Messages in Jupyter Notebook Example 
Code” blog post at http://blog.johnmuellerbooks.com/2023/05/08/warning- 
messages-in-jupyter-notebook-example-code/ also provides helpful informa-
tion about the potential for warning messages in Jupyter Notebooks.

In some cases, however, the changed packages can also tweak the output you 
obtain from code. Perhaps a newer package uses an updated algorithm or interacts 
with the code differently. When you have a package, such as Cartopy, that makes 
changes to the overall baseline configuration and you want to maintain your cur-
rent configuration, you need to set up an environment for it. An environment 
keeps your baseline configuration intact but also allows the new package to create 
the environment it needs to execute properly. The following steps help you create 
the Cartopy environment used for this chapter:

1. Open an Anaconda Prompt.

Notice that the prompt shows the location of your folder on your system, but 
that it’s preceded by (base). The (base) indicator tells you that you’re in your 
baseline environment — the one you want to preserve.

2. Type conda create -n Cartopy python=3.10 anaconda=2023.03 and  
press Enter.

This action creates a new Cartopy environment. This new environment will use 
Python 3.10 and Anaconda 2023.03-1. You get precisely the same baseline as 
you’ve been using so far.

3. Type y and press Enter when asked if you want to proceed.

The installation process begins. This process can take a while to complete, 
especially when the software needs to download packages from online, so you 
need to be patient.

4. Type conda activate Cartopy and press Enter.

You have now changed over to the Cartopy environment. Notice that the 
prompt no longer says (base); it says (Cartopy) instead.

5. Type conda install -c conda-forge cartopy and press Enter to install your 
copy of Cartopy.

6. Type y and press Enter when asked if you want to proceed.

The installation process begins.

http://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
http://blog.johnmuellerbooks.com/2023/05/08/warning-messages-in-jupyter-notebook-example-code/
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7. (Optional) After the installation, make sure you’re in your Notebooks 
directory using a command such as cd \Users\John\Anaconda Projects  
(for Windows developers).

8. Type Jupyter Notebook and press Enter.

You see Notebook start, but it uses the Cartopy environment, rather than the 
(base) environment. This copy of Notebook works precisely the same as any 
other copy of Notebook that you’ve used. The only difference is the environ-
ment in which it operates.

This same technique works for any special package that you want to install. You 
should reserve it for packages that you don’t intend to use every day. For example, 
this book uses Cartopy for just one example, so creating an environment for it is 
appropriate.

After you have finished using the Cartopy environment, press Ctrl+C to stop the 
server, type conda deactivate at the prompt, and press Enter. You see the prompt 
change back to (base).

Using Cartopy to plot geographic data
Now that you have a good installation of Cartopy, you can do something with it. 
To start with, you need to import all the required packages:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import cartopy.crs as ccrs
import cartopy
from cartopy.mpl.gridliner import \
    LONGITUDE_FORMATTER, LATITUDE_FORMATTER
%matplotlib inline

These various packages let you download the map, format it, and add points of 
interest to it. The following example shows how to draw a map and place pointers 
to specific locations on it:

austin = (-97.75, 30.25)
hawaii = (-157.8, 21.3)
washington = (-77.01, 38.90)
chicago = (-87.68, 41.83)
losangeles = (-118.25, 34.05)
 
ax = plt.axes(projection=ccrs.Mercator(
    central_longitude=-110))
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ax.coastlines()
ax.set_extent([-60, -160, 50, 10], 
              crs=ccrs.PlateCarree())
 
ax.add_feature(cartopy.feature.OCEAN, zorder=0, 
               facecolor='aqua')
ax.add_feature(cartopy.feature.LAND, zorder=0, 
               edgecolor='black', facecolor='lightgray')
ax.add_feature(cartopy.feature.LAKES, zorder=0, 
               edgecolor='black', facecolor='lightblue')
ax.add_feature(cartopy.feature.BORDERS, zorder=0, 
               edgecolor='gray')
 
x, y = list(zip(*[austin, hawaii, washington, 
                  chicago, losangeles]))
 
gl = ax.gridlines(
    crs=ccrs.PlateCarree(), draw_labels=True,
    linewidth=2, color='gray', alpha=0.5,
    linestyle='--')
gl.xlabels_top = False
gl.left_labels = False
gl.xlocator = mticker.FixedLocator(list(x))
gl.ylocator = mticker.FixedLocator(list(y))
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
 
ax.plot(x, y, 'ro', markersize=6, 
        transform=ccrs.Geodetic())
 
plt.title("Mercator Projection")
plt.show()

The example begins by defining the longitude and latitude for various cities.  
It then creates the basic map. The projection parameter defines the basic  
map appearance. You can find a listing of projection types at https://scitools.
org.uk/cartopy/docs/v0.15/crs/projections.html. The central_longitude 
parameter defines where the map is centered. To see the coastlines of the various 
countries, you use the coastlines() method. This example doesn’t look at the 
whole world, so it uses the set_extent() method to crop the map to size.

The example uses the add_feature() to add features to the basic map. You can 
color the features in various ways to provide a distinctive look for your map. The 
features are documented more fully at https://scitools.org.uk/cartopy/ 
docs/v0.14/matplotlib/feature_interface.html.

https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html
https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html
https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html
https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html
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In this case, the example creates x and y coordinates using the previously stored 
longitude and latitude values. As part of displaying the coordinates, the map also 
creates gridlines to show their longitude and latitude with the gridlines() 
method. The resulting object, gl, allows you to modify the grid characteristics. 
The documentation at https://scitools.org.uk/cartopy/docs/v0.13/matplot 
lib/gridliner.html tells you more about working with gridlines.

The code then plots these locations on the map in a contrasting color so  
that you can easily see them. The final step is to display the map, as shown in 
Figure 11-9.

Avoiding outdated libraries:  
The Basemap Toolkit
The previous edition of this book used Basemap to provide geographic presentation 
support because it was one of the better products available at the time. However, in 
reading the message thread at https://github.com/matplotlib/basemap/ 
issues/267, you find that Basemap isn’t going to be maintained for a number of 
reasons, so this edition of the book has moved to Cartopy, a decision based partly 
on the suggestion of the Basemap creator. Unfortunately, this situation happens 
way too often with Python developers, and it can present problems if you’re work-
ing in a production environment under significant deadlines. It isn’t that Basemap 
or any of these other packages are ill-conceived or that the code owners simply 
don’t care; it’s the fact that maintaining any package is a lot of work. With these 
realities in mind, here are some useful tips for avoiding outdated libraries:

 » Wait until the package has been around for a while before you use it in a 
production environment.

 » Ensure that the package has broad community support.

FIGURE 11-9: 
Maps can 

illustrate data in 
ways other 

graphics can’t.

https://scitools.org.uk/cartopy/docs/v0.13/matplotlib/gridliner.html
https://scitools.org.uk/cartopy/docs/v0.13/matplotlib/gridliner.html
https://github.com/matplotlib/basemap/issues/267
https://github.com/matplotlib/basemap/issues/267
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 » Look for packages that are created by groups rather than just a few 
individuals.

 » Try to verify that the package creator will stay around to support the package 
in the long run.

 » Monitor new releases and updates to determine the sorts of features and bug 
fixes that the code owner is providing.

 » Check to see whether the code owner is responsive to user queries about 
upgrades, product features, bugs, and usage requirements.

Visualizing Graphs
A graph (in the network sense of the word) is a depiction of data showing the con-
nections between data points (called nodes) using lines (called edges). The purpose 
is to show that some data points relate to other data points, but not all the data 
points that appear on the graph. Think about a map of a subway system. Each of 
the stations connects to other stations, but no single station connects to all the 
stations in the subway system. Graphs are a popular data science topic because of 
their use in social media analysis. When performing social media analysis, you 
depict and analyze networks of relationships, such as friends or business connec-
tions, from social hubs such as Facebook, Google+, Twitter, or LinkedIn.

The two common depictions of graphs are undirected, where the graph simply 
shows lines between data elements, and directed, where arrows added to the line 
show that data flows in a particular direction. For example, consider a depiction of 
a water system. The water would flow in just one direction in most cases, so you 
could use a directed graph to depict not only the connections between sources and 
targets for the water but also to show water direction by using arrows. The follow-
ing sections help you understand the two types of graphs better and show you how 
to create them.

Developing undirected graphs
As previously stated, an undirected graph simply shows connections between 
nodes. The output doesn’t provide a direction from one node to the next. For 
example, when establishing connectivity between web pages, no direction is 
implied. The following example shows how to create an undirected graph:

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline
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G = nx.Graph()
H = nx.Graph()
G.add_node(1)
G.add_nodes_from([2, 3])
G.add_nodes_from(range(4, 7))
H.add_node(7)
G.add_nodes_from(H)
 
G.add_edge(1, 2)
G.add_edge(1, 1)
G.add_edges_from([(2,3), (3,6), (4,6), (5,6)])
H.add_edges_from([(4,7), (5,7), (6,7)])
G.add_edges_from(H.edges())
 
nx.draw_networkx(G, node_color='yellow')
plt.show()

In contrast to the canned example found in the “Using NetworkX basics” section 
of Chapter 8, this example builds the graph using a number of different tech-
niques. It begins by importing the Networkx package you use in Chapter 8. To 
create a new undirected graph, the code calls the Graph() constructor, which can 
take a number of input arguments to use as attributes. However, you can build a 
perfectly usable graph without using attributes, which is what this example does.

The easiest way to add a node is to call add_node() with a node number. You can 
also add a list, dictionary, or range() of nodes using add_nodes_from(). In fact, 
you can import nodes from other graphs if you want.

Even though the nodes used in the example rely on numbers, you don’t have to 
use numbers for your nodes. A node can use a single letter, a string, or even a date. 
Nodes do have some restrictions. For example, you can’t create a node using a 
Boolean value.

Nodes don’t have any connectivity at the outset. You must define connections 
(edges) between them. To add a single edge, you call add_edge() with the num-
bers of the nodes that you want to add. As with nodes, you can use add_edges_ 
from() to create more than one edge using a list, dictionary, or another graph as 
input. Figure 11-10 shows the output from this example. (Your output may differ 
slightly but should have the same connections.)
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Developing directed graphs
You use directed graphs when you need to show a direction, say from a start point 
to an end point. When you get a map that shows you how to get from one specific 
point to another, the starting node and ending node are marked as such, and the 
lines between these nodes (and all the intermediate nodes) show direction.

Your graphs need not be boring. You can dress them up in all sorts of ways so that 
the viewer gains additional information in different ways. For example, you can 
create custom labels, use specific colors for certain nodes, or rely on color to help 
people see the meaning behind your graphs. You can also change edge line weight 
and use other techniques to mark a specific path between nodes as the better one 
to choose. The following example shows many (but not nearly all) the ways in 
which you can dress up a directed graph and make it more interesting:

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline
 
G = nx.DiGraph()
 
G.add_node(1)
G.add_nodes_from([2, 3])
G.add_nodes_from(range(4, 9))
 
G.add_edge(1, 2)
G.add_edges_from([(1,4), (4,5), (2,3), (3,6), 
                  (5,6), (6,7), (7,8)])
 
colors = ['r', 'g', 'g', 'g', 'g', 'm', 'm', 'r']

FIGURE 11-10: 
Undirected 

graphs connect 
nodes to form 

patterns.
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labels = {1:'Start', 2:'2', 3:'3', 4:'4', 
          5:'5', 6:'6', 7:'7', 8:'End'}
sizes = [800, 300, 300, 300, 300, 600, 300, 800]
 
nx.draw_networkx(
    G, node_color=colors, node_shape='D', 
    labels=labels, node_size=sizes, font_color='w')
plt.show()

The example begins by creating a directional graph using the DiGraph() construc-
tor. You should note that the NetworkX package also supports MultiGraph() and 
MultiDiGraph() graph types. You can see a listing of all the graph types at https://
networkx.org/documentation/stable/reference/classes/index.html.

Adding nodes is much like working with an undirected graph. You can add single 
nodes using add_node() and multiple nodes using add_nodes_from(). The order 
of nodes in the call is important. The flow from one node to another is from left to 
right in the list supplied to the call.

Adding edges is much the same as working with an undirected graph, too. You can 
use add_edge() to add a single edge or add_edges_from() to add multiple edges 
at one time. However, the order of the node numbers is important. The flow goes 
from the left node to the right node in each pair.

This example adds special node colors, labels, shape (only one shape is used), and 
sizes to the output. You still call on draw_networkx() to perform the task.  
However, adding the parameters shown changes the appearance of the graph. 
Figure 11-11 shows the output from this example.

FIGURE 11-11: 
Use directed 

graphs to  
show direction 

between nodes.

https://networkx.org/documentation/stable/reference/classes/index.html
https://networkx.org/documentation/stable/reference/classes/index.html
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Chapter 12
Stretching Python’s 
Capabilities

If you’ve gone through the previous chapters, by this point you’ve dealt with all 
the basic data loading and manipulation methods offered by Python. Now it’s 
time to begin utilizing some more advanced instruments for data transforma-

tion and pipelining in machine learning. The final step of most data science proj-
ects is to build a data tool able to automatically transform, predict, and recommend 
directly from your data.

Before taking that final step, you still have to process your data by enforcing 
transformations that are even more radical. That’s the data wrangling or data 
munging part, where sophisticated transformations are followed by visual and 
statistical explorations, and then, eventually, by further transformations, if your 
explorations have pointed out something interesting to pursue.

From here onward, you use the Scikit-learn package more (which means knowing 
more about it — the full documentation appears at https://scikit-learn.org/
stable/documentation.html). The Scikit-learn package offers a single reposi-
tory containing almost all the tools that you need to be a data scientist and for 
your data science project to be successful. In this chapter, you discover important 

IN THIS CHAPTER

 » Understanding how Scikit-learn 
works with classes

 » Using Scikit-learn’s transformative 
functions

 » Testing performance and memory 
consumption

 » Saving time using multicore 
computations

https://scikit-learn.org/stable/documentation.html
https://scikit-learn.org/stable/documentation.html
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characteristics of Scikit-learn, how it is structured in modules, classes, and func-
tions, and some advanced Python time savers for improving performance with 
highly time-consuming data and computational operations.

You don’t have to type the source code for this chapter in by hand; in fact, using 
the downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_12_Stretching_
Pythons_Capabilities.ipynb file.

Playing with Scikit-learn
Sometimes the best way to discover how to use something is to spend time playing 
with it. The more complex a tool, the more important play becomes. Given the 
complex math tasks you perform using Scikit-learn, playing becomes especially 
important. The following sections use the idea of playing with Scikit-learn to help 
you discover important concepts in using Scikit-learn to perform amazing feats of 
data science work.

Understanding classes in Scikit-learn
Understanding how classes work is an important prerequisite for being able to use 
the Scikit-learn package appropriately. Scikit-learn is the package for machine 
learning and data science experimentation favored by most data scientists. It con-
tains a wide range of well-established learning algorithms, error functions, and 
testing procedures.

At its core, Scikit-learn features some base classes on which all the algorithms  
are built. Apart from BaseEstimator, the class from which all other classes 
inherit, there are four class types covering all the basic machine-learning 
functionalities:

 » Classifying (ClassifierMixin)

 » Regressing (RegressorMixin)

 » Grouping by clusters (ClusterMixin)

 » Transforming data (TransformerMixin)

Even though each base class has specific methods and attributes, the core func-
tionalities for data processing and machine learning are guaranteed by one or 
more series of methods and attributes called interfaces. The interfaces provide a 
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uniform Application Programming Interface (API) to enforce similarity of meth-
ods and attributes between all the different algorithms present in the package. 
There are four Scikit-learn object-based interfaces:

 » estimator: For fitting parameters by learning them from data according to 
the algorithm

 » predictor: For generating predictions from the fitted parameters

 » transformer: For transforming data, implementing the fitted parameters

 » model: For reporting goodness of fit or other score measures

The package groups the algorithms built on base classes and one or more object 
interfaces into modules, each module displaying a specialization in a particular 
type of machine-learning solution. For example, the linear_model module is for 
linear modeling, and metrics is for score and loss measure.

To find a specific algorithm in Scikit-learn, you must first find the module con-
taining the same kind of algorithm that interests you, and then select it from the 
list of contents of the module. The algorithm is typically a class whose methods 
and attributes are already known because they’re common to other algorithms in 
Scikit-learn.

Getting accustomed to the Scikit-learn class approach may take some time. How-
ever, the API is the same for all the tools available in the package, so learning one 
class necessarily tells you about all the other classes. The best approach is to learn 
one class completely and then apply what you know to other classes.

Defining applications for data science
Figuring out ways to use data science to obtain constructive results is important. 
For example, you can apply the estimator interface to a

 » Classification problem: Guessing that a new observation is from a 
certain group

 » Regression problem: Guessing the value of a new observation

It works with the method fit(X, y) where X is the bidimensional array of predic-
tors (the set of observations to learn) and y is the target outcome (another array, 
unidimensional).

When you apply fit() to the data, the information in X is related to y, so that 
when you have some new information with the same characteristics of X, it’s 
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possible to guess y correctly. In the process, some parameters are estimated inter-
nally by the fit() method. These are the model weights, which the model learned 
from data. In addition, hyperparameters are other parameters that affect how the 
model learns its weights. They aren’t directly derived from data but are decided by 
you, using trial and error, when you instantiate the learner.

Instantiation involves assigning a Scikit-learn class to a Python variable. In addi-
tion to hyperparameters, you can also fix other working parameters, such as 
requiring normalization or setting a seed (which is normally a random value) to 
reproduce the same results for each call, given the same input data.

Here is an example with linear regression, a very basic and common machine 
learning algorithm. You upload some data to use this example from the examples 
that Scikit-learn provides. The California dataset, for instance, contains predictor 
variables that the example code can match against house prices, which helps build 
a predictor that can calculate the value of a house in an area, given its character-
istics and location in the state of California:

import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing
 
def load_california_housing_data():
    dataset = fetch_california_housing()
    X = pd.DataFrame(data=dataset.data, 
                     columns=dataset.feature_names)
    y = pd.Series(data=dataset.target, name="target")
    return X, y
 
X, y = load_california_housing_data()
print(f"X:{X.shape} y:{y.shape}")

The returned dimensions for the X and y variables are

X:(20640, 8) y:(20640,)

The output specifies that both arrays have the same number of rows and that X has 
8 features. The shape() method performs array analysis and reports the arrays’ 
dimensions.

The number of X rows must equal those in y. You also ensure that X and y corre-
spond, because learning from data happens when the algorithm matches the rows 
of X with the corresponding element of y. If you randomize the two arrays, no 
learning is possible.
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The characteristics of X, expressed as X’s columns, are called variables (a more sta-
tistical term) or features (a term more related to machine learning).

The transform class in Scikit-learn applies transformations derived from the fit-
ting phase to other data arrays. All preprocessing algorithms do have a transfor-
mation method. For example, StandardScaler(), from the Scikit-learn 
preprocessing module, can transform values using the statistical normalization, 
that is, subtracting the mean and dividing by the standard deviation, after learn-
ing the transformation parameters from an example array using the fit() 
method:

from sklearn.preprocessing import StandardScaler
 
scaler = StandardScaler()
scaler.fit(X)
scaled_X = scaler.transform(X)

After importing the LinearRegression class, you can instantiate a variable called 
linear_regression and fit it to the scaled X array and to the y target. After fit-
ting, you inspect the internal weights, known as coefficients, to ensure that the 
model has learned from the data:

from sklearn.linear_model import LinearRegression
 
linear_regression = LinearRegression()
linear_regression.fit(scaled_X, y)
print(linear_regression.coef_.round(5))

After executing fit(), the code prints the coefficients of the linear regression 
model:

 [ 0.82962  0.11875 -0.26553  0.3057  -0.0045  -0.03933
  -0.89989 -0.87054]

After fitting, the linear_regression model holds the learned parameters, and 
you visualize them using the coef_() method, which is typical of all the linear 
models (where the model output is a summation of variables weighted by coeffi-
cients). You can also call this fitting activity training (as in, training a machine 
learning algorithm).

A hypothesis is a way to describe a learning algorithm trained with data. The 
hypothesis defines a possible representation of y given X that you test for validity. 
Therefore, it’s a hypothesis in both scientific and machine learning language.
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Apart from the estimator class, the predictor and the model object classes are also 
important. The predictor class, which predicts the probability of a certain result, 
obtains the result of new observations using the predict() and predict_proba() 
methods, as in this script:

values = [[1.21315, 32., 3.31767135, 1.07731985, 898., 
           2.1424809, 37.82, -122.27]]
obs = pd.DataFrame(values, columns=X.columns)
 
scaled_obs = scaler.transform(obs)
 
pred = linear_regression.predict(scaled_obs)
value = pred[0] * 100_000
print(f"Estimated median house value: {value:.2f} USD")

The single observation is thus converted into a prediction:

Estimated median house value: 141088.56 USD

Make sure that new observations have the same feature number and in the same 
order as in the training X; otherwise, the prediction will be incorrect.

Each class from Scikit-learn has some specific methods and some common ones, 
such as fit(), transform(), and predict(). Even if the method is a common 
one, however, it may have extra parameters. In order to know what methods are 
available and the parameters they require, please consult the online documenta-
tion of each algorithm or ask for help on the Python console:

help(LinearRegression)

For instance, LinearRegression has the score() method that provides informa-
tion about the quality of the regression, as shown here:

linear_regression.score(scaled_X, y)

The quality is expressed as a float number:

0.606232685199805

In this case, score() returns the coefficient of determination R2 of the prediction. 
R2 is a measure ranging from 0 to 1, comparing our predictor to a simple mean. 
Higher values show that the predictor is working well. Different learning algo-
rithms may use different scoring functions.
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Using Transformative Functions
In Scikit-learn, transformative functions are a kind of data processing step that 
you use to manipulate and transform data. You typically use these functions as 
part of a machine learning pipeline to apply specific operations on the data before 
feeding it into a machine learning model for training or prediction. All these func-
tions are mentioned in the reference page https://scikit-learn.org/stable/ 
modules/preprocessing.html. Here are some of the most important transform-
ers or types of transformers to remember:

 » StandardScaler() (https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.StandardScaler.html): Used for 
standardizing numerical features by scaling them to have zero mean and unit 
variance, which can be important for many machine learning algorithms.

 » MinMaxScaler() (https://scikit-learn.org/stable/modules/ 
generated/sklearn.preprocessing.MinMaxScaler.html): Scales 
numerical features to a specific range (usually between 0 and1), making them 
suitable for algorithms that are sensitive to the scale of the input features.

 » OneHotEncoder() (https://scikit-learn.org/stable/modules/ 
generated/sklearn.preprocessing.OneHotEncoder.html): Used for 
encoding categorical features into a binary vector representation, making 
them suitable for algorithms that cannot handle categorical data directly.

 » OrdinalEncoder() (https://scikit-learn.org/stable/modules/ 
generated/sklearn.preprocessing.OrdinalEncoder.html): Used for 
encoding categorical features with integer labels, which can be useful for 
algorithms that can handle integer-encoded categorical data.

 » SimpleImputer() (https://scikit-learn.org/stable/modules/ 
generated/sklearn.impute.SimpleImputer.html): Used for handling 
missing values in the data by filling them with appropriate values, such as 
mean, median, or most frequent values.

 » PolynomialFeatures() (https://scikit-learn.org/stable/modules/ 
generated/sklearn.preprocessing.PolynomialFeatures.html): Used 
for generating polynomial features from the original features, which can be 
helpful for capturing nonlinear relationships in the data.

 » Feature selection: Scikit-learn provides various techniques for feature 
selection, explained in detail in Chapter 18, which can be used to select the 
most important features from the original feature set.

 » Text processing tools: Scikit-learn provides various tools for text processing, 
such as CountVectorizer() and TfidfVectorizer(), which can be used 
for converting text data into numerical representations suitable for machine 
learning.

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
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Because all data problems present differences in features and data characteristics, 
you need a customized approach when you process them — that is, particular 
combinations of the Scikit-learn transformative functions applied to different 
portions of your data. The following sections explore additional Scikit-learn 
classes that can help you effectively combine and apply these transformative 
functions for optimal outcomes.

Chaining estimators
You can use transformative functions as stand-alone functions, but they neces-
sarily function in sequence and in association with machine learning algorithms. 
For this reason, it’s extremely useful to chain together different transformative 
functions and predictive models into a Pipeline(). A pipeline is a useful tool in 
Scikit-learn for chaining multiple data processing steps together, such as feature 
selection, normalization, and classification, into one sequence. A pipeline offers 
several benefits:

 » Fitting and predicting on your data with just one call, making it easy to 
apply a series of processing steps in a single line of code.

 » Performing optimizations of all the estimators in the pipeline simultane-
ously, simplifying the hyperparameter tuning process.

 » Preventing statistics leaking from your test data into your trained model 
during cross-validation. This leaking is prevented because the same samples 
are used to train both the transformers and predictors, ensuring consistency 
in data processing.

It’s important to note that all estimators in a pipeline, except the last one, must 
be transformers, meaning they must have a transform method. The last estimator 
can be of any type, such as a transformer, classifier, or other model.

Creating a Scikit-learn pipeline requires first defining the steps and then plugging 
them into the pipeline. Defining each single step requires you to create a tuple or 
a list containing the step’s name and the Scikit-learn class you want executed. 
Providing the step’s name is important because it helps you later when you want 
to access each single step and its parameters. After you have plugged all the steps 
into the pipeline, you use the pipeline as you would any other Scikit-learn class:

 » Fit it on training data and then use it to perform a transformation if there is no 
predictor inside.

 » Perform a prediction if it closes with a machine learning model.

You can find all the details of the command at https://scikit-learn.org/ 
stable/modules/generated/sklearn.pipeline.Pipeline.html.

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
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Transforming targets
Transformation sometimes includes the target in addition to the features. Because 
the distribution of target values can present multiple modes or become skewed to 
the right or to the left, you may find that first transforming the target, and then 
fitting the model, and finally inverse-transforming its predictions bring better 
predictive results. The purpose of transformations is to increase the symmetry 
and normality of the target distribution, which is not a requirement or recom-
mendation for machine learning models, but rather a factual observation because 
those models have been known to perform better with transformations.

In Scikit-learn, a transformative function is a kind of data processing step that you 
use to manipulate and transform data. Transformative functions are usually loga-
rithmic. A transformative function relies on the exponential function as its 
inverse, particularly for skewed targets. It uses the square root transformation 
(and its inverse, squaring) when the target variable is moderately skewed, has a 
positive skewness, and you want to reduce the influence of outliers.

Before fitting a regression model, the TransformedTargetRegressor() method 
modifies the targets (y). Afterward, the predictions are restored to their original 
space using an inverse transform. To perform this transformation, the function 
that wraps Scikit-learn’s regressor models into a single entity requires two argu-
ments: the regressor utilized for prediction, and the transformer that is applied to 
the target variable.

Composing features
A Scikit-learn pipeline operates on all the data, piping it into sequential transfor-
mations, but not all transformations are suitable for all the features of your data-
set. For this reason, you use ColumnTransformer(), which is a pipeline that 
operates only on a selection of the features, and FeatureUnion(), which com-
bines the work of multiple ColumnTransformer objects into a single dataset.

The ColumnTransformer() has three main input parameters:

 » Transformers: Accepts a list of tuples, where each tuple consists of a name 
for the transformer, the corresponding preprocessing transformer (such as 
StandardScaler or SimpleImputer), and the list of columns to which the 
transformer should be applied.

 » Remainder: Specifies how to handle the columns that were not selected for 
transformation. The default value is "drop", which means that these columns 
will be ignored.
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 » FeatureUnion: Takes a list of transformers as input and concatenates the 
output of each transformer horizontally. Each transformer extracts a set of 
features from the input data and returns them as a NumPy array. The output 
of all the transformers is concatenated horizontally to form a single NumPy 
array that represents the full set of features for each input sample.

Handling heterogeneous data
The section on transformative functions in Scikit-learn concludes with an exam-
ple showing you how to approach heterogeneous data, which is typical of real-
world data, using the previously illustrated tools. The example starts by loading 
the California Housing dataset, which contains features such as median house 
value, median income, housing age, and various other factors that can be used to 
predict housing prices in different regions of California. 

from sklearn.compose \
    import ColumnTransformer, make_column_selector
from sklearn.pipeline import FeatureUnion, Pipeline
from sklearn.preprocessing \
    import StandardScaler, KBinsDiscretizer
from sklearn.linear_model import LinearRegression
 
X, y = load_california_housing_data()

By distinguishing the different types of features present in the dataset, the code 
can proceed to process them separately. In particular, it distinguishes between 
numeric features, which are standardized, and latitude and longitude geographi-
cal coordinates, which are discretized from continuous values into discrete bins. 
By discretizing the geographical coordinates, it’s possible to enable a series of 
analyses to identify regions with similar geographic characteristics, such as areas 
with similar climate, terrain, or land-use patterns.

Discretization refers to the process of converting continuous data into discrete or 
categorical data. In the context of data analysis, discretization involves dividing a 
continuous variable, which has a range of possible values, into a set of discrete 
intervals or bins.

You can achieve distinct transformations on the numeric features and the geo-
graphical coordinates by means of two different ColumnTransformer() 
operations:

num_cols = ['MedInc', 'HouseAge', 'AveRooms', 
            'AveBedrms', 'Population', 'AveOccup']
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cords = ['Latitude', 'Longitude']
 
num_transformer = ColumnTransformer([
    ("scaler", StandardScaler(), num_cols)],
     remainder="drop")
 
cords_transformer = ColumnTransformer([
    ("discretizer", 
     KBinsDiscretizer(n_bins=20, encode="onehot-dense"),
     cords)]) 

At this point, you combine the two feature transformation steps into a single 
transformer:

preprocessor = FeatureUnion(
    transformer_list=[("num_transformer", 
                        num_transformer),
                      ("cords_transformer",
                        cords_transformer)]) 

You can test how it works by fitting and transforming the data and checking its 
resulting shape:

preprocessor.fit_transform(X).shape

You should see an output of:

(20640, 46)

After checking that everything works properly as expected, you enclose the data 
transformer in a predictive pipeline using a linear regression model in this case:

predictive_pipeline = Pipeline([
    ("preprocessor", preprocessor),
    ("model", LinearRegression())]) 

You’re finally ready to use the set-up predictive pipeline to train on data and 
check how it fitted the data in terms of score: 

predictive_pipeline.fit(X, y)
predictive_pipeline.score(X, y) 
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You get the score of the R2 measure after training. The obtained R2 score indicates 
how much better the model is in predictive performance when compared to a 
baseline such as the statistical mean, on a scale from 0 to 1. This score allows you 
to assess the effectiveness of your model and provides valuable insights for fur-
ther analysis and optimization:

0.6667462444130221 

You can apply the same approach to handle various data types in your datasets. 
Begin by categorizing the data into different types, such as numerical, categorical, 
and text data. Next, create a ColumnTransformer object for each type, which 
allows you to apply specific transformations to each type of data separately. 
Finally, bring all the transformed data together using a FeatureUnion class, which 
merges the outputs from multiple transformers into a single feature space.

By following this methodology, you can easily handle diverse data types in your 
datasets. This approach provides flexibility and scalability, allowing you to apply 
different preprocessing techniques to different types of data. For instance, you 
can apply scaling or normalization to numerical data, one-hot encoding or label 
encoding to categorical data, and conversion of text data into a bag of words. You 
can also include additional transformers or custom functions as needed to suit 
your specific data preprocessing requirements.

Considering Timing and Performance
As the book introduces more and more complex themes, you may start to wonder 
how all this processing influences application speed. The increased processing 
requirements affect both running time and available memory.

Managing the best use of machine resources is indeed an art, the art of optimiza-
tion, and it requires time to master. However, you can start immediately becom-
ing proficient in it by doing some accurate speed measurement and realizing what 
your problems really are if your code seems to run too slowly. Profiling the time 
that performing a data transformation on your data requires, or measuring how 
much memory adding more data takes, can help you to spot the bottlenecks in 
your code and start looking for alternative solutions.

As described in Chapter 5, Jupyter Notebook or Google Colab are the perfect envi-
ronments for experimenting, tweaking, and improving your code. Working on 
blocks of code, recording the results and outputs, and writing additional notes and 
comments will help your data science solutions take shape in a controlled and 
reproducible way.
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Benchmarking with timeit
In Chapter 8, you find out to work with CountVectorizer() to convert text into a 
bag of words that can be used as input to various machine learning algorithms for 
text classification, clustering, or other natural language processing tasks. This 
text processing class transforms text into a matrix of token counts. It performs 
the following operations under the hood:

 » Tokenization: Breaks the text into individual tokens (words, characters, 
or n-grams)

 » Lowercase and accent stripping: Converts all the tokens into lowercase and 
removes accents for text standardization

 » Stopwords removal: Filters out common words, such as “the,” “and,” “a,” and 
“an,” which don’t add much value to the analysis

 » Count Vectorization: Converts the text into a matrix of token counts, where 
each row represents a document and each column represents a token, with 
the values being the number of times the token appears in that document

Each of these operations takes time and memory to run and you may be concerned 
with application performance when the number of texts to process is large. It’s 
important to measure performance before creating a machine learning solution. 
Jupyter offers an easy, out-of-the-box solution, to measure speed using these 
line magics:

 » %timeit: Calculates the best performance time for an instruction

 » %%timeit: Calculates the best time performance for all the instructions in a 
cell, apart from the one placed on the same cell line as the cell magic (which 
could therefore be an initialization instruction)

Both magic commands report the best performance in r trials repeated for n loops. 
When you add the –r and –n parameters, the notebook chooses the number auto-
matically in order to provide a fast answer. Here is an example of determining the 
time required to assign a list 10**6 ordinal values by using list comprehension:

%timeit l = [k for k in range(10**6)]

The reported timing will look like this (the actual times will vary according to your 
system’s capabilities):

76 ms ± 798 μ per loop
(mean ± std. dev. of 7 runs, 10 loops each)
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The result for the list comprehension can be tested by incrementing both the 
sample performance and repetitions of the test:

%timeit –n 20 –r 5 l = [k for k in range(10**6)]

After a while, the timing similar to this one is reported:

76 ms ± 1.06 ms per loop
(mean ± std. dev. of 5 runs, 20 loops each)

As a comparison, you can check the time required to assign the values in a for 
loop. Because the for loop requires an entire cell, the example uses the cell magic, 
%%timeit, call. Notice that the first line that assigns the value of 10**6 to a vari-
able is not considered in the performance.

%%timeit
l = list()
for k in range(10**6):
    l.append(k)

The resulting timing will look like this:

123 ms ± 279 μs per loop
(mean ± std. dev. of 7 runs, 10 loops each)

The results show that list comprehension is about 40 percent faster than using a 
for loop. You can then perform a similar test using the text encoding 
CountVectorizer():

import sklearn.feature_extraction.text as txt
count_vectorizer = txt.CountVectorizer(
    binary=True, max_features=20)
 
texts = ["Python for data science", 
         "Python for machine learning",
         "Artificial intelligence in Python"]
 
count_vectorizer.fit(texts)
vectorized = count_vectorizer.transform(texts) 

After performing initial loading of the class and instantiating it, you can test the 
solution:

%timeit count_vectorizer.fit(texts)
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Here is the timing for fitting the word encoder based on the CountVectorizer():

314 μs ± 9.15 μs per loop
(mean ± std. dev. of 7 runs, 1000 loops each)

You now run the test on the transformation phase:

%timeit vectorized = count_vectorizer.transform(texts)

You obtain the following much better timing (μs [microseconds] are smaller than 
ms [milliseconds]):

93 μs ± 1.05 μs per loop
(mean ± std. dev. of 7 runs, 10000 loops each)

The transformation operation is faster than the fit operation because, in the fit 
phase, the function has to scan through the text, recording and counting the word 
occurrences in the internal data structures. In the transformation phase, the 
operations to be done are simpler because the text is just split, and each word is 
recognized and transformed into a binary feature.

Jupyter Notebook is always the best environment to benchmark the speed of your 
data science solution code. However, if you’d like to track performance on the 
command line or in a script running from an IDE, you can import the timeit class 
and use the timeit() function for tracking performance of the command by pro-
viding the input parameter as a string. The timeit() function returns a float 
number that represents the total number of seconds it took to execute an opera-
tion. If you are running multiple operations, divide the returned total seconds by 
the number of operations to obtain the time it took for a single operation.

The input that timeit() expects is a string that contains the command to be 
executed. If your command needs variables, classes, or functions that aren’t avail-
able in the base Python (such as the Scikit-learn classes), you can provide them as 
a second input parameter by using the setup parameter. You formulate a string in 
which Python imports all the necessary objects from the main environment, as 
shown in the following example:

import timeit
 
cumulative_time = timeit.timeit(
     "vectorized = count_vectorizer.transform(texts)", 
     setup="from __main__ import count_vectorizer, texts",
     number=10000)
print(cumulative_time / 10000.0)
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The output from this example will look like this and tell you the time for  
each loop:

0.00010361055000003035

USING THE PREFERRED INSTALLER 
PROGRAM (PIP)
Python provides a huge number of packages that you can install. Many of these pack-
ages come as separate, downloadable modules. Some of them have an executable suit-
able for a platform such as Windows, which means you can easily install the package. 
However, many other packages rely on pip, the preferred installer program, which is a 
feature that you can access directly from the command line.

To use pip, you open the command line prompt. If you need to install a package from 
scratch, such as NumPy, you type pip install numpy, and the software will download 
the package as well as all the related packages that it needs to work, and will install 
everything. You can even install a specific version by typing, for example, pip install –U 
numpy==1.24.2, or simply update the package to its most recent version if is already 
installed: pip install –U numpy.

If you installed Anaconda, you can use conda instead of pip, which is even more efficient 
when installing because it sets all the other packages to the right version for your newly 
installed Python package (which implies that it can install, upgrade or even downgrade 
existing packages on your system). Using conda for installing a new package is achieved 
from the Anaconda Prompt, as well, by entering conda install numpy. The software 
analyzes your system, reports the changes, and then asks whether it should proceed. 
Press y if you want to proceed with the installation. You also use conda to update  
existing packages (enter conda update numpy) or the entire system (enter conda 
update --all).

This book uses Jupyter Notebook and Google Colab, actually based on the Jupyter 
Notebook open source, as its environment. Installing and upgrading while using  
Jupyter Notebook is a bit more complicated. Jake VanderPlas from the University of 
Washington wrote a very informative post about this issue, which you can find at 
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages- 
from-jupyter/. The article proposes a few ways to handle package installation and 
upgrading while using the Jupyter Notebook interface. At the beginning, until you gain 
confidence and experience, the best option is to install and update your system first 
and then run Jupyter Notebook, making the installation much easier and smoother.

https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
https://jakevdp.github.io/blog/2017/12/05/installing-python-packages-from-jupyter/
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Working with the memory profiler
As you’ve seen when testing your application code for performance (speed) char-
acteristics, you can obtain analogous information about memory usage. Keeping 
track of memory consumption could tell you about possible problems in the way 
data is processed or transmitted to the learning algorithms. The memory_profiler 
package implements the required functionality. This package is not provided as a 
default Python package and it requires installation. Use the following command to 
install the package directly from a cell within Jupyter Notebook, as explained by 
Jake VanderPlas’s post described in the “Using the preferred installer program 
(pip)” sidebar:

import sys
!{sys.executable} -m pip install memory_profiler

Use the following command for each Jupyter Notebook session you want to 
monitor:

%load_ext memory_profiler

After performing these tasks, you can easily track how much memory a command 
consumes:

vectorized = count_vectorizer.transform(texts)
%memit dense_hashing = vectorized.toarray()

The output is in mebibyte (MiB), a International Electrotechnical Commission 
(IEC) unit of measure specifically for memory (see https://digilent.com/blog/
mib-vs-mb-whats-the-difference/ for details). The reported peak memory and 
increment tell you about memory usage (the numbers you see may vary due to 
system differences):

peak memory: 268.60 MiB, increment: 0.01 MiB

Obtaining a complete overview of memory consumption is possible by saving a 
notebook cell to disk and then profiling it using the line magic %mprun on an 
externally imported function. (The line magic works only by operating with 

https://digilent.com/blog/mib-vs-mb-whats-the-difference/
https://digilent.com/blog/mib-vs-mb-whats-the-difference/
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external Python scripts.) Profiling produces a detailed report, command by com-
mand, as shown in the following example:

%%writefile example_code.py
 
import sklearn.feature_extraction.text as txt
 
def comparison_test(text):    
    count_vectorizer = txt.CountVectorizer(
        binary=True, max_features=20)
    count_vectorizer.fit(text)
    vectorized = count_vectorizer.transform(text)
    return vectorized.toarray() 

The previous code writes a python script on your work directory where your test 
is wrapped into a Python function. As a next step, you import the function from 
the script and evaluate its memory usage using the %mprun line magic:

from example_code import comparison_test
 
texts = ["Python for data science", 
         "Python for machine learning",
         "Artificial intelligence in Python"]
 
%mprun -f comparison_test comparison_test(texts)

You will get an output similar to that shown in Figure 12-1 (the output appears in 
a separate window at the bottom of the notebook display by default):

The resulting report details the memory usage from every line in the function, 
pointing out the major increments in memory usage.

FIGURE 12-1: 
The output from 
the memory test 

shows memory 
usage for each 

line of code.
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REDUCING MEMORY USAGE  
AND COMPUTING FAST
You use NumPy arrays or pandas DataFrames when working with data. However, 
even if they appear as different data structures: one focuses on storing data as a matrix 
and the other on handling complex datasets stored in different ways — DataFrames 
rely on NumPy arrays. Understanding how arrays work and are used by pandas 
allows you to reduce memory usage and achieve faster computations.

NumPy arrays are a tool for handling data by using contiguous memory blocks to 
store the values. Because the data appears in the same area of computer memory, 
Python can retrieve the data faster and slice it more easily. It’s the same principle as disk 
fragmentation: If your data is scattered on disk, it occupies more space and requires 
more handling time.

Depending on your needs, you can order array data by rows (the default choice of both 
NumPy and the C/C++ programming language) or columns. Computer memory stores 
cells one after the other in a line. Consequently, you can record your array row after 
row, allowing fast processing by rows, or column by column, allowing faster processing 
by columns. All these details, though hidden from your eyes, are crucial because they 
render working with NumPy arrays fast and efficient for data science (which uses 
numeric matrices and often computes information by rows). This is why all Scikit-learn 
algorithms expect a NumPy array as an input, and why NumPy arrays have a fixed 
data type (they can be only of the same type as the data sequence; they can’t vary).

pandas DataFrames are just well-arranged collections of NumPy arrays. Your  
variables in DataFrame, depending on the type, are compacted in an array. For 
instance, all your integer variables are together in an IntBlock, all your float data in  
a FloatBlock, and the rest in an ObjectBlock. This means that when you want to  
operate on a single variable, you are actually operating on all the variables. Consequently, 
if you have an operation to apply, it’s better to apply it to all variables of the same type 
simultaneously. In addition, this also means that working with string variables is incredi-
bly expensive in terms of memory and computations. Even if you store something as 
simple as a short series of color names in a variable, it will require the use of a complete 
string (at least 50 bytes) and handling it will be quite cumbersome using the NumPy 
engine. As suggested in Chapter 7, you can transform your string data in categorical 
variables; by doing so, behind the scenes, strings are transformed into numbers. In this 
way, you greatly reduce the memory usage and increase the speed you experience 
when manipulating the data.
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Running in Parallel on Multiple Cores
Most computers today are multicore (bearing two or more processors in a single 
package), with some having multiple physical CPUs. One of the most important 
limitations of Python is that it uses a single core by default (it was created in a 
time when single cores were the norm).

Data science projects require quite a lot of computations. In particular, a part of 
the scientific aspect of data science relies on repeated tests and experiments on 
different data matrices. Don’t forget that working with huge data quantities means 
that most time-consuming transformations repeat observation after observation 
(for example, identical and not related operations on different parts of a matrix).

Using more CPU cores accelerates a computation by a factor that almost matches 
the number of cores. For example, having four cores would mean working at best 
four times faster. You don’t receive a full fourfold increase because there is over-
head when starting a parallel process — new running Python instances have to be 
set up with the right in-memory information and launched; consequently, the 
improvement will be less than potentially achievable but still significant. Knowing 
how to use more than one CPU is therefore an advanced but incredibly useful skill 
for increasing the number of analyses completed and for speeding up your opera-
tions both when setting up and when using your data products.

Multiprocessing works by replicating the same code and memory content in var-
ious new Python instances (the workers), calculating the result for each of them, 
and returning the pooled results to the main original console. If your original 
instance already occupies much of the available RAM memory, it won’t be possible 
to create new instances, and your machine may run out of memory.

Performing multicore parallelism
To perform multicore parallelism with Python, you integrate the Scikit-learn 
package with the joblib package for time-consuming operations, such as replicat-
ing models for validating results or for looking for the best hyperparameters. In 
particular, Scikit-learn allows multiprocessing when

 » Cross-validating: Testing the results of a machine-learning hypothesis using 
different training and testing data (discussed in Chapter 18)

 » Grid-searching: Systematically changing the hyperparameters of a machine-
learning hypothesis and testing the consequent results (also discussed in 
Chapter 18)

 » Multilabel prediction: Running an algorithm multiple times against multiple 
targets when there are many different target outcomes to predict at the same 
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time (discussed in Chapter 17 in various sections, including “Considering the 
case when there are more classes”)

 » Ensemble machine-learning methods: Modeling a large host of classifiers, 
each one independent from the other, such as when using RandomForest-
based modeling (discussed in Chapter 20)

You don’t have to do anything special to take advantage of parallel computations —  
you can activate parallelism by setting the n_jobs parameter to a number of cores 
more than 1 or by setting the value to –1, which means you want to use all the 
available CPU instances.

If you aren’t running your code from the console or from a notebook in Jupyter 
Notebook, it is extremely important that you separate code that will execute in 
parallel from any package import or global variable assignment in your script by 
using the if __name__=='__main__': command at the beginning of any code that 
executes multicore parallelism. The if statement checks whether the program is 
directly run or is called by an already-running Python console, avoiding any con-
fusion or error by the multiparallel process (such as recursively calling the 
parallelism).

Demonstrating multiprocessing
It’s a good idea to use a notebook when you run a demonstration of how multipro-
cessing can really save you time during data science projects. Using Jupyter Note-
book offers the advantage of using the %timeit magic command for timing 
execution. You start by loading a multiclass dataset, a complex machine learning 
algorithm (the Support Vector Classifier, or SVC, a topic explained in all the details 
in Chapter 19), and a cross-validation procedure for estimating reliable resulting 
scores from all the procedures. You find details about all these tools later in the 
book. The most important thing to know is that the procedures become quite large 
because the SVC is required to produce 7 models, which it repeats 20 times each 
using cross-validation, for a total of 140 generated models.

from sklearn.datasets import load_digits
digits = load_digits()
 
X, y = digits.data, digits.target
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score 

After loading the digits data, representing images of handwritten digits from 0 to 
9, test the timing of a cross-validation on 20 folds using a single core. Here is the 
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code (even though the command may appear on several lines in the book, you use 
a single line in your code): 

%timeit single_core = cross_val_score( \
    SVC(), X, y, cv=20, n_jobs=1)

As a result, you get the recorded average running time for a single core similar  
to this:

1.56 s ± 11.7 ms per loop
(mean ± std. dev. of 7 runs, 1 loop each)

After this test, you need to activate the multicore parallelism and time the results 
using the following command (even though the command may appear on several 
lines in the book, you use a single line in your code):

%timeit multi_core = cross_val_score( \
    SVC(),X, y, cv=20, n_jobs=-1)

Running on multiple cores allows for a much better average time:

692 ms ± 28.5 ms per loop
(mean ± std. dev. of 7 runs, 1 loop each)

Running on all the available cores may render your computer unusable for any 
other task. In Scikit-learn, setting n_jobs to -2 refers to using all available CPUs 
except one to parallelize the execution of a particular task. Leaving one CPU reserved 
for system processes avoids overloading the CPU, leading to slower processing 
times and preventing you from using your computer for other, non-intensive tasks.

%timeit multi_core = cross_val_score( \
    SVC(), X, y, cv=20, n_jobs=-2)

As expected, because you are leaving one CPU out of the game, the average time 
worsens a little bit, but in exchange you have a usable computer, especially if the 
training or testing takes a long time:

744 ms ± 8.4 ms per loop
(mean ± std. dev. of 7 runs, 1 loop each)

The example machine demonstrates a positive advantage using multicore pro-
cessing, despite using a small dataset where Python spends most of the time 
starting consoles and running a part of the code in each one. This overhead, a few 
seconds, is still significant given that the total execution extends for a handful of 
seconds. Just imagine what would happen if you worked with larger sets of data — 
your execution time could be easily cut by two or three times.
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Chapter 13
Exploring Data Analysis

Data science relies on complex algorithms for building predictions and spot-
ting important signals in data, and each algorithm presents different 
strong and weak points. In short, you select a range of algorithms, you 

have them run on the data, you optimize their parameters as much as you can, and 
finally you decide which one will best help you build your data product or generate 
insight into your problem. However, even if some of these tools seem like black or 
even magic boxes, no matter how powerful the machine learning algorithms you 
use are, you won’t obtain good results if your data has something wrong in it. It is 
all a matter of GIGO. GIGO stands for “Garbage In/Garbage Out.” It has been a 
well-known adage in statistics (and computer science) for a long time.

In this chapter, you discover the philosophy of Exploratory Data Analysis (EDA), 
which means finding out how to

 » Describe your variables

 » Estimate correlations and associations

 » Visualize value distributions, relationships between variables, and groups

The goal of EDA is to clean and transform data for optimal learning by machine 
learning algorithms. EDA is a general approach to exploring datasets by means of 

IN THIS CHAPTER

 » Understanding the Exploratory Data 
Analysis (EDA) philosophy

 » Describing numeric and categorical 
distributions

 » Estimating correlation and 
association

 » Testing mean differences in groups

 » Visualizing distributions, 
relationships, and groups
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simple summary statistics and graphic visualizations to gain a deeper under-
standing of data. EDA helps you become more effective in the subsequent data 
analysis and modeling. In this chapter, you discover all the necessary and indis-
pensable basic descriptions of the data and see how those descriptions can help 
you decide how to proceed using the most appropriate data transformation and 
solutions.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier. The source code for this chapter appears in the 
P4DS4D3_13_Exploring_Data_Analysis.ipynb file. (See the Introduction for 
details on where to locate this file.)

The EDA Approach
EDA was developed at Bell Labs by John Tukey, a mathematician and statistician 
who wanted to promote more questions and actions on data based on the data 
itself (the exploratory motif) in contrast to the dominant confirmatory approach 
of the time. A confirmatory approach relies on the use of a theory or procedure — 
the data is just there for testing and application. EDA emerged at the end of the 
70s, long before the big data flood appeared. Tukey could already see that certain 
activities, such as testing and modeling, were easy to make automatic. In one of 
his famous writings, Tukey said:

“The only way humans can do BETTER than computers is to take a chance of 
doing WORSE than them.”

The statement emphasizes that there are areas where human intuition, creativity, 
and contextual understanding can provide an edge over computers, a statement 
truly ahead of its time that remains relevant in today’s era of AI. The statement 
also explains why, as a data scientist, your role and tools aren’t limited to auto-
matic learning algorithms but also to manual and creative exploratory tasks. Com-
puters are unbeatable at optimizing, but humans are strong at discovery by taking 
unexpected routes and trying unlikely but in the end very effective solutions.

If you’ve been through the examples in the previous chapters, you have already 
worked on quite a bit of data, but using EDA is a bit different because it checks 
beyond the basic assumptions about data workability, which actually comprises 
the Initial Data Analysis (IDA). Up to now, the book has shown how to

 » Complete observations or mark missing cases by appropriate features

 » Transform text or categorical variables
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 » Create new features based on domain knowledge of the data problem

 » Have at hand a numeric dataset where rows are observations and columns 
are variables

EDA goes further than IDA. It’s moved by a different attitude: going beyond basic 
assumptions. With EDA, you

 » Describe of your data

 » Closely explore data distributions

 » Understand the relations between variables

 » Notice unusual or unexpected situations

 » Place the data into groups

 » Notice unexpected patterns within groups

 » Take note of group differences

You will read a lot in the following pages about how EDA can help you learn about 
variable distribution in your dataset. Variable distribution is the list of values you 
find in that variable compared to their frequency, that is, how often they occur. 
Being able to determine variable distribution tells you a lot about how a variable 
could behave when fed into a machine learning algorithm and, thus, help you take 
appropriate steps to have it perform well in your project.

Defining Descriptive Statistics  
for Numeric Data

The first actions that you can take with the data are to produce some synthetic 
measures to determine what is going on with it. You acquire knowledge of mea-
sures such as maximum and minimum values, and you define which intervals are 
the best places to start.

During your exploration, you use a simple but useful dataset, the Palmer Penguins 
dataset. This dataset was collected in the Palmer Archipelago, Antarctica, by  
Dr. Kristen Gorman and the Palmer Station Long-Term Ecological Research 
(LTER) program. It contains detailed information about three different species of 
penguins: Adélie, Gentoo, and Chinstrap. It includes various measurements such 
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as the penguins’ bill length, bill depth, body mass, flipper length, and several 
other attributes. You can load it by using the following code, which will select a 
few variables:

import numpy as np
import pandas as pd
 
def load_palmer_penguins(no_missing=True):
    url = "https://raw.githubusercontent.com/"
    url += "allisonhorst/palmerpenguins/main/"
    url += "inst/extdata/penguins.csv"
    numeric_features = [
        "bill_length_mm", "bill_depth_mm", 
        "flipper_length_mm", "body_mass_g"]
    target = ["species"]
    data = pd.read_csv(url)
    if no_missing:
        data = data.dropna()
    return data[numeric_features + target]
    
penguins = load_palmer_penguins(no_missing=True)

Having loaded the Palmer Penguins dataset into a pandas DataFrame, as a last 
preparatory activity before starting data exploration, you can check your pandas 
and NumPy versions:

print(f"Your pandas version is: {pd.__version__}")
print(f"Your NumPy version is {np.__version__}")

NumPy, Scikit-learn, and especially pandas are packages under constant develop-
ment, so before you start working with EDA, it’s a good idea to check the product 
version numbers. Using an older or newer version could cause your output to dif-
fer from that shown in the book, or cause some commands to fail. For this edition 
of the book, use pandas version 1.3.5 and NumPy version 1.21.6 (see Chapter 3 for 
an explanation of how to set up your desktop system for use with Anaconda).

This chapter presents a series of pandas and NumPy commands that help you 
explore the structure of data. Even though applying single explorative commands 
grants you more freedom in your analysis, it’s nice to know that you can obtain 
most of these statistics using the describe() method applied to your pandas 
DataFrame: such as, print(penguins.describe()), when you’re in a hurry in 
your data science project.
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Measuring central tendency
Mean and median are the first measures to calculate for numeric variables when 
starting EDA. They can provide you with an estimate when the variables are cen-
tered and somehow symmetric.

Using pandas, you can quickly compute both means and medians. Here is the 
command for getting the mean from the penguins DataFrame:

print(penguins.mean(numeric_only=True))

Here is the resulting output for the mean statistic:
bill_length_mm         43.992793
bill_depth_mm          17.164865
flipper_length_mm     200.966967
body_mass_g          4207.057057
dtype: float64

Similarly, here is the command that will output the median:

print(penguins.median(numeric_only=True))

You then obtain the median estimates for all the variables:

bill_length_mm         44.5
bill_depth_mm          17.3
flipper_length_mm     197.0
body_mass_g          4050.0
dtype: float64

The median provides the central position in the series of values. When creating a 
variable, it is a measure less influenced by anomalous cases or by an asymmetric 
distribution of values around the mean. What you should notice here is that the 
means are not centered (no variable is zero mean) and that the median of body 
mass is different from the mean, requiring further inspection.

When checking for central tendency measures, you should:

 » Verify whether means are zero

 » Check whether they are different from each other

 » Notice whether the median is different from the mean
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Measuring variance and range
As a next step, you should check the variance by using its square root, the stan-
dard deviation. The standard deviation is as informative as the variance, but com-
paring to the mean is easier because it’s expressed in the same unit of measure. 
The standard deviation is a good indicator of whether a mean is a suitable indica-
tor of the variable distribution because it tells you how the values of a variable 
distribute around the mean. The higher the standard deviation, the farther you 
can expect some values to appear from the mean.

print(penguins.std(numeric_only=True)) 

The printed output for each variable:

bill_length_mm         5.468668
bill_depth_mm          1.969235
flipper_length_mm     14.015765
body_mass_g          805.215802
dtype: float64 

In addition, you also check the range, which is the difference between the maxi-
mum and minimum value for each quantitative variable, and it is quite informa-
tive about the difference in scale among variables:

print(penguins.max(numeric_only=True) 
      - penguins.min(numeric_only=True)) 

Here you can find the output of the preceding command:

bill_length_mm         27.5
bill_depth_mm           8.4
flipper_length_mm      59.0
body_mass_g          3600.0
dtype: float64 

Note the standard deviation and the range in relation to the mean and median. A 
standard deviation or range that’s too high with respect to the measures of cen-
trality (mean and median) may point to a possible problem, with extremely unu-
sual values affecting the calculation or an unexpected distribution of values 
around the mean.

Working with percentiles
Because the median is the value in the central position of your distribution of val-
ues, you may need to consider other notable positions. Apart from the minimum 



CHAPTER 13  Exploring Data Analysis      229

and maximum, the position at 25 percent of your values (the lower quartile) and 
the position at 75 percent (the upper quartile) are useful for determining the data 
distribution, and they are the basis of an illustrative graph called a boxplot, which 
is one of the topics discussed in this chapter.

print(penguins.select_dtypes(np.number).
      quantile([0,.25,.50,.75,1]))

You can see the output as a matrix — a comparison that uses quartiles for rows 
and the different dataset variables as columns. So, the 25-percent quartile for 
bill_length_mm is 32.1, which means that 25 percent of the dataset values for 
this measure are less than 32.1.

      bill_length_mm  bill_depth_mm flipper_length_mm...
0.00            32.1           13.1             172.0...
0.25            39.5           15.6             190.0...
0.50            44.5           17.3             197.0...
0.75            48.6           18.7             213.0...
1.00            59.6           21.5             231.0...

The difference between the first quartile (25th percentile) and the third quartile 
(75th percentile) constitutes the interquartile range (IQR), which is a measure of 
the spread in the central portion of the variable. You don’t need to calculate it, but 
you will find it in the boxplot because it helps to determine the plausible limits of 
the core of your distribution. What lies after the “whiskers” of the boxplot, which 
are typically located at 1.5 times the IQR beyond the first and third quartiles, are 
considered cases that can potentially affect the results of your analysis in a nega-
tive way. Such cases are called outliers — and they’re the topic of Chapter 16.

Defining measures of normality
The last indicative measures of how the numeric variables used for these exam-
ples are structured are skewness and kurtosis:

 » Skewness defines the asymmetry of data with respect to the mean. If the skew 
is negative, the left tail is too long and the mass of the observations are on the 
right side of the distribution. If it is positive, it is exactly the opposite.

 » Kurtosis shows whether the data distribution, especially the peak and the tails, 
are of the right shape. If the kurtosis is above zero, the distribution has a 
marked peak. If it is below zero, the distribution is too flat instead.

Although reading the numbers can help you determine the shape of the data, tak-
ing notice of such measures presents a formal test to select the variables that may 
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need some adjustment or transformation in order to become more similar to the 
Gaussian distribution. Remember that you also visualize the data later, so this is a 
first step in a longer process.

The normal, or Gaussian, distribution is the most useful distribution in statistics 
thanks to its frequent recurrence and particular mathematical properties. It’s 
essentially the foundation of many statistical tests and models, with some of 
them, such as the linear regression, widely used in data science. In a Gaussian 
distribution, mean and median have the same values, the values are symmetri-
cally distributed around the mean (it has the shape of a bell), and its standard 
deviation points out the distance from the mean where the distribution curve 
changes from being concave to convex (it is called the inflection point). All these 
characteristics make the Gaussian distribution a special distribution, and they can 
be leveraged for statistical computations.

You seldom encounter a Gaussian distribution in your data. Even if the Gaussian 
distribution is important for its statistical properties, in reality you’ll have to han-
dle completely different distributions, hence the need for EDA and measures such 
as skewness and kurtosis.

As an example, a previous example in this chapter shows that the bill_length_
mm feature presents differences between the mean and the median (see “Measur-
ing variance and range,” earlier in this chapter). In this section, you test the same 
example for skewness and kurtosis to determine whether the variable requires 
intervention.

When performing the skewness and kurtosis tests, you determine whether the 
p-value is less than or equal 0.05. If so, you have to reject normality (your variable 
distributed as a Gaussian distribution), which implies that you could obtain better 
results if you try to transform the variable into a normal one. The following code 
shows how to perform the required test:

from scipy.stats import skew, skewtest
variable = penguins["body_mass_g"]
s = skew(variable)
zscore, pvalue = skewtest(variable)
print(f"Skewness {s:.3f} z-score " \
      f"{zscore:.3f} p-value {pvalue:.3f}") 

Here are the skewness scores you get:

Skewness 0.470 z-score 3.414 p-value 0.001 
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You can perform another test for kurtosis, as shown in the following code:

from scipy.stats import kurtosis, kurtosistest
variable = penguins["body_mass_g"]
k = kurtosis(variable)
zscore, pvalue = kurtosistest(variable)
print(f"Kurtosis {k:.3f} z-score {zscore:.3f} " \
      f"p-value {pvalue:.3f}") 

Here are the kurtosis scores you obtain:

Kurtosis -0.740 z-score -4.337 p-value 0.000

The test results tell you that the data is kind of flat and that it has a longer tail to 
the right, but not enough to make it unusable (see “The Complete Guide to Skew-
ness and Kurtosis” at https://www.simplilearn.com/tutorials/statistics- 
tutorial/skewness-and-kurtosis if you aren’t familiar with how this all works). 
The real problem is that the curve is not bell shaped, so you should investigate the 
matter further.

It’s a good practice to test all variables for skewness and kurtosis automatically. 
You should then proceed to inspect those whose values are the highest visually. 
Non-normality of a distribution may also conceal different issues, such as outliers 
to groups that you can perceive only by a graphical visualization.

Counting for Categorical Data
The Palmer Penguin dataset is made of four metric variables and a qualitative 
target outcome. Just as you use means and variance as descriptive measures for 
metric variables, so do frequencies strictly relate to qualitative ones.

Because the dataset is made up of metric measurements (depth and lengths in 
millimeters; mass in grams), you must render it qualitative by dividing it into bins 
according to specific intervals. The pandas package features two useful functions, 
cut() and qcut(), that can transform a metric variable into a qualitative one:

 » cut() expects a series of edge values used to cut the measurements or an 
integer number of groups used to cut the variables into equal-width bins

 » qcut() expects a series of percentiles used to cut the variable

https://www.simplilearn.com/tutorials/statistics-tutorial/skewness-and-kurtosis
https://www.simplilearn.com/tutorials/statistics-tutorial/skewness-and-kurtosis
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You can obtain a new categorical DataFrame using the following command, which 
concatenates a binning (see the “Understanding binning and discretization” sec-
tion of Chapter 9 for details) for each variable:

pcts = [0, .25, .5, .75, 1]
penguins_binned = pd.concat(
    [pd.qcut(penguins.iloc[:,0], pcts, precision=1),
     pd.qcut(penguins.iloc[:,1], pcts, precision=1),
     pd.qcut(penguins.iloc[:,2], pcts, precision=1),
     pd.qcut(penguins.iloc[:,3], pcts, precision=1)],
    join='outer', axis = 1)

This example relies on binning (as explained in the “Understanding binning and 
discretization” section of Chapter 9). However, it could also help to explore when 
the variable is above or below a singular hurdle value, usually the mean or the 
median. In this case, you set pd.qcut to the 0.5 percentile or pd.cut to the mean 
value of the variable.

Binning transforms numerical variables into categorical ones. This transforma-
tion can improve your understanding of data and the machine learning phase that 
follows by reducing the noise (outliers) or nonlinearity of the transformed variable.

Understanding frequencies
You can obtain a frequency for each categorical variable of the dataset, both for the 
predictive variable and for the outcome, by using the following code:

print(penguins["species"].value_counts())

The resulting frequencies show that each group is of a similar size:

Adelie       146
Gentoo       119
Chinstrap     68

You can try also computing frequencies for the binned body_mass_g that you 
obtained from the previous paragraph: 

print(penguins_binned['body_mass_g'].value_counts())

In this case, binning produces different groups:

(2699.9, 3550.0]    86
(3550.0, 4050.0]    86
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(4775.0, 6300.0]    83
(4050.0, 4775.0]    78

The value_counts() provide the range of each bin for 'body_mass_g' in this case 
and the frequencies, such as 86 for the top range of (2699.9, 3550.0], for each 
bin. The following example provides you with some basic frequency information, 
such as the number of unique values in each variable and the mode of the fre-
quency (top and freq rows in the output). The next section of the chapter gives 
you additional details about where these value come from using a crosstab 
presentation.

print(penguins_binned.describe())

Here is the binning description:

       bill_length_mm bill_depth_mm flipper_length_mm...
count             333           333               333...
unique              4             4                 4...
top      (32.0, 39.5]  (13.0, 15.6]    (171.9, 190.0]...
freq               86            85                95...

Frequencies can signal a number of interesting characteristics of qualitative 
features:

 » The mode of the frequency distribution that is the most frequent category

 » The other most frequent categories, especially when they are comparable 
with the mode (bimodal distribution) or if there is a large difference 
between them

 » The distribution of frequencies among categories, if rapidly decreasing or 
equally distributed

 » Rare categories

Creating contingency tables
By matching different categorical frequency distributions, you can display the 
relationship between qualitative variables. The pandas.crosstab() function can 
match variables or groups of variables, helping to locate possible data structures 
or relationships.

In the following example, you check how the outcome variable is related to body 
mass and observe how certain species and body classes seldom appear together. 
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Figure 13-1 shows the various penguin types along the left side of the output, fol-
lowed by the output as related to body mass.

print(pd.crosstab(penguins["species"],
                  penguins_binned['body_mass_g']))

Creating Applied Visualization for EDA
Up to now, the chapter has explored variables by looking at each one separately. 
Technically, if you’ve followed along with the examples, you have created a  
univariate (that is, you’ve paid attention to stand-alone variations of the data 
only) description of the data. The data is rich in information because it offers a 
perspective that goes beyond the single variable, presenting more variables with 
their reciprocal variations. The way to use more of the data is to create a bivariate 
(seeing how couples of variables relate to each other) exploration. This is also the 
basis for complex data analysis based on a multivariate (simultaneously consider-
ing all the existent relations between variables) approach.

If the univariate approach inspected a limited number of descriptive statistics, 
then matching different variables or groups of variables increases the number of 
possibilities. Such exploration overloads the data scientist with different tests and 
bivariate analysis. Using visualization is a rapid way to limit test and analysis to 
only interesting traces and hints. Visualizations, using a few informative graph-
ics, can convey the variety of statistical characteristics of the variables and their 
reciprocal relationships with greater ease.

Inspecting boxplots
Boxplots provide a way to represent distributions and their extreme ranges, sig-
naling whether some observations are too far from the core of the data — a prob-
lematic situation for some learning algorithms. The following code shows how to 
create a basic boxplot using the Palmer Penguins dataset after having selected 

FIGURE 13-1: 
A contingency 

table based on 
groups and 

binning.
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only the numeric variables, thanks to the select_dtypes() method, and having 
standardized them with the StandardScaler from Scikit-learn (https://scikit- 
learn.org/stable/modules/generated/sklearn.preprocessing.Standard 
Scaler.html) in order to have comparable units between variables:

from sklearn.preprocessing import StandardScaler
 
scaler = StandardScaler()
numeric_features = penguins.select_dtypes(
    include=['number'])
penguins_std = pd.DataFrame(
    scaler.fit_transform(numeric_features),
    columns=numeric_features.columns)
 
boxplots = penguins_std.boxplot(fontsize=9)

In Figure  13-2, you see the structure of each variable’s distribution at its core, 
represented by the 25° and 75° percentile (the sides of the box) and the median (at 
the center of the box). The lines, the so-called whiskers, represent 1.5 times the 
IQR from the box sides (or by the distance to the most extreme value, if within 1.5 
times the IQR). The boxplot marks every observation outside the whisker (deemed 
an unusual value) by a sign.

Boxplots are also extremely useful for visually checking group differences. Note in 
Figure 13-3 how a boxplot can hint that the Gentoo penguin group have on average 

FIGURE 13-2: 
A boxplot 

comparing all the 
standardized 

variables.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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different body mass, with only partially overlapping values at the fringes of the 
other two penguin groups.

%matplotlib inline
import matplotlib.pyplot as plt
boxplots = penguins.boxplot(column='body_mass_g', 
                            by="species", fontsize=10)
plt.show()

Performing t-tests after boxplots
After you have spotted a possible group difference relative to a variable, a t-test 
(you use a t-test in situations in which the sampled population has an exact nor-
mal distribution) or a one-way Analysis Of Variance (ANOVA) can provide you 
with a statistical verification of the significance of the difference between the 
groups’ means.

The t-test compares two groups at a time, and it requires that you check whether 
the groups have similar variance.

from scipy.stats import ttest_ind
 
group0 = penguins['species'] == 'Adelie'
group1 = penguins['species'] == 'Chinstrap'

FIGURE 13-3: 
A boxplot of body 
mass arranged by 

penguin groups.
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group2 = penguins['species'] == 'Gentoo'
variable = penguins['body_mass_g']
 
print(f"var1 {variable[group0].var():.3f} " \
      f"var2 {variable[group1].var():03f}")

If you compare the variances in body mass of the Adélie group to the Chinstrap 
group, they appear quite different:

var1 210332.428 var2 147713.454785

In this case, you set the equal_var parameter to False because their variances are 
not the same:

variable = penguins['body_mass_g']
t, pvalue = ttest_ind(variable[group0], variable[group1],
                      axis=0, equal_var=False)
print(f"t statistic {t:.3f} p-value {pvalue:.3f}")

The resulting t statistic and its p-values are

t statistic -0.448 p-value 0.655

You interpret the pvalue as the probability that the calculated t statistic differ-
ence is just due to chance. Usually, when it is below 0.05, you can confirm that the 
groups’ means are significantly different. In our example, with a pvalue of 0.655, 
which is greater than the typical significance level of 0.05, we do not have suffi-
cient evidence to conclude that the observed difference is statistically significant.

You can simultaneously check more than two groups using the one-way ANOVA 
test. In this case, the pvalue has an interpretation similar to the t-test:

from scipy.stats import f_oneway
 
variable = penguins['body_mass_g']
f, pvalue = f_oneway(variable[group0], 
                     variable[group1], 
                     variable[group2])
print(f"One-way ANOVA F-value {f:.3f} p-value "
      f"{pvalue:.3f}")

The result from the ANOVA test implies that at least one group is different from 
the others:

One-way ANOVA F-value 341.895 p-value 0.000
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Observing parallel coordinates
Parallel coordinates can help spot which groups in the outcome variable you could 
easily separate from the other. It is a truly multivariate plot, because at a glance it 
represents all your data at the same time. The following example shows how to 
use parallel coordinates:

from pandas.plotting import parallel_coordinates
 
penguins_std["species"] = penguins["species"].values
pll = parallel_coordinates(penguins_std, "species")

As shown in Figure 13-4, on the abscissa axis you find all the quantitative vari-
ables aligned. On the ordinate, you find all the observations, carefully represented 
as parallel lines, each one of a different color given its ownership to a different 
group.

If the parallel lines of each group stream together along the visualization in a sep-
arate part of the graph far from other groups, the group is easily separable. The 
visualization also provides the means to assert the capability of certain features to 
separate the groups.

Graphing distributions
You usually render the information that boxplot and descriptive statistics provide 
into a curve or a histogram, which shows an overview of the complete distribution 
of values. The output shown in Figure 13-5 represents all the distributions in the 
dataset. Different variable scales and shapes are immediately visible, such as the 
fact that penguins’ flipper-length feature displays two peaks.

FIGURE 13-4: 
Parallel 

 coordinates 
anticipate 

whether groups 
are easily 

separable.
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densityplot = (penguins["flipper_length_mm"]
               .plot(kind="density"))

Histograms present another, more detailed, view over distributions:

single_distribution = (penguins["flipper_length_mm"]
                       .plot(kind="hist", bins=30))

Figure 13-6 shows the histogram of flipper length. It reveals a gap in the distribu-
tion that could be a promising discovery if you can relate it to a certain group. 
(Hint: Look at the Gentoo group.)

FIGURE 13-5: 
Flipper length 

distribution and 
density.

FIGURE 13-6: 
Histograms can 

detail better 
distributions.
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Plotting scatterplots
In scatterplots, the two compared variables provide the coordinates for plotting 
the observations as points on a plane. The result is usually a cloud of points. When 
the cloud is elongated and resembles a line, you can deduce that the variables are 
correlated. The following example demonstrates this principle:

palette = {'Adelie': 'red', 'Gentoo': 'yellow',
           'Chinstrap':'blue'}
colors = [palette[c] for c in penguins['species']]
simple_scatterplot = penguins.plot(
                kind='scatter', x='bill_length_mm', 
                y='bill_depth_mm', c=colors)

This simple scatterplot, represented in Figure 13-7, compares length and depth of 
bills. The scatterplot highlights different groups using different colors. The elon-
gated shape described by the points hints at a strong correlation between the two 
observed variables, and the division of the cloud into groups suggests a possible 
separability of the groups.

Because the number of variables isn’t too large, you can also generate all the scat-
terplots automatically from the combination of the variables. This representation 
is a matrix of scatterplots. The following example demonstrates how to create one:

from pandas.plotting import scatter_matrix
 
palette = palette = {'Adelie': 'red', 'Gentoo': 'yellow',

FIGURE 13-7: 
A scatterplot 

reveals how two 
variables relate to 

each other.
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                    'Chinstrap':'blue'}
colors = [palette[c] for c in penguins['species']]
matrix_of_scatterplots = scatter_matrix(
    penguins, figsize=(6, 6), 
    color=colors, diagonal='kde')

In Figure 13-8, you can see the resulting visualization for the Palmer Penguins 
dataset. The diagonal representing the density estimation can be replaced by a 
histogram using the parameter diagonal='hist'.

Understanding Correlation
Just as the relationship between variables is graphically representable, it is also 
measurable by a statistical estimate. When working with numeric variables, the 
estimate is a correlation, and the Pearson’s correlation is the most famous. The 
Pearson’s correlation is the foundation for complex linear estimation models. 
When you work with categorical variables, the estimate is an association, and the 
chi-square statistic is the most frequently used tool for measuring association 
between features.

FIGURE 13-8: 
A matrix of 

scatterplots 
displays more 
information at 

one time.
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Using covariance and correlation
Covariance is the first measure of the relationship of two variables. It determines 
whether both variables have a coincident behavior with respect to their mean. If 
the single values of two variables are usually above or below their respective aver-
ages, the two variables have a positive association. It means that they tend to 
agree, and you can figure out the behavior of one of the two by looking at the 
other. In such a case, their covariance will be a positive number, and the higher 
the number, the higher the agreement.

If, instead, one variable is usually above and the other variable usually below their 
respective averages, the two variables are negatively associated. Even though the 
two disagree, it’s an interesting situation for making predictions, because by 
observing the state of one of them, you can figure out the likely state of the other 
(albeit they’re opposite). In this case, their covariance will be a negative number.

A third state is that the two variables don’t systematically agree or disagree with 
each other. In this case, the covariance will tend to be zero, a sign that the vari-
ables don’t share much and have independent behaviors.

Ideally, when you have a numeric target variable, you want the target variable to 
have a high positive or negative covariance with the predictive variables. Having a 
high positive or negative covariance among the predictive variables is a sign of 
information redundancy. Information redundancy signals that the variables point to 
the same data — that is, the variables are telling us the same thing in slightly dif-
ferent ways.

Computing a covariance matrix is straightforward using pandas. You can imme-
diately apply it to the DataFrame of the Palmer Penguins dataset as shown here:

penguins.select_dtypes(np.number).cov()

The matrix in Figure  13-9 shows variables present on both rows and columns.  
By observing different row and column combinations, you can determine the 
value of covariance between the variables chosen. After observing these results, 
you can immediately understand that little relationship exists between bill length 
and bill depth, meaning that they’re different informative values. However, there 
could be a special relationship between body mass and flipper length, but the 
example doesn’t tell what this relationship is because the measure is not easily 
interpretable.
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The scale of the variables you observe influences covariance, so you should use a 
different, but standard, measure. The solution is to use correlation, which is the 
covariance estimation after having standardized the variables. Here is an example 
of obtaining a correlation using a simple pandas method:

penguins.select_dtypes(np.number).corr()

You can examine the resulting correlation matrix in Figure 13-10:

Now that’s even more interesting, because correlation values are bound between 
values of –1 and +1, so the relationship between body mass and flipper length is 
positive and, with a 0.87, it is very near to the maximum possible.

You can compute covariance and correlation matrices also by means of NumPy 
commands, as shown here:

import numpy as np
 
covariance_matrix = np.cov(penguins.iloc[:,:4], rowvar=0)
correlation_matrix = np.corrcoef(penguins.iloc[:,:4],
                                 rowvar=0)

In statistics, this kind of correlation is a Pearson correlation, and its coefficient is a 
Pearson’s r.

Another nice trick is to square the correlation. By squaring it, you lose the sign of 
the relationship. The new number tells you the percentage of the information 
shared by two variables. In this example, a correlation of 0.76 implies that  
76 percent of the information is shared between the two variables. You can obtain 

FIGURE 13-9: 
A covariance 
matrix of the 

Palmer Penguins 
dataset.

FIGURE 13-10: 
A correlation 
matrix of the 

Palmer Penguins 
dataset.
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a squared correlation matrix using this command: penguins.select_dtypes(np.
number).corr()**2.

Something important to remember is that covariance and correlation are based on 
means, so they tend to represent relationships that you can express using linear 
formulations. Variables in real-life datasets usually don’t have nice linear formu-
lations. Instead they are highly nonlinear, with curves and bends. You can rely on 
mathematical transformations to make the relationships linear between variables 
anyway. A good rule to remember is to use correlations only to assert relationships 
between variables, not to exclude them.

Using nonparametric correlation
Correlations can work fine when your variables are numeric and their relationship 
is strictly linear. Sometimes, your feature could be ordinal (a numeric variable but 
with orderings) or you may suspect some nonlinearity due to non-normal distri-
butions in your data. A possible solution is to test the doubtful correlations with a 
nonparametric correlation, such as a Spearman rank-order correlation (which 
means that it has fewer requirements in terms of distribution of considered vari-
ables). A Spearman correlation transforms your numeric values into rankings and 
then correlates the rankings, thus minimizing the influence of any nonlinear 
relationship between the two variables under scrutiny. The resulting correlation, 
commonly denoted as rho, is to be interpreted in the same way as a Pearson’s 
correlation.

As an example, you verify the relationship between bill length and bill depth 
whose Pearson correlation was quite weak:

from scipy.stats import spearmanr
from scipy.stats import pearsonr
 
a = penguins['bill_length_mm']
b = penguins['bill_depth_mm']
rho_coef, rho_p = spearmanr(a, b)
r_coef, r_p = pearsonr(a, b)
print(f"Pearson r {r_coef:.3f} | "
      f"Spearman rho {rho_coef:.3f}")

Here is the resulting comparison:

Pearson r -0.229 | Spearman rho -0.214
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In this case, the code confirms the weak association between the two variables 
using the nonparametric test because the outputs are fairly close to 0 (see “Con-
duct and Interpret a Spearman Rank Correlation” at https://www.statistics 
solutions.com/free-resources/directory-of-statistical-analyses/ 
spearman-rank-correlation/ for a more detailed discussion of this topic).

Considering chi-square for tables
You can apply another nonparametric test for relationship when working with 
cross-tables. This test is applicable to both categorical and numeric data (after it 
has been discretized into bins). The chi-square statistic tells you when the table 
distribution of two variables is statistically comparable to a table in which the two 
variables are hypothesized as not related to each other (the so-called indepen-
dence hypothesis). Here is an example of how you use this technique to figure out 
whether the bill length associates with the penguin species:

from scipy.stats import chi2_contingency
 
table = pd.crosstab(penguins["species"], 
                    penguins_binned["bill_length_mm"])
chi2, p, dof, expected = chi2_contingency(table.values)
print(f"Chi-square {chi2:.2f} p-value {p:.3f}")

The resulting chi-square statistic is

Chi-square 264.02 p-value 0.000

As seen before, the p-value is the chance that the chi-square difference is just by 
chance. The high chi-square value and the significant p-value are signaling that 
the bill_length_mm variable can be effectively used for distinguishing between 
penguins groups.

The larger the chi-square value, the greater the probability that two variables are 
related, yet, the chi-square measure value depends on how many cells the table 
has. Do not use the chi-square measure to compare different chi-square tests 
unless you know that the tables in comparison are of the same shape.

The chi-square is particularly interesting for assessing the relationships between 
binned numeric variables, even in the presence of strong nonlinearity that can 
fool Person’s r. Contrary to correlation measures, it can inform you of a possible 
association, but it won’t provide clear details of its direction or absolute 
magnitude.

https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/spearman-rank-correlation/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/spearman-rank-correlation/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/spearman-rank-correlation/
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Working with Cramér’s V
Testing whether an association exists between categorical features and between 
numeric and categoricals can provide useful information, but it would be more 
actionable if you could quantify such an association, as you can between numeric 
features with Pearson correlation and nonparametric rank-order measures. A 
solution is to use Cramér’s V, a measure that translates chi-square statistics into a 
measure of association ranging from –1 to 1, just like the Pearson correlation.

To calculate Cramér’s V, you first need to calculate the chi-square statistic between 
the two categorical variables, which you can do by using the SciPy function chi2_
contingency(), as shown in the “Considering chi-square for tables” section of 
the chapter. After you have the chi-square statistic, you can calculate Cramér’s V 
using the following formula:

V = sqrt(chi_square / (n * min(k-1, r-1)))

where n is the total number of observations, k is the number of rows in the con-
tingency table, and r is the number of columns. The min() function ensures that 
the calculation does not exceed the maximum possible value of V, which is 1. Here 
you can find everything translated into code:

n = len(penguins)
k, r = table.shape
V = np.sqrt(chi2 / (n * min(k-1, r-1)))
print(f"Cramer's V {V:.2f}")

Here is the estimated association between species and the bill length:

Cramer's V 0.63

Modifying Data Distributions
As a by-product of data exploration, in an EDA phase you can do the following:

 » Obtain new feature creation from the combination of different but 
related variables

 » Spot hidden groups or strange values lurking in your data

 » Try some useful modifications of your data distributions by binning (or other 
discretizations such as binary variables)
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When performing EDA, you need to consider the importance of data transforma-
tion in preparation for the learning phase, which also means using certain math-
ematical formulas. Most machine learning algorithms work best when the 
Pearson’s correlation is maximized between the variables you have to predict and 
the variable you use to predict them. The following sections present an overview 
of the most common procedures used during EDA in order to enhance the rela-
tionship between variables. The data transformation you choose depends on the 
actual distribution of your data, therefore it’s not something you decide before-
hand; rather, you discover it by EDA and multiple testing. In addition, these sec-
tions highlight the need to match the transformation process to the mathematical 
formula you use.

Using different statistical distributions
During data science practice, you’ll meet with a wide range of different  
distributions  — with some of them named by probabilistic theory, others not.  
For some distributions, the assumption that they should behave as a normal  
distribution may hold, but for others, it may not, and that could be a problem 
depending on what algorithms you use for the learning process. As a general rule, 
if your model is a linear regression or part of the linear model family because it 
boils down to a summation of coefficients, then both variable standardization and 
distribution transformation should be considered.

Apart from the linear models, many other machine learning algorithms are actu-
ally indifferent to the distribution of the variables you use. However, transforming 
the variables in your dataset to render their distribution more Gaussian-like could 
result in positive effects.

Creating a Z-score standardization
In your EDA process, you may have realized that your variables have different 
scales and are heterogeneous in their distributions. As a consequence of your 
analysis, you need to transform the variables in a way that makes them easily 
comparable:

from sklearn.preprocessing import StandardScaler
 
scaler = StandardScaler()
bill_depth_mm = scaler.fit_transform(
    penguins[['bill_depth_mm']])
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Some algorithms will work in unexpected ways if you don’t rescale your  
variables using standardization. As a rule of thumb, pay attention to any linear 
models, cluster analysis, and any algorithm that claims to be based on statistical 
measures.

Transforming other notable distributions
When you check variables with high skewness and kurtosis for their correlation, 
the results may disappoint you. As you find out in the “Defining measures of nor-
mality” section, earlier in this chapter, using a nonparametric measure of corre-
lation, such as Spearman’s, may tell you more about two variables than Pearson’s 
r may tell you. In this case, you should transform your insight into a new, trans-
formed feature. Scikit-learn offers the QuantileTransformer that can convert 
any distribution into a uniform or a normal distribution. Here’s how it works on 
bill depth, a variable with a non-normal distribution:

from sklearn.preprocessing import QuantileTransformer
 
uniform = QuantileTransformer(
    n_quantiles=30, output_distribution="uniform")
bill_depth_mm = uniform.fit_transform(
    penguins[['bill_depth_mm']])
plt.hist(bill_depth_mm, bins=30);

In Figure  13-11 you can see how the QuantileTransformer has distributed the 
values in a shape that resembles a uniform distribution. (Although the result is 
not perfect, it is still impressive.) It’s possible to use it to transform the same 
variable into a normally distributed one as well: 

normal = QuantileTransformer(
    n_quantiles=30, output_distribution="normal")
bill_depth_mm = normal.fit_transform(
    penguins[['bill_depth_mm']])
plt.hist(bill_depth_mm, bins=30);

In Figure 13-12 you can see the results. It’s important to keep in mind that such 
transformations are useful if they increase their association with the target of 
your machine learning model and if, by transforming the distribution, you don’t 
harm how the variable interacts with the others.
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FIGURE 13-11: 
The distribution 

of bill depth 
transformed into 

a uniform 
distribution.

FIGURE 13-12: 
The distribution 

of bill depth 
transformed into 

a normal 
distribution.
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Chapter 14
Reducing Dimensionality

Big data is defined as an extensive collection of data that is so massive that 
traditional processing techniques struggle to handle it effectively. The 
manipulation of big data differentiates statistical problems, which are 

based on small samples, from data science problems. You typically use traditional 
statistical techniques on small problems and data science techniques on big 
problems.

Data may be viewed as big because it consists of many examples, and this is the 
first kind of big that spontaneously comes to mind. Analyzing a database of  
millions of customers and interacting with them all simultaneously is really  
challenging, but that isn’t the only possible perspective of big data. Another view 
of big data is data dimensionality, which refers to how many aspects of the cases 
an application tracks. Data with high dimensionality may offer many features 
(variables) — often hundreds or thousands of them. And that may turn into a real 
problem. Even if you’re observing only a few cases for a short time, dealing with 
too many features can make most analysis intractable.

The complexity of working with so many dimensions drives the necessity for  
various data techniques to filter the information — keeping the data that seems to 
solve the problem better. The filter reduces dimensionality by removing redun-
dant information in high-dimension datasets. The focus in this chapter is on 
reducing data dimensions when the data has too many repetitions of the same 

IN THIS CHAPTER

 » Discovering the magic of singular 
value decomposition

 » Understanding the difference 
between factors and components

 » Automatically retrieving and 
matching images and text

 » Building a movie recommender 
system
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information. You can view this reduction as a kind of information compression, 
which is similar to compressing files on a hard disk in order to save space.

You don’t have to type the source code for this chapter manually; using the  
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_14_Reducing_ 
Dimensionality.ipynb file.

Understanding SVD
The core of data reduction magic lies in an operation of linear algebra called  
Singular Value Decomposition (SVD). SVD is a mathematical method that takes 
data as input in the form of a single matrix and gives back three resulting matrices 
that, multiplied together, return the original input matrix. (You can find a short 
introduction to SVD at https://machinelearningmastery.com/singular- 
value-decomposition-for-machine-learning/.) The formula of SVD is

M = U * s * Vh

Here is a short explanation of the letters used in the equation:

 » U: Contains all the information about the rows (observations)

 » Vh: Contains all the information about the columns (features)

 » s: Records the SVD process (a type of log record)

Creating three matrices out of one seems counterproductive when the goal is to 
reduce data dimensions. When using SVD, you seem to be generating more data, 
not reducing it. However, SVD conceals the magic in the process, because as it 
builds these new matrices, it separates the information regarding the rows from 
the columns of the original matrix. As a result, it compresses all the valuable 
information into the first columns of the new matrices.

The resulting matrix s shows how the compression happened. The sum of all the 
values in s tells you how much information was previously stored in your original 
matrix, and each value in s reports how much data has accumulated in each 
respective column of U and Vh.

To understand how this all works, you need to look at individual values. For 
instance, if the sum of s is 100 and the first value of s is 99, that means that  
99 percent of the information is now stored in the first column of U. Therefore, 
you can happily discard all the remaining columns after the first column without 

https://machinelearningmastery.com/singular-value-decomposition-for-machine-learning/
https://machinelearningmastery.com/singular-value-decomposition-for-machine-learning/
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losing any important information for your data science knowledge-discovery 
process.

Looking for dimensionality reduction
It’s time to see how Python can help you reduce data complexity. The following 
example demonstrates a method for reducing your big data. You can use this  
technique in many other interesting applications, too.

import numpy as np
A = np.array([[1, 3, 4], [2, 3, 5], [1, 2, 3], [5, 4, 6]])
print(A)

The code prints matrix A, which appears in the following examples:

[[1 3 4]
 [2 3 5]
 [1 2 3]
 [5 4 6]]

Matrix, A contains the data you want to reduce. A is made of four observations 
containing three features each. Using the module linalg from NumPy, you can 
access the svd function that exactly splits your original matrix into three vari-
ables: U, s, and Vh.

U, s, Vh = np.linalg.svd(A, full_matrices=False)
print(np.shape(U), np.shape(s), np.shape(Vh))
print(s)

The output enumerates the shapes of U, s, and Vh, respectively, and prints the 
content of the s variable:

(4, 3) (3,) (3, 3)
[12.26362747 2.11085464 0.38436189]

Matrix U, representing the rows, has four row values. Matrix Vh is a square matrix, 
and its three rows represent the original columns. Matrix s is a diagonal matrix.  
A diagonal matrix contains zeros in every element but its diagonal. The length of 
its diagonal is exactly that of the three original columns. Inside s, you find that 
most of the values are in the first elements, indicating that the first column is 
what holds the most information (about 83 percent), the second has some values 
(about 14 percent), and the third contains the residual values. To obtain these 
percentages, you add the three values together to obtain 14.758844 and then  
use that number to divide the individual columns. For example, 12.26362747 /  
14.758844 is 0.8309341483655495 or about 83 percent.
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You can check whether the SVD keeps its promises by viewing the example output. 
The example reconstructs the original matrix using the dot NumPy function to 
multiply U, s (diagonal), and Vh. The dot function performs matrix multiplication, 
which is a multiplication procedure slightly different from the arithmetic one. 
Here is an example of a full matrix reconstruction:

print(np.dot(np.dot(U, np.diag(s)), Vh))

The code prints the reconstructed original matrix A:

[[ 1. 3. 4.]
 [ 2. 3. 5.]
 [ 1. 2. 3.]
 [ 5. 4. 6.]]

The reconstruction is perfect, but clearly you need to keep the same number of 
components in the resulting matrix U as variables as appeared in the original 
dataset. No dimensionality reduction really happened, you just restructured data 
in a way that makes the new variables uncorrelated (and this is useful for cluster-
ing algorithms, as you discover in Chapter 15).

When working with SVD, you usually care about the resulting matrix U, the matrix 
representing the rows, because it’s a replacement of your initial dataset.

Now it’s time to play with the results a little and obtain some real reduction. For 
example, you might want to see what happens when you exclude the third column 
from matrix U, the less important of the three. The following example shows what 
happens when you cut the last column from all three matrices.

print(np.round(np.dot(np.dot(U[:,:2], np.diag(s[:2])),
                      Vh[:2,:]),1))

The code prints the reconstruction of the original matrix using the first two 
components:

[[ 1. 2.8 4.1]
 [ 2. 3.2 4.8]
 [ 1. 2.  3. ]
 [ 5. 3.9 6. ]]

The output is almost perfect. It means that you could drop the last component and 
use U as a reasonable substitute for the original dataset. There are a few decimal 
points of difference. To take the example further, the following code removes both 
the second and third columns from matrix U:
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print(np.round(np.dot(np.dot(U[:,:1], np.diag(s[:1])), 
                      Vh[:1,:]),1))

Here is the reconstruction of the original matrix using a single component:

[[ 2.1 2.5 3.7]
 [ 2.6 3.1 4.6]
 [ 1.6 1.8 2.8]
 [ 3.7 4.3 6.5]]

Now there are more errors. Some elements of the matrix are missing more than a 
few decimal points. However, you can see that most of the numeric information is 
intact, and you could safely use matrix U in place of your initial data. Just imagine 
the potential of using such a technique on a larger matrix, one with hundreds of 
columns that you can first transform into a U matrix and then safely drop most of 
the columns.

One of the difficult issues to consider is determining how many columns to keep. 
Creating a cumulated sum of the diagonal matrix s (using the NumPy cumsum 
function is perfect for this task) is useful for keeping track of how information is 
expressed, and by how many columns. As a general rule, you should consider 
solutions maintaining from 70 to 99 percent of the original information; however, 
that’s not a strict rule — it really depends on how important it is for you to be able 
to reconstruct the original dataset.

Using SVD to measure the invisible
A property of SVD is to compress the original data at such a level and in such a 
smart way that, in certain situations, the technique can really create new mean-
ingful and useful features, not just compressed variables. Therefore, you could 
have used the three columns of the U matrix in the previous example as new 
features.

If your data contains hints and clues about a hidden cause or motif, an SVD can put 
them together and offer you proper answers and insights. That is especially true 
when your data is made up of interesting pieces of information like the ones in the 
following list:

 » Text in documents hint at ideas and meaningful categories. Just as you 
can make up your mind about treated themes by reading blogs and news-
groups, so also can SVD help you deduce a meaningful classification of groups 
of documents or the specific topics being written about in each of them.
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 » Reviews of specific movies or books hint at your personal preferences 
and at larger product categories. So if you say that you loved the original 
Star Trek series collection on a rating site, it becomes easy to determine what 
you like in terms of other films, consumer products, or even personality types.

An example of a method based on SVD is Latent Semantic Indexing (LSI), which has 
been successfully used to associate documents and words on the basis of the idea 
that words, though different, tend to have the same meaning when placed in sim-
ilar contexts. This type of analysis suggests not only synonymous words but also 
higher grouping concepts. For example, an LSI analysis on some sample sports 
news may group together baseball teams of the Major League Baseball (MLB) 
teams based solely on the co-occurrence of team names in similar articles, with-
out any previous knowledge of what a baseball team or the MLB are.

Performing Factor Analysis and PCA
SVD operates directly on the numeric values in data, but you can also express data 
as a relationship between variables. Each feature has a certain variation. You can 
calculate the variability as the variance measure around the mean. The more the 
variance, the more the information contained inside the variable. In addition, if 
you place the variable into a set, you can compare the variance of two variables to 
determine whether they correlate, which is a measure of how strongly they have 
similar values.

Checking all the possible correlations of a variable with the others in the set, you 
can discover that you may have two types of variance:

 » Unique variance: Some variance is unique to the variable under examina-
tion. It cannot be associated to what happens to any other variable.

 » Shared variance: Some variance is shared with one or more other variables, 
creating redundancy in the data. Redundancy implies that you can find the 
same information, with slightly different values, in various features and across 
many observations.

Of course, the next step is to determine the reason for shared variance. Trying to 
answer such a question, as well as determining how to deal with unique and 
shared variances, led to the creation of factor analysis and principal component 
analysis (commonly referred to as PCA).
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Considering the psychometric model
Long before many machine learning algorithms were thought up, psychometrics, 
the discipline in psychology that is concerned with psychological measurement, 
tried to find a statistical solution to effectively measure dimensions in personality. 
Our personality, as with other aspects of ourselves, is not directly measurable. For 
example, it isn’t possible to measure precisely how much a person is introverted 
or intelligent. Questionnaires and psychological tests only hint at these values.

Psychologists knew of SVD and tried to apply it to the problem. Shared variance 
attracted their attention: If some variables are almost the same, they should have 
the same root cause, they thought. Psychologists created factor analysis to perform 
this task and instead of applying SVD directly to data, they applied it to a newly 
created matrix tracking the common variance, in the hope of condensing all the 
information and recovering new useful features called factors.

Looking for hidden factors
A good way to show how to use factor analysis is to start with the Palmer Penguins 
dataset used in Chapter 13:

import pandas as pd
from sklearn.preprocessing import StandardScaler
 
def load_palmer_penguins():
    url = "https://raw.githubusercontent.com/allisonhorst/" \
          "palmerpenguins/main/inst/extdata/penguins.csv"
    numeric_features = ["bill_length_mm", "bill_depth_mm", 
                        "flipper_length_mm", "body_mass_g"]
    data = pd.read_csv(url).dropna()
    target = data.species.replace({'Adelie':1, 'Gentoo':2,
                                   'Chinstrap':3})
    data[numeric_features] = StandardScaler().\
        .fit_transform(data[numeric_features])
    return data[numeric_features], target
 
X, y = load_palmer_penguins()

After the code uploads the data, it can proceed with the process of recombining it 
into factors:

from sklearn.decomposition import FactorAnalysis
factor = FactorAnalysis(n_components=4).fit(X)
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In the above code snippet, the FactorAnalysis class is initialized with a request 
to look for four factors. The data is then fitted. You can explore the results by 
observing the components_ attribute, which returns an array containing measures 
of the relationship between the newly created factors, placed in rows, and the 
original features, placed in columns:

print(pd.DataFrame(factor.components_, columns=X.columns).T)

In the output, you find how the factors produced by the code, indicated in the 
columns, relate to the original variables depicted on the rows. You can interpret 
the numbers as being correlations:

                          0         1    2    3
bill_length_mm     0.665834  0.179744 -0.0  0.0
bill_depth_mm     -0.561658  0.236985  0.0 -0.0
flipper_length_mm  0.874881 -0.009841  0.0 -0.0
body_mass_g        0.840450  0.010157  0.0  0.0

At the intersection of each factor and feature, a positive number indicates that a 
positive correlation exists between the two; a negative number points out that they 
diverge and that one is contrary to the other. In the test on the Palmer Penguins 
dataset, for example, the resulting factors should be a maximum of 2, not 4, 
because only two factors have significant connections with the original features. 
You can use these two factors as new variables in your project because they reflect 
an unseen but important feature that the previously available data only hinted at.

You have to test different values of n_components because you can’t know how 
many factors exist in the data. If the algorithm is required for more factors than 
exist, it will generate factors with low or zero values in the components_ array.

Using components, not factors
If an SVD could be successfully applied to the common variance, you might won-
der why you can’t apply it to all the variances. Using a slightly modified starting 
matrix, all the relationships in the data could be reduced and compressed in a 
similar way to how SVD does it. The results of this process, which are quite similar 
to SVD, are called principal components analysis (PCA). The newly created features 
are named components. In contrast to factors, components aren’t described as the 
root cause of the data structure but are just restructured data, so you can view 
them as a big, smart summation of selected variables.

For data science applications, PCA and SVD are quite similar. However, PCA isn’t 
affected by the scale of the original features (because it works on correlation mea-
sures that are all bound between –1 and +1 values) and PCA focuses on rebuilding 
the relationship between the variables, thus offering different results from SVD.
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Achieving dimensionality reduction
The procedure to obtain a PCA is quite similar to the factor analysis. The differ-
ence is that you don’t specify the number of components to extract. When you 
declare n_components as “mle”, you are using the maximum likelihood estima-
tion (MLE) method to guess the right number of dimensions. MLE figures out a 
plausible guess by using statistics and probability. It looks at the data or informa-
tion you have and tries to find the values that are most likely to have produced 
that data. The following example shows how to perform this task:

from sklearn.decomposition import PCA
pca = PCA(n_components="mle").fit(X)
print('Explained variance by each component:',
      pca.explained_variance_ratio_.round(5),"\n")
print(pd.DataFrame(pca.components_, columns=X.columns).T)

In the output, you can observe how the initial variance of the dataset distributes 
across the components (for instance, here the first component accounts for  
68.6 percent of the variance initially present in the dataset) and the resulting  
PCA matrix of components, where each component (displayed in the rows) relates 
to each original variable (placed on the columns):

Explained variance by each component: [0.68634 0.19453 0.09216] 
 
                          0         1         2
bill_length_mm     0.453753  0.600195  0.642495
bill_depth_mm     -0.399047  0.796170 -0.425800
flipper_length_mm  0.576825  0.005788 -0.236095
body_mass_g        0.549675  0.076464 -0.591737

In this decomposition of the Palmer Penguins dataset, the vector array provided 
by explained_variance_ratio_ indicates that most of the information is con-
centrated into the first component (68.6 percent). You saw this same sort of result 
after the factor analysis. In this case it’s possible to reduce the entire dataset to 
three components, providing a reduction of noise and redundant information 
from the original dataset.

Squeezing information with t-SNE
Because SVD and PCA reduce data complexity, you can use the reduced dimensions 
for visualization. However, often PCA scatter plots aren’t helpful for visualization 
because you need more plots to see how examples relate to each other. Therefore, 
scientists created algorithms for nonlinear dimensionality reduction (also called 
manifold learning), such as t-SNE, to visualize relations in complex datasets of 
hundreds of variables using simple bidimensional scatter plots.
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The t-SNE algorithm starts by randomly projecting the data into the indicated 
number of dimensions (usually two for a bidimensional representation) as points. 
Then, in a series of iterations, the algorithm tries to push points that refer to sim-
ilar examples in the dataset (similarity is calculated using probability) together 
and push points that are too different from each other apart. After a few itera-
tions, similar points should arrange themselves in clusters separated from the 
other points. This arrangement helps represent data as a plot, and you inspect it 
to gain insight about the data and its meaning.

This example uses the handwritten number dataset in Scikit-learn. The dataset 
contains the grayscale images of handwritten numbers represented as an 8-x-8 
matrix of values ranging from zero to one. (They are shades, where zero is pure 
black, and one is white.)

from sklearn.datasets import load_digits
digits = load_digits()
X = digits.data
y = digits.target

After loading the dataset, you run the t-SNE algorithm to squeeze the data:

from sklearn.manifold import TSNE
tsne = TSNE(n_components=2,
            learning_rate="auto",
            init="random", 
            random_state=0,
            perplexity=50, 
            early_exaggeration=25,
            n_iter=300)
 
Tx = tsne.fit_transform(X)

This example sets the initial perplexity, early_exaggeration and n_iter 
parameters, which contribute to the quality of the ending representation. You can 
try different values of these parameters and obtain slightly different solutions. 
When the dataset is reduced, you can plot it and place the original number label to 
the area of the plot where most of the similar examples are, as follows:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.xticks([], [])
plt.yticks([], [])
for target in np.unique(y):
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    selection = y==target
    X1, X2 = Tx[selection, 0], Tx[selection, 1]
    c1, c2 = np.median(X1), np.median(X2)
    plt.plot(X1, X2, 'o', ms=5)
    plt.text(c1, c2, target, fontsize=18)

In Figure 14-1 you see the resulting plot, which reveals how some handwritten 
numbers such as zero, six, or four are easily distinguishable from others, whereas 
numbers such as three and nine (or five and eight) could be more easily 
misinterpreted.

According to the article “How to t-SNE Effectively” (source: https://distill.
pub/2016/misread-tsne/), it is crucial to use the t-SNE technique appropriately. 
This is because it’s easy to mistakenly perceive clusters and patterns in data where 
they may not actually exist. However, despite these potential pitfalls, our experi-
ence suggests that, when you’re trying to figure how your data works, t-SNE can 
provide more insightful results compared to other methods like PCA or SVD.

Understanding Some Applications
Understanding the algorithms that compose the family of SVD-derived data 
decomposition techniques is complex because of their mathematical complexity 
and numerous variants (such as Factor, PCA, and SVD). A few examples will help 

FIGURE 14-1: 
The resulting 

projection of the 
handwritten data 

by the t-SNE 
algorithm.

https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/
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you understand the best ways to employ these powerful data science tools. In the 
following paragraphs, you work with algorithms you likely seen in action when

 » Performing a search of images on a search engine or publishing an image on 
a social network

 » Automatically labeling blog posts or questions to Q&A websites

 » Receiving purchase recommendations on e-commerce websites

Recognizing faces with PCA
The following example shows how to use facial images to explain how social net-
works tag images with the appropriate label or name.

from sklearn.datasets import fetch_olivetti_faces
dataset = fetch_olivetti_faces(shuffle=True,
                               random_state=101)
train_faces = dataset.data[:350,:]
test_faces = dataset.data[350:,:]
train_answers = dataset.target[:350]
test_answers = dataset.target[350:]

The example begins by importing the Olivetti faces dataset, a set of images readily 
available from Scikit-learn. For this experiment, the code divides the set of labeled 
images into a training and a test set. You need to pretend that you know the labels 
of the training set but don’t know anything about the test set. As a result, you 
want to associate images from the test set to the most similar image from the 
training set.

The Olivetti dataset consists of 400 photos taken of 40 people (so there are 10 
photos of each person). Even though the photos represent the same person, each 
photo is taken at different times during the day, with different light and facial 
expressions or details (for example, with glasses and without). The images are 64 
x 64 pixels, so unfolding the pixels into features creates a dataset made of 400 
cases and 4,096 variables. You can obtain additional dataset information using: 
print(dataset.DESCR), as shown in the downloadable source code. For addi-
tional information about the dataset, refer to AT&T Laboratories Cambridge web 
pages: https://cam-orl.co.uk/facedatabase.html. The following code snippet 
transforms and reduces the images using a PCA algorithm from Scikit-learn:

from sklearn.decomposition import PCA
n_components = 25

https://cam-orl.co.uk/facedatabase.html


CHAPTER 14  Reducing Dimensionality      263

Rpca = PCA(svd_solver='randomized', 
           n_components=n_components, 
           whiten=True)
Rpca.fit(train_faces)
print(f"Explained variance by {n_components}")
print(f"components: ",
      f"{np.sum(Rpca.explained_variance_ratio_):0.3f}")
compressed_train_faces = Rpca.transform(train_faces)
compressed_test_faces  = Rpca.transform(test_faces)

When executed, the run outputs the proportion of variance retained by the first 25 
components of the resulting PCA:

Explained variance by 25 components: 0.794.

The svd_solver='randomized' setting indicates that a randomized algorithm is 
used to perform the calculations in PCA. This works better when the dataset is 
large (many rows and variables). The decomposition creates 25 new variables  
(n_components parameter) and whitening (whiten=True), thus removing some 
constant noise (created by textual and photo granularity) from images. The result-
ing decomposition uses 25 components, which is about 80 percent of information 
held in 4,096 features.

%matplotlib inline
import matplotlib.pyplot as plt
 
photo = 17
print(f"The represented person is subject "
      f"{test_answers[photo]}")
plt.subplot(1, 2, 1)
plt.axis('off')
plt.title(f"Unknown photo {photo} in test set")
plt.imshow(test_faces[photo].reshape(64, 64), 
           cmap=plt.cm.gray, interpolation="nearest")
plt.show()

Figure 14-2 represents subject number 34, whose photo number 17 has been cho-
sen as the test set.
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After test set decomposition, the example takes the data relative only to photo 17 
and subtracts it from the decomposition of the training set. Now the training set 
is made of differences with respect to the example photo. The code squares them 
(to remove negative values) and sums them by row, which results in a series of 
summed errors. The most similar photos are the ones with the least-squared 
errors, the ones whose differences are the least.

mask = compressed_test_faces[photo,] 
squared_errors = np.sum((compressed_train_faces 
                         - mask)**2, axis=1)
minimum_error_face = np.argmin(squared_errors)
most_resembling = list(np.where(squared_errors < 20)[0])
print(f"Best resembling subject in training set: " 

    f"{train_answers[minimum_error_face]}")

The preceding code returns the code number of the best resembling person in the 
dataset, which effectively corresponds with the code of the subject chosen from 
the test set:

Best resembling subject in training set: 34

You check the work done by the code by displaying photo 17 from the test set next 
to the top three images from the training set that best resemble it (as shown in 
Figure 14-3):

%matplotlib inline
import matplotlib.pyplot as plt
plt.subplot(2, 2, 1)
plt.axis('off')
plt.title(f'Unknown face {photo} in test set')
plt.imshow(test_faces[photo].reshape(64, 64), 

FIGURE 14-2: 
The example 

application would 
like to find  

similar photos.
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           cmap=plt.cm.gray, 
           interpolation='nearest')
for k,m in enumerate(most_resembling[:3]):
    plt.subplot(2, 2, 2+k)
    plt.title(f'Match in train set no. {m}')
    plt.axis('off')
    plt.imshow(train_faces[m].reshape(64, 64), 
               cmap=plt.cm.gray, 
               interpolation='nearest')
plt.show()

Even though the most similar photo from the training data it is just a differently 
scaled version of the one in the test set, the other two photos are displaying a dif-
ferent pose of the same person present in the test photo 17. This example using 
PCA, starting from an example image, accurately finds other photos of the very 
same person from a set of images.

FIGURE 14-3: 
The output shows 

the results that 
resemble the  

test image.
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Extracting topics with NMF
Textual data is another field of application for the family of data reduction algo-
rithms. The idea that prompted such application is that if a group of people talks 
or writes about something, they tend to use words from a limited set because they 
refer or relate to the same topic; they share some meaning or are part of the same 
group. Consequently, if you have a collection of texts and don’t know what topics 
the text references, you can reverse the previous reasoning — you can simply look 
for groups of words that tend to associate, so the group newly formed by dimen-
sionality reduction hints at the topics you’d like to know about.

This is a perfect application for the SVD family, because by reducing the number 
of columns, the features (in a document, the words are the features) will gather in 
dimensions, and you can discover the topics by checking high-scoring words. SVD 
and PCA provide features to relate both positively and negatively with the newly 
created dimensions. So a resulting topic may be expressed by the presence of a 
word (high positive value) or by the absence of it (high negative value), making 
interpretation both tricky and counterintuitive for humans. Luckily, Scikit-learn 
includes the Non-Negative Matrix Factorization (NMF) decomposition class, 
which allows an original feature to relate only positively with the resulting 
dimensions.

This example begins by loading the 20newsgroups dataset, selecting only the 
posts regarding objects for sale and automatically removing headers, footers, and 
quotes. (Note that this code can require a long time to run depending on the capa-
bilities of your system and the speed of your network connection.)

from sklearn.datasets import fetch_20newsgroups
dataset = fetch_20newsgroups(
    shuffle=True, 
    categories = ['misc.forsale'], 
    remove=('headers', 'footers', 'quotes'), 
    random_state=101)
print(f'Posts: {len(dataset.data)}')

The code loads the dataset and prints the number of posts it contains:

Posts: 585

The TfidVectorizer class is imported and set up to remove stop words (common 
words such as “the” or “and”) and keep only distinctive words, producing a 
matrix whose columns point to distinct words.
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from sklearn.feature_extraction.text import \
    TfidfVectorizer
from sklearn.decomposition import NMF
 
vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, 
                             stop_words='english')
tfidf = vectorizer.fit_transform(dataset.data)
 
n_topics = 5
nmf = NMF(n_components=n_topics,
          init="nndsvda",
          random_state=101).fit(tfidf)

Term frequency-inverse document frequency (Tf-idf) is a simple calculation based on 
the frequency of a word in document. It’s weighted by word rarity in the available 
documents. Weighting words is an effective way to rule out words that can’t help 
you to classify or to identify the document when processing text. For example, you 
can eliminate common parts of speech or other common words.

As with other algorithms from the sklearn.decomposition module, the  
n_components parameter indicates the number of desired components. If you’d 
like to look for more topics, you use a higher number. As the required number of 
topics increases, the reconstruction_err_ method reports lower error rates. It’s 
up to you to decide when to stop given the trade-off between more time spent on 
computations and more topics.

The last part of the script outputs the resulting five topics. By reading the printed 
words, you can decide on the meaning of the extracted topics, thanks to product 
characteristics (for instance, the words drive, hard, card, and floppy refer to com-
puters) or the exact product (for instance, comics, car, stereo, games).

feature_names = vectorizer.get_feature_names_out()
n_top_words = 15
for topic_idx, topic in enumerate(nmf.components_):
    print(f'Topic #{topic_idx+1}:', end="\t")
    topics = topic.argsort()[:-n_top_words - 1:-1]
    print(' '.join([feature_names[i] for i in topics]))

The topics appear in order, accompanied by their most representative keywords. 
You can explore the resulting model by looking into the attribute components_ 
from the trained NMF model. It consists of a NumPy ndarray holding positive val-
ues for words connected to the topic. By using the argsort method, you can get 
the indexes of the top associations, whose high values indicate that they are the 
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most representative words. This code extracts the indexes of the top representa-
tive words for the topic 1:

print(nmf.components_[0,:].argsort()[:-n_top_words-1:-1])

The output is a list of indexes, each one corresponding to a word:

[1075 1459  632 2463  740  888 2476 2415 2987   10 2305
    1 3349  923 2680]

Decoding the words’ indexes creates readable strings by calling them from  
the array derived from the get_feature_names method applied to the Tfidf 
Vectorizer that was previously fitted. In the following snippet, you see how to 
extract the word related to the 2463 index, the top explicative word of the topic 1:

word_index = 2463
print(vectorizer.get_feature_names_out()[word_index])

Here’s the word related to the 2463 index:

Offer

Recommending movies
Other interesting applications for data reduction are systems that generate rec-
ommendations for things you may like to buy or know more about. You likely see 
recommenders in action on most e-commerce websites after logging-in and vis-
iting some product pages. As you browse, you rate items or put them in your elec-
tronic basket. Based on these actions and those of other customers, you see other 
buying opportunities (this method is collaborative filtering).

You can implement collaborative recommendations based on simple means or 
frequencies calculated on other customers’ set of purchased items or on ratings 
using SVD. This approach helps you reliably generate recommendations even in 
the case of products the vendor seldom sells or that are quite new to users. For this 
example, you use a well-known database created by the MovieLens website, col-
lected from its users’ ratings of a movie they liked or disliked. The following code 
snippet will download all the necessary data for you directly from the MovieLens 
database:
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import urllib.request
import zipfile
 
def get_movielens():
    url = ("http://files.grouplens.org/datasets"
           "/movielens/ml-1m.zip")
    filename = 'ml-1m.zip'
    urllib.request.urlretrieve(url, filename)
    params = {"sep":"::", "engine":"python",
              "encoding":"latin-1"}
 
    with zipfile.ZipFile('ml-1m.zip', 'r') as zip_file:
        with zip_file.open('ml-1m/users.dat') as file:
            users = pd.read_csv(
                file, 
                names=['user_id', 'gender', 'age', 
                       'occupation', 'zip'],
                **params)
        with zip_file.open('ml-1m/ratings.dat') as file:
            ratings = pd.read_csv(
                file, 
                names=['user_id', 'movie_id', 'rating',
                       'timestamp'],
                **params)
        with zip_file.open('ml-1m/movies.dat') as file:
            movies = pd.read_csv(
                file, 
                names=['movie_id', 'title', 'genres'],
                **params)
    return pd.merge(pd.merge(ratings, users), movies)
        
movielens = get_movielens()

Using pandas will help create a datatable containing information in rows about 
users and in columns about movie titles. A movie index will keep track of what 
movie each column represents:

ratings_mtx_df = movielens.pivot_table(values='rating', 
        index='user_id', columns='title', fill_value=0)
movie_index = ratings_mtx_df.columns
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The following code reduces the dimensionality of the ratings datatable using 
TruncatedSVD with fifteen components and stores the transformed data in a new 
matrix, R:

from sklearn.decomposition import TruncatedSVD
recom = TruncatedSVD(n_components=15, random_state=101)
R = recom.fit_transform(ratings_mtx_df.values.T)

The TruncatedSVD class easily reduces the datatable to fifteen components. This 
class offers a more scalable algorithm than SciPy’s linalg.svd used in earlier 
examples. TruncatedSVD computes result matrices of exactly the shape you decide 
by the n_components parameter (the full resulting matrices are not calculated), 
resulting in a faster output and less memory usage.

By calculating the Vh matrix, you can reduce the ratings of different but similar 
users (each user’s scores are expressed by row) into compressed dimensions that 
reconstruct general tastes and preferences. Also, because you’re interested in the 
Vh matrix (the columns/movies reduction) but the algorithm provides you with 
only the U matrix (the decomposition based on rows), you need to input the trans-
position of the datatable (using transposition means that the columns become 
rows and you obtain TruncatedSVD output, which is the Vh matrix). You now look 
for a specific movie:

movie = 'Star Wars: Episode V \
- The Empire Strikes Back (1980)'
movie_idx = list(movie_index).index(movie)
print(f"movie index: {movie_idx}")
print(R[movie_idx])

The output points out the index of a Star Wars episode and its SVD coordinates:

movie index: 3154
[184.72254552 -17.77612872  47.33450866  51.4664494  

47.92058216
  17.65033116  14.3574635  -12.82219207  17.51347857  

5.46888807
   7.5430805   -0.57117869 -30.74032355   2.4088565  
-22.50368497]

Using the movie label, you can find out what column the movie is in (column 
index 3154 in this case) and print the values of the ten components. This sequence 
provides the movie profile. You now try getting all the movies with scores similar 
to the target movie and highly correlated with it. A good strategy is to calculate a 
correlation matrix of all movies, get the slice related to your movie, and find out 
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inside it what are the most related (characterized by high positive correlation — 
say at least 0.98) movie titles using indexing as shown in the following code:

import numpy as np
correlation_matrix = np.corrcoef(R)
P = correlation_matrix[movie_idx]
print(list(movie_index[(P > 0.95) & (P < 1.0)]))

The code will return names of films most similar to your movie; they are intended 
as suggestions based on a preference for that film.

['Raiders of the Lost Ark (1981)', 
'Star Wars: Episode IV - A New Hope (1977)', 
'Star Wars: Episode VI - Return of the Jedi (1983)', 
'Terminator, The (1984)']

Star Wars fans would like quite a few titles, such as Star Wars Episodes IV and VI (of 
course). In addition, fans might like Raiders of the Lost Ark, because of the actor 
Harrison Ford, the main character in all these films.

SVD will always find the best way to relate a row or column in your data, discover-
ing complex interactions or relations you didn’t imagine before. You don’t need to 
imagine anything in advance; it’s fully a data-driven approach.
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Chapter 15
Clustering

One of the basic abilities that humans have exercised since primitive times 
is to divide the known world into separate classes, with individual objects 
sharing common features deemed important by the classifier. Starting 

with primitive cave dwellers classifying the natural world they lived in, distin-
guishing plants and animals useful or dangerous for their survival, in modern 
times, marketing departments classify consumers into target segments and then 
act with proper marketing plans.

Dealing with big data streams today requires the same classificatory ability of our 
ancestors, but on a different scale. To leverage the information in data requires 
specialized algorithms capable of performing two tasks: learning to assign exam-
ples to predefined classes (the supervised approach) and identifying new and 
interesting classes that we weren’t aware of (unsupervised learning).

A data-driven approach to classification based on unsupervised learning, called 
clustering, is presented in the first part of this chapter, and it will prove to be of 
great help in achieving success for your data project when you need to provide 
new insights from scratch and lack labeled data or want to create new labels for it. 
The second part of the chapter presents specific algorithms for clustering, such as 
K-means, agglomerative clustering, and DBScan.

Even though your main routine as a data scientist will be to put into practice your 
predictive skills, you’ll also have to provide useful insight into possible novel 
information present in your data. For example, you’ll often need to locate new 
features in order to strengthen the predictive power of your models, find an easy 

IN THIS CHAPTER

 » Exploring the potentialities of 
unsupervised clustering

 » Making K-means work with small and 
big data

 » Trying DBScan as an alternative 
option
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way to make complex comparisons inside the data, and discover communities in 
social networks.

Clustering techniques, as a set of unsupervised classification methods, can create 
meaningful classes by directly processing your data, without any previous knowl-
edge or hypothesis about the groups that may be present. If all supervised algo-
rithms need labeled examples (class labels), unsupervised ones can figure out by 
themselves what the most appropriate labels could be.

You don’t have to type the source code for this chapter manually; in fact, using the 
downloadable source is a lot easier (see the Introduction for download instruc-
tions). The source code for this chapter appears in the P4DS4D3_15_Clustering.
ipynb file.

Clustering with K-means
There are a few kinds of clustering techniques, and you can distinguish between 
them by using the following guidelines:

 » Assigning every example to a unique group (partitioning) or to multiple ones 
(fuzzy clustering)

 » Determining the heuristic — that is, the rule of thumb — that they use to 
figure out whether an example is part of a group

 » Specifying how they quantify the difference between observations, that is, the 
so-called distance measure

Clustering can help you to summarize huge quantities of data. It’s an effective 
technique for presenting data to a nontechnical audience and for feeding a super-
vised algorithm with group variables, thus providing the algorithm with concen-
trated, significant information.

Most of the time you use partition-clustering techniques (a data point can be part of 
only one group, so the groups don’t overlap; their membership is distinct) and 
among partitioning methods, you use K-means the most. In addition, this chapter 
mentions other useful methods that are based on agglomerative methods and data 
density.

Agglomerative methods set data into clusters based on a distance measure. Data 
density approaches take advantage of the idea that groups are very dense and con-
tinuous, so if you notice a decrease in density when exploring a part of a group of 
points, it could mean that you arrived at one of its borders.
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Because you normally don’t know what you’re looking for, different methods can 
provide you with different solutions and points of view on the data. The secret of 
a successful clustering is to try as many of the recipes as possible, compare the 
results, and try to find a reason to consider certain observations as part of one 
group rather than another.

The first clustering technique described in this chapter is K-means, which is an 
iterative algorithm that has become very popular in machine learning because of 
its simplicity, speed, and scalability to a large number of data points. The K-means 
algorithm relies on the idea that there are a specific number of data groups, called 
clusters. Each data group is scattered around a central point with which they share 
some key characteristics.

You can actually imagine the central point of a cluster, called a centroid, as a sun. 
The data points distribute around the centroid like planets. As star systems are 
separated by the void of space, clusters are also expected to clearly separate from 
each other, so as groups of points, they are both internally homogeneous and dif-
ferent from each other.

The K-means algorithm expects to find clusters in your data. Therefore, it will 
find them even when none exist. It’s important to check inside the groups to 
determine whether the group is a true gold nugget.

Given such assumptions, all you have to do is to specify the number of groups you 
expect (you can use a guess or try a number of possible desirable solutions), and 
the K-means algorithm will look for them, using a heuristic to discover the posi-
tion of the central points.

The cluster centroids should be evident by their different characteristics and posi-
tions from each other. Even if you start by randomly guessing where they could 
be, in the end, after a few corrections, you always find them by using the many 
data points that gravitate around them.

Understanding centroid-based algorithms
The procedure for finding the centroids using an algorithm is straightforward. 
During this time, the algorithm does the following:

1. Sets a K number of clusters as an objective.

2. Picks K centroids from the data points or chooses them so that they are placed 
in the data in very distant positions from each other.

3. Forms the initial clusters: assigns all the points to their nearest centroid based 
on the Euclidean distance.
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4. Recomputes new centroids based on the points assigned to their cluster.

5. Reassigns the points to the centroids and reiterate computing the centroids 
until you notice that your solution doesn’t change anymore.

6. Recalculates the centroids as an average of all the points present in the group. 
All the data points are reassigned to the groups based on the distance from 
the new centroids.

The iterative process of assigning cases to the most plausible centroid and then 
averaging the assigned ones to find a new centroid will slowly shift the centroid 
position toward the areas where most data points gravitate. The result is that you 
end up with the true centroid position.

The procedure has only two weak points that you need to consider. First, you 
choose the initial centroids randomly, which means that you could start from a 
bad starting point. As a result, the iterative process will stop at some unlikely 
solution — for example, having a centroid in the middle of two groups. To ensure 
that your solution is the most probable, you have to try the algorithm a few times 
and track the results. The more often you try, the more likely you are to confirm 
the right solution. The Python Scikit-learn implementation of K-means will do 
that for you, so you just have to decide how many times you intend to try. (The 
trade-off is that more iterations produce better results, but each iteration con-
sumes valuable time.)

The second weak point is due to the distance that K-means uses, the Euclidean 
distance, which is the distance between two points in Euclidean space (a concept 
that you likely studied at school using a two-dimensional plane). In a K-means 
application, each data point is a vector of features, so when comparing the dis-
tance of two points, you do the following:

1. Create a list containing the differences of the elements in the two prints.

2. Square all the elements of the difference vector.

3. Calculate the square root of the summed elements.

You can try a simple example in Python. Pretend that you have two points, A and 
B, and they have three numeric features. If A and B are the data representation of 
two persons, their distinguishing features could be measured in height (cm), 
weight (kg), and age (years), as shown in the following code:

import numpy as np
A = np.array([165, 55, 70])
B = np.array([185, 60, 30])
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The following example shows how to calculate the differences between the three 
elements, square all the resulting elements, and determine the square root of the 
summed squared values:

D = (A - B)
D = D**2
D = np.sqrt(np.sum(D))
print(D)

You will get the value 45 as a result, which is the Euclidean distance between  
A and B.

In the end, the Euclidean distance is really just the square root of a big sum. When 
the variables making up the difference vector are significantly different in scale 
from each other (in this example, the height could have been expressed in meters 
and the weight in milligrams), you end up with a distance dominated by the ele-
ments with the largest scale. It is very important to rescale the variables so that 
they use a similar scale before applying the K-means algorithm. You can use a 
fixed range or a statistical normalization with zero mean and unit variance to 
achieve this goal.

Another problem that may arise is due to correlation between variables, causing 
redundancy of information. If two variables are highly correlated, that means that 
a part of their information content is repeated. Replication implies counting the 
same information more than once in the summation used to calculate the dis-
tance. If you’re not aware of the correlation issue, some variables will dominate 
your distance measure calculation — a situation that may lead to not finding the 
useful clusters that you want. The solution is to remove the correlation thanks to 
a dimensionality reduction algorithm such as Principal Component Analysis 
(PCA), as described in Chapter 14. It’s up to you to remember to evaluate scale and 
correlation before employing K-means and other clustering techniques using the 
Euclidean distance measure.

Creating an example with image data
An example with image data demonstrates how to apply the tool and how to get 
insight from clusters. An ideal example is clustering the handwritten digits data-
set provided by the Scikit-learn package. Hand-written numbers are naturally 
different from each other — they possess variability in that there are several ways 
to write certain numbers. Of course, we all have different writing styles, so each 
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person’s numbers naturally differ slightly. The following code shows how to 
import the image data.

from sklearn.datasets import load_digits
from sklearn.preprocessing import StandardScaler
 
digits = load_digits()
scaler = StandardScaler()
X = scaler.fit_transform(digits.data)
ground_truth = digits.target

The example begins by importing the digits dataset from Scikit-learn and assign-
ing the data to a variable. It then stores the labels in another variable for later 
verification. The original 64 variables are pixel values, which are comparable in 
terms of value range. In this example, you actually don’t need to apply any PCA, 
but the example transforms the values using the StandardScaler, which sub-
tracts the mean and divides by the standard deviation. Using this transformation 
emphasizes the importance of the relative variations in pixel intensity, rather 
than their absolute values. In this way, common patterns across the same hand-
written numbers should be more evident.

After importing the KMeans class, the code defines its main parameters:

 » n_clusters is the K number of centroids to find.

 » n_init is the number of times to try the K-means with different starting 
centroids. The code needs to test the procedure a sufficient number of times, 
such as 10, as shown here:

from sklearn.cluster import KMeans

clustering = KMeans(n_clusters=10, 

                    n_init=10, random_state=1)

clustering.fit(X)

After creating the parameters, the clustering class is ready for use. You can apply 
the fit() method to the X dataset, which computes the clusters from the dataset.

Looking for optimal solutions
As mentioned in the previous section, the example is clustering ten different 
numbers. It’s time to start checking the solution with K = 10 first. The following 
code compares the previous clustering result to the ground truth  — the true  
labels — to determine whether there is any correspondence:
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import numpy as np
import pandas as pd
ms = np.column_stack((ground_truth,clustering.labels_))
df = pd.DataFrame(ms, 
                  columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], df['Clusters'], 
            margins=True)

Converting the solution, given by the labels variable internal to the clustering 
class, into a pandas DataFrame allows it to apply a cross-tabulation and compare 
the original labels with the labels derived from clustering. You can observe the 
results in Figure  15-1. Because rows represent ground truth, you can look for 
numbers whose majority of observations are split among different clusters. These 
observations are the handwritten examples that are more difficult to figure out by 
K-means.

Notice how numbers such as six or zero are concentrated into a single major clus-
ter, whereas others, such as one and eight, tend to be misunderstood by the algo-
rithm and assigned to different clusters. From such a discovery, you can deduce 
that certain handwritten numbers are easy to guess, while others aren’t.

Cross-tabulation has been particularly useful in this example because you can 
compare the clustering result to the ground truth. However, in many clustering 
applications, you won’t have any ground truth to compare with. In such cases, 
representing the variables’ values using the cluster centroids you found is partic-
ularly useful. You can use descriptive statistics to perform this task by applying 
the mean or the median, as described in Chapter 13, on each cluster and compar-
ing the different descriptive stats between clusters.

FIGURE 15-1: 
Cross-tabulation 
of ground truth 

and K-means 
clusters.
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Another observation you can make is that even though there are just ten numbers 
in this example, there are more types of handwritten forms of each, hence the 
necessity of finding more clusters. Of course, the problem is to determine just how 
many clusters you need.

You use inertia to measure the viability of a cluster. Inertia is the sum of all the 
differences between every cluster member and its centroid. If the examples in the 
group are similar to the centroid, the difference is small and so is the inertia. Iner-
tia as an individual measure reveals little. Moreover, when comparing inertia from 
different clusters in general, you notice that the more groups you have, the less 
the inertia. You want to compare the inertia of a cluster solution with the previous 
cluster solution. This comparison provides you with the rate of change, a more 
interpretable measure. To obtain the inertia rate of change in Python, you will 
have to create a loop. Try progressive cluster solutions inside the loop, recording 
their values. Here is a script for the handwritten digit example:

import numpy as np
inertia = list()
for k in range(1,21):
    clustering = KMeans(n_clusters=k, 
                        n_init=10, random_state=1)
    clustering.fit(X)
    inertia.append(clustering.inertia_)
delta_inertia = np.diff(inertia) * -1

You use the inertia variable inside the clustering class after fitting the cluster-
ing. The inertia variable is a list containing the rate of change of inertia between a 
solution and the previous one. Here is some code that prints a line graph of the 
rate of change, as depicted by Figure 15-2.

%matplotlib inline
import matplotlib.pyplot as plt
 
plt.figure()
x_range = [k for k in range(2, 21)]
plt.xticks(x_range)
plt.plot(x_range, delta_inertia, 'ko-')
plt.xlabel('Number of clusters')
plt.ylabel('Rate of change of inertia')
plt.show()

When examining inertia’s rate of change, look for jumps in the rate itself. If the 
rate jumps up, it means that adding a cluster to the previous solution brings much 
more benefit than expected; if it jumps down instead, you’re likely forcing a clus-
ter more than necessary. The cluster solution before a jump down may be a good 
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candidate, according to the principle of parsimony (the jump signals a sophistica-
tion in our analysis, but the right solution is usually the simplest one). In the 
example, there are jumps at k=10 and k=17, but k=17 seems to be the most prom-
ising jump down because the previous solution k=16 has a spike up signaling a 
cluster solution that fits the data better than expected.

The rate of change in inertia will provide you with just a few tips where there 
could be good cluster solutions. It is up to you to decide which to pick if you need 
to get some extra insight on data. If, instead, clustering is just a step in a complex 
data science project, you don’t need to spend much effort in looking for an opti-
mal number of clusters; you just pass a solution featuring enough clusters to the 
next machine learning algorithm and let it decide which is best.

Clustering big data
K-means is a way to reduce the complexity of your data by summarizing the many 
examples in your dataset. To perform this task, you load the data into your com-
puter’s memory, and that won’t always be feasible, especially if you are working 
with big data. Scikit-learn offers an alternative way to apply K-means; the  
MiniBatchKMeans is a variant that can progressively cluster separated chunks of 
data. In fact, a batch learning procedure usually processes the data part by part. 
There are only two differences between the standard K-means function and 
MiniBatchKMeans:

 » You cannot automatically test different starting centroids unless you try 
running the analysis again.

FIGURE 15-2: 
Rate of change of 

inertia for 
solutions  

up to k=20.
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 » The analysis will start when there is a batch made of at least a minimum 
number of cases. This value is usually set to 100 (but the more cases there 
are, the better the result) by the batch_size parameter.

A simple demonstration on the previous handwritten dataset shows how effective 
and easy it is to use the MiniBatchKMeans clustering class. First, the example runs 
a test on the K-means algorithm on all the data available and records the inertia 
of the solution:

k = 10
clustering = KMeans(n_clusters=k, 
                    n_init=10, random_state=1)
clustering.fit(X)
kmeans_inertia = clustering.inertia_
print(f"K-means inertia: {kmeans_inertia:0.1f}")

Take note that the resulting inertia is 69944.5. The example then tests the same 
data and number of clusters by fitting a MiniBatchKMeans clustering by small 
separate batches of 100 examples:

from sklearn.cluster import MiniBatchKMeans
batch_clustering = MiniBatchKMeans(n_clusters=k, 
                                   random_state=1,
                                   n_init=3)
batch = 100
for row in range(0, len(X), batch):
    if row+batch < len(X):
        feed = X[row:row+batch,:]
    else:
        feed = X[row:,:]
    batch_clustering.partial_fit(feed)
batch_inertia = batch_clustering.score(X) * -1
 
print(f"MiniBatchKmeans inertia: {batch_inertia:.1f}")

This script iterates through the indexes of the handwritten dataset, creating 
batches of 100 observations each. Using the partial_fit method, it fits a K-means 
clustering on each batch, using the centroids found by the previous call. The algo-
rithm stops when it runs out of data. Using the score method on all the data 
available, it then reports its inertia for a ten-clusters solution. Now the reported 
inertia is 76426.4. Note that MiniBatchKmeans results in a higher inertia than the 
standard algorithm. Though the difference is small, the fitted solution is inferior, 
thus you should reserve this approach for those times when you really cannot 
work with in-memory datasets.
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Windows users of this example may see a warning about a potential memory leak. 
You can safely ignore this warning for this example but will want to take the 
warning’s advice when working through data of your own.

Performing Hierarchical Clustering
If the K-means algorithm is concerned with centroids, hierarchical (also known 
as agglomerative) clustering tries to link each data point, by a distance measure, 
to its nearest neighbor, creating a cluster. Reiterating the algorithm using differ-
ent linkage methods, the algorithm gathers all the available points into a rapidly 
diminishing number of clusters, until all the points reunite into a single group in 
the end.

The results, if visualized, will closely resemble the biological classifications of liv-
ing beings that you may have studied in school or seen on posters at the local 
natural history museum: an upside-down tree whose branches are all converging 
into a trunk. Such a figurative tree is a dendrogram, and you see it used in medical 
and biological research. Scikit-learn implementation of agglomerative clustering 
does not offer the possibility of depicting a dendrogram from your data because 
such a visualization technique works fine with only a few cases, whereas you can 
expect to work on many examples.

Compared to K-means, agglomerative algorithms are more cumbersome and do 
not scale well to large datasets. Agglomerative algorithms are more suitable for 
statistical studies (they can be easily found in natural sciences, archeology, and 
sometimes psychology and economics). These algorithms do offer the advantage 
of creating a complete range of nested cluster solutions, so you just need to pick 
the right one for your purpose.

To use agglomerative clustering effectively, you have to know about the different 
linkage methods (the heuristics for clustering) and the distance metrics. There are 
three linkage methods:

 » Ward: Tends to look for spherical clusters, very cohesive inside and extremely 
differentiated from other groups. Another nice characteristic is that the 
method tends to find clusters of similar size. It works only with the 
Euclidean distance.

 » Complete: Links clusters using their furthest observations, that is, their most 
dissimilar data points. Consequently, clusters created using this method tend 
to be composed of highly similar observations, making the resulting groups 
quite compact.
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 » Average: Links clusters using their centroids and ignoring their boundaries. 
The method creates larger groups than the complete method. In addition, the 
clusters can be of different sizes and shapes, contrary to the Ward method’s 
solutions. Consequently, this approach sees successful use in the field of 
biological sciences, easily catching natural diversity.

There are also three distance metrics:

 » Euclidean (euclidean or l2): As seen in K-means.

 » Manhattan (manhattan or l1): Similar to Euclidean, but the distance is 
calculated by summing the absolute value of the difference between the 
dimensions. In a map, if the Euclidean distance is the shortest route between 
two points, the Manhattan distance implies moving straight, first along one 
axis and then along the other — as a car in the city would, reaching a destina-
tion by driving along city blocks (the distance is also known as city-block 
distance, rectilinear distance, and taxicab distance).

 » Cosine (cosine): A good choice when there are too many variables and you 
worry that some variable may not be significant (being just noise). Cosine 
distance reduces noise by taking the shape of the variables, more than their 
values, into account. It tends to associate observations that have the same 
maximum and minimum variables, regardless of their effective value.

Using a hierarchical cluster solution
If your dataset doesn’t contain too many observations, it’s worth trying agglom-
erative clustering with all the combinations of linkage and distance and then 
comparing the results carefully. In clustering, you rarely already know the right 
answers, and agglomerative clustering can provide you with another useful 
potential solution. For example, you can recreate the previous analysis with 
K-means and handwritten digits, using the ward linkage and the Euclidean dis-
tance as follows (the output appears in Figure 15-3):

from sklearn.cluster import AgglomerativeClustering
 
hclustering = AgglomerativeClustering(
    n_clusters=10, metric='euclidean', 
    linkage='ward')
hclustering.fit(X)
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ms = np.column_stack((ground_truth,hclustering.labels_))
df = pd.DataFrame(ms, 
                  columns = ['Ground truth','Clusters'])
pd.crosstab(df['Ground truth'], 
            df['Clusters'], margins=True)

The results, in this case, are certainly better than K-means, although, you may 
have noticed that completing the analysis using this approach may take longer 
than using K-means. When working with a large number of observations, the 
computations for a hierarchical cluster solution may take hours to complete, 
making this solution less feasible.

Visualizing aggregative clustering solutions
When you don’t have many examples in your dataset, you can also find agglom-
erative clustering feasible for visualizations. This example uses a small sample of 
the handwritten data:

ground_truth[10:20]

FIGURE 15-3: 
Cross-tabulation 
of ground truth 

and Ward 
method’s 

agglomerative 
clusters.



286      PART 4  Wrangling Data

Each example within the range of 10 to 19 corresponds to a distinct number, and 
you can visualize them using a plot from the Matplotlib package:

%matplotlib inline
import matplotlib.pyplot as plt
 
for k, img in enumerate(range(10)):
    plt.subplot(2, 5, k+1)
    plt.imshow(digits.images[10+img], 
               cmap='binary', 
               interpolation='none')
plt.show()

The idea is to cluster them and check how each number aggregates with the others 
to determine which numbers are more similar in handwriting. The following code 
performs the agglomerative clustering:

hclustering = AgglomerativeClustering(
    n_clusters=10, metric='euclidean',
    linkage='ward')
hclustering.fit(X[10:20, :])

After the data is fitted, you can visualize the hierarchical structure of the clusters, 
called a dendrogram (explained at the start of “Performing Hierarchical Cluster-
ing”) using a few functions from SciPy as shown in the following code (the results 
appear in Figure 15-4):

from scipy.cluster.hierarchy import dendrogram, linkage
 
linkage_matrix = linkage(hclustering.children_, 'ward')
dendrogram(linkage_matrix)
plt.title('Hierarchical Clustering Dendrogram')
plt.show()

From the plot in Figure 15-4, you can see how numbers like 6 and 8 or 2 and 3 can 
be easily misunderstood one for the other and how. Interestingly the clustering 
doesn’t catch the similarity between 1 and 7, but that’s probably because they 
were dissimilar in the samples used for the demonstration (in this case the 7 had 
its distinctive dash).
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Discovering New Groups with DBScan
Both K-means and agglomerative clustering, especially if you are using the Ward 
method’s linkage criteria, will produce cohesive groups, similar to bubbles, equally 
spread in all directions. Reality can sometimes produce complex and unsettling 
results  — groups may have strange forms far from the canonical bubble. The 
Scikit-learn’s datasets module (see https://scikit-learn.org/stable/ 
modules/clustering.html for an overview) offers a wide range of mind-teasing 
shapes that you can’t successfully crunch using either K-means or agglomerative 
clustering: large circles containing smaller ones, interleaved small circles, and 
spiraling Swiss roll datasets (named after the sponge cake roll because of how the 
data points are arranged).

DBScan is another clustering algorithm based on a smart intuition that can solve 
even the most difficult problems. DBScan relies on the idea that clusters are dense, 
so to start by exploring the data space in every direction and marking a cluster 
boundary when the density decreases should be sufficient. Areas of the data space 
with insufficient density of points are just considered empty, and all the points 
there are noise or outliers, that is, points characterized by unusual or strange 
values.

DBScan is more complex and requires more running time than K-means (but it is 
faster than agglomerative clustering). It automatically guesses the number of 
clusters and points out strange data that doesn’t easily fit into any class. This dif-
ference in classification approach makes DBScan different from the previous 
algorithms that try to force every observation into a class.

FIGURE 15-4: 
A clustering 

hierarchical tree 
obtained from 
agglomerative 

clustering.

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
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Replicating the handwritten digit clustering requires just a few lines of  
Python code:

from sklearn.cluster import DBSCAN
 
db = DBSCAN(eps=4.5, min_samples=20)
db.fit(X)
print(f"No. clusters: {len(np.unique(db.labels_))}")

Using DBScan, you won’t have to set a K number of expected clusters; the algo-
rithm will find them by itself. Apparently, the lack of a K number seems to sim-
plify the usage of DBScan; in reality, the algorithm requires you to fix two essential 
parameters, eps and min_sample, in order to work properly:

 » eps: The maximum distance between two observations that allows them to 
be part of the same neighborhood

 » min_sample: The minimum number of observations in a neighborhood that 
transform them into a core point

The algorithm works by walking around the data and building clusters by linking 
observations arranged into neighborhoods. A neighborhood is a small cluster of 
data points all within a distance value of eps. If the number of points in the neigh-
borhood is less than the number min_sample, then DBScan doesn’t form the 
neighborhood.

No matter what the shape of the cluster, DBScan links all the neighborhoods if 
they are near enough (under the distance value of eps). When no more neighbor-
hoods are within reach, DBScan tries to aggregate even single data points to a 
group, if they are within eps distance. The data points that aren’t associated with 
any group are treated as noisy points (being too peculiar to be part of a group).

Try many values of eps and min_sample. The resulting clusters may also change 
drastically with respect to the values set into these two parameters. Start with a 
low number of min_samples. Using a lower number allows many neighborhoods 
to cluster together. The default number 5 is fine. Then try different numbers for 
eps, starting from 0.1 upward. Don’t be disappointed if you can’t get a viable 
result initially — keep trying different combinations.

Getting back to the example from earlier in this section, after this brief explana-
tion of DBScan details, some data exploration can allow you to observe the results 
under the right point of view. First, count the clusters:

from collections import Counter
print(f"No. clusters: {len(np.unique(db.labels_))}")
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print(Counter(db.labels_))
 
ms = np.column_stack((ground_truth, db.labels_))
df = pd.DataFrame(ms, 
                  columns = ['Ground truth', 'Clusters'])
 
pd.crosstab(df['Ground truth'], 
            df['Clusters'], margins=True)

More than half the observations are assigned to the cluster labeled –1, which rep-
resents the noise (noise is defined as examples that are too unusual to group). 
Given the number of dimensions (64 variables representing single pixels) in the 
data and its high variability (they are handwritten samples), many cases do not 
naturally fall together into the same group. Figure 15-5 shows the output from 
this example.

No. clusters: 10
Counter({-1: 1032, 0: 172, 1: 157, 4: 111, 3: 95, 5: 90, 7: 64, 

6: 35, 2: 21, 8: 20})

The strength of DBScan is to provide reliable, consistent clusters. DBScan isn’t 
forced, as are K-means and agglomerative clustering, to reach a solution with a 
certain number of clusters, even when such a solution does not exist.

FIGURE 15-5: 
Cross-tabulation 
of ground truth 

and DBScan.
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Chapter 16
Detecting Outliers 
in Data

Errors happen when you least expect, and that’s also true in regard to your 
data. In addition, data errors are difficult to spot, especially when your data-
set contains many variables of different types and scale. Data errors can take 

a number of forms. For example, the values may be systematically missing on 
certain variables, erroneous numbers could appear here and there, and the data 
could include outliers.

In this chapter, you not only will learn what is an outlier and why it differs from 
a novelty value, but you will find techniques to detect and replace those examples 
that deviate from the data distribution you want to be represented by your machine 
learning models.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions). 
The source code for this chapter appears in the P4DS4D3_16_Detecting_ 
Outliers.ipynb file.

IN THIS CHAPTER

 » Understanding what is an outlier

 » Distinguishing between extreme 
values and novelties

 » Using simple statistics for catching 
outliers

 » Finding out most tricky outliers by 
advanced techniques
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Considering Outlier Detection
As a general definition, outliers are data that differ significantly (they’re distant) 
from other data in a sample. The reason they’re distant is that one or more values 
are significantly higher or lower compared to the majority of the values. They 
could be deemed outliers because they display an almost unique combination of 
values. For instance, if you are analyzing records of students enlisted in a univer-
sity, students who are too young or too old may catch your attention. Students 
studying unusual mixes of different subjects would also require scrutiny.

Outliers skew your data distributions and affect all your basic central tendency 
statistics. Means are pushed upward or downward, influencing all other descrip-
tive measures. You see outliers generated in all sorts of ways, as a result of every-
thing from sensor and user-input errors to outright fraud. An outlier will always 
inflate variance and modify correlations, so you may obtain incorrect assumptions 
about your data and the relationships between variables.

This simple example can display the effect (on a small scale) of a single outlier 
with respect to more than one thousand regular observations:

import numpy as np
 
np.random.seed(1)
normal = np.random.normal(loc=0.0, scale=1.0, size=1000)
mean = np.mean(normal)
median = np.median(normal)
variance = np.var(normal)
print(f"Mean: {mean:.3f} Median: {median:.3f} ",
      f"Variance: {variance:.3f}")

Using the NumPy random generator, np.random.normal, the example creates the 
variable named normal, which contains 1000 observations with most values 
between -2 and +2 derived from a standard normal distribution. Basic descriptive 
statistics (mean, median, variance) do not show anything unexpected:

Mean: 0.039 Median: 0.041 Variance: 0.962

Now the code changes a single value by inserting an outlying value:

from scipy.stats import pearsonr
 
outlying = normal.copy()
outlying[0] = 50.0
mean = np.mean(outlying)
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median = np.median(outlying)
variance = np.var(outlying)
print(f"Mean: {mean:.3f} Median: {median:.3f} ",
      f"Variance: {variance:.3f}")
corr_coef, p_value = pearsonr(normal, outlying)
print(f"Pearson's correlation: {corr_coef:.3f} ",
      f"p-value: {p_value:.3f}")

You can call this new variable outlying and put an outlier into it (at index 0, you 
have a positive value of 50.0). Now you obtain much different descriptive 
statistics:

Mean: 0.087 Median: 0.041 Variance: 3.454
Pearsons correlation coefficient: 0.570 p-value: 0.000

The statistics show that the mean and variance are much higher than before. Only 
the median, which relies on position (it tells you the value occupying the middle 
position when all the observations are arranged in order) is not affected by the 
change.

More significant, the correlation of the original variable and the outlying variable 
is quite far from being +1.0 (the correlation value of a variable in respect of itself), 
indicating that the measure of linear relationship between the two variables has 
been seriously damaged. In a real-world scenario, you might perform this calcu-
lation using one variable that contains expected or statistically average data and a 
second variable containing new data.

Finding more things that can go wrong
Outliers do not simply shift key measures in your explorative statistics — they 
also change the structure of the relationships between variables in your data.  
Outliers can affect machine learning algorithms in two ways:

 » Algorithms based on coefficients may take the wrong coefficient in order to 
minimize their inability to understand the outlying cases. Linear models are a 
clear example (they are sums of coefficients), but they are not the only ones. 
Outliers can also influence tree-based learners such as Adaboost or Gradient 
Boosting Machines.

 » Because algorithms learn from data samples, outliers may induce the 
algorithm to overweight the likelihood of extremely low or high values  
given a certain variable configuration.
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Both situations limit the capacity of a learning algorithm to generalize well to new 
data. In other words, they make your learning process overfit to the present 
dataset.

There are a few remedies for outliers — some of them require that you modify 
your present data and others that you choose a suitable error function for your 
machine learning algorithm. (Some algorithms offer you the possibility of choos-
ing a different error function as a parameter when setting up the learning 
procedure.)

Most machine learning algorithms can accept different error functions. The error 
function is important because it helps the algorithm to learn by understanding 
errors and enforcing adjustments in the learning process, but some error func-
tions are extremely sensitive to outliers, while others are quite resistant to them. 
For instance, a squared error measure tends to emphasize outliers because errors 
deriving from examples with large values are squared, thus becoming even more 
prominent.

Understanding anomalies and novel data
Because outliers occur as mistakes or in extremely rare cases, detecting an outlier 
is never an easy job; it is, however, an important one for obtaining effective results 
from your data science project. In certain fields, detecting anomalies is itself the 
purpose of data science: fraud detection in insurance and banking, fault detection 
in manufacturing, system monitoring in health and other critical applications, 
and event detection in security systems and for early warning.

An important distinction is when you look for existing outliers in data, or when 
you check for any new data containing anomalies with respect to existing cases. 
Maybe you spent a lot of time cleaning your data or you developed a machine 
learning application based on available data, so it would be critical to figure out 
whether the new data is similar to the old data and whether the algorithms will 
continue working well in classification or prediction.

In such cases, data scientists instead talk of novelty detection, because they need 
to know how well the new data resembles the old. Being exceptionally new is con-
sidered an anomaly: Novelty may conceal a significant event or may risk prevent-
ing an algorithm from working properly because machine learning heavily relies 
on learning from past examples and it may not generalize to completely novel 
cases. When working with new data, you should retrain the algorithm.

Experience teaches that the world is rarely stable. Sometimes novelties do natu-
rally appear because the world is so mutable. Consequently, your data changes 
over time in unexpected ways, in both target and predictor variables. This 
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phenomenon is called concept drift. The term concept refers to your target and drift 
to the source data used to perform a prediction that moves in a slow but uncon-
trollable way, like a boat drifting because of strong tides. When considering a data 
science model, you distinguish between different concept drift and novelties 
situations:

 » Physical: Face or voice recognition systems, or even climate models, never 
really change. Don’t expect novelties, but check for outliers that result from 
data problems, such as erroneous measurements.

 » Political and economic: These models sometimes change, especially in the 
long run. You have to keep an eye out for long-term effects that start slowly 
and then propagate and consolidate, rendering your models ineffective.

 » Social behavior: Social networks and the language you use every day change 
over time. Expect novelties to appear and take precautionary steps; otherwise, 
your model will suddenly deteriorate and turn unusable.

 » Search engine data, banking, and e-commerce fraud schemes: These 
models change quite often. You need to exercise extra care in checking for  
the appearance of novelties, telling you to train a new model to maintain 
accuracy.

 » Cyber security threats and advertising trends: These models change 
continuously. Spotting novelties is the norm, and reusing the same models 
over a long time is a hazard.

The world changes, and so does the data that represents it. The presence of nov-
elty, or the occurrence of new and previously unseen patterns or instances in the 
data, often indicates the presence of concept drift, and you need to retrain your 
model using the new data.

Examining a Simple Univariate Method
When looking for outliers, a good way to start, no matter how many variables you 
have in your data, is to look at every single variable by itself, using both graphical 
and statistical inspection. This is the univariate approach, which allows you to 
spot an outlier given an incongruous value on a variable. The pandas package can 
make spotting outliers quite easy thanks to

 » A straightforward describe method that informs you on mean, variance, 
quartiles, and extremes of your numeric values for each variable

 » A system of automatic boxplot visualizations
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Using both techniques in tandem makes it easy to know when you have outliers 
and where to look for them. The diabetes dataset, from the Scikit-learn datasets 
module, is a good example to start with.

import pandas as pd
from sklearn.datasets import load_diabetes
 
def load_diabetes_data():
    diabetes = load_diabetes()
    X = pd.DataFrame(diabetes.data,  

                   columns=diabetes.feature_names)
    y = pd.DataFrame(diabetes.target, columns=['target'])
    return X, y
 
X, y = load_diabetes_data()

After these commands, all the data is contained in the X variable, a NumPy  
ndarray. The example then transforms it into a pandas DataFrame and asks for 
some descriptive statistics (see the output in Figure 16-1):

pd.options.display.float_format = '{:.2f}'.format
X.describe()

You can spot the problematic variables by looking at the extremities of the distri-
bution (the maximum value of a variable). For example, you must consider 
whether the minimum and maximum values lie respectively far from the 25th and 
75th percentile. As shown in the output, many variables have suspiciously large 
maximum values. A boxplot analysis will clarify the situation. The following com-
mand creates the boxplot of all variables shown in Figure 16-2.

FIGURE 16-1: 
Descriptive 

statistics for the 
Diabetes 

DataFrame from 
Scikit-learn.
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%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use("seaborn-v0_8-whitegrid")
 
fig, axes = plt.subplots(nrows=1, ncols=1, 
                         figsize=(10, 5))
features = ["bmi", "bp", "s1", "s2", "s3", "s4", "s5" ,"s6"]
X[features].boxplot(ax=axes);

Boxplots generated from pandas DataFrame will have whiskers set to plus or 
minus 1.5 IQR (interquartile range or the distance between the lower and upper 
quartile) with respect to the upper and lower side of the box (the upper and lower 
quartiles). This boxplot style is called the Tukey boxplot (from the name of stat-
istician John Tukey, who created and promoted it among statisticians together 
with other explanatory data techniques) and it allows a visualization of the pres-
ence of cases outside the whiskers. (All points outside these whiskers are deemed 
outliers.)

Leveraging on the Gaussian distribution
Another effective check for outliers in your data is accomplished by leveraging the 
normal distribution. Even if your data isn’t normally distributed, standardizing it 
will allow you to assume certain probabilities of finding anomalous values. For 
instance, 99.7% of values found in a standardized normal distribution should be 

FIGURE 16-2: 
Boxplots.
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inside the range of +3 and –3 standard deviations from the mean, as shown in the 
following code.

from sklearn.preprocessing import StandardScaler
 
Xs = StandardScaler().fit_transform(X[features])
X[features][(np.abs(Xs)>3).any(1)].index

As a result, you get the indexes indicating the rows in the dataset featuring some 
possibly outlying values:

Int64Index([58, 123, 216, 230, 256, 260, 261, 269, 322, 336, 
367, 441], dtype='int64')

The Scikit-learn module provides an easy way to standardize your data and to 
record all the transformations for later use on different datasets. This means that 
all your data, no matter whether it’s for machine learning training or for perfor-
mance test purposes, is standardized in the same way.

The 68-95-99.7 rule says that in a standardized normal distribution, 68 percent 
of values are within one standard deviation, 95 percent are within two standard 
deviations, and 99.7 percent are within three. When working with skewed data, 
the 68-95-99.7 rule may not hold true, and in such an occurrence, you may need 
some more conservative estimate, such as Chebyshev’s inequality. Chebyshev’s 
inequality relies on a formula that says that for k standard deviations around the 
mean, no more cases than a percentage of 1/k^2 should be over the mean. There-
fore, at seven standard deviations around the mean, your probability of finding a 
legitimate value is at most two percent, no matter what the distribution is (two 
percent is a low probability; your case could be deemed almost certainly an 
outlier).

Chebyshev’s inequality is conservative. A high probability of being an outlier cor-
responds to seven or more standard deviations away from the mean. Use it when 
it may be costly to deem a value an outlier when it isn’t. For all other applications, 
the 68-95-99.7 rule will suffice.

Remediating outliers
Having found some possible univariate outliers, you now have to decide how to 
deal with them. If you completely distrust the outlying cases, under the assump-
tion that they were unfortunate errors or mistakes, you could just delete them. (In 
Python, you can just deselect them using fancy indexing.) Here is the code for 
performing listwise deletion of examples in the data where the feature values devi-
ate by three standard deviations from the mean. After execution, a print statement 
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will indicate that there are now 430 examples remaining, down from the ini-
tial 442.

mean = X[features].mean()
std = X[features].std()
all_valid_mask = (np.abs(X[features] - mean) <= 
                  (3 * std)).all(axis=1)
listwise_del = X[all_valid_mask]
print(listwise_del.shape)

Modifying the values in your data or deciding to exclude certain values is a deci-
sion to make after you understand why there are some outliers in your data. You 
can rule out unusual values or cases for which you presume that some error in 
measurement has occurred, in recording or previous handling of the data. If 
instead you realize that the outlying case is a legitimate, though rare one, the best 
approach would be to underweight it (if your learning algorithms use weighting 
for the observations) or to increase the size of your data sample.

In this case, deciding to keep the data and having standardized it, you could just 
cap the outlying values. In doing so, you can use a slightly more sophisticated 
approach called winsorizing. When using winsorizing, the values deemed outliers 
are clipped to the value of specific percentiles that act as value limits (usually the 
5th percentile for the lower bound, the 95th for the upper):

from scipy.stats.mstats import winsorize
 
winsorized = X.copy()
winsorized[features] = winsorized [features].apply(
   lambda x: winsorize(x, limits=(0.05, 0.05)))

In this way, you create a different hurdle value (a range of acceptable values that 
the value must jump to pass) for larger and smaller values — taking into account 
any asymmetry in the data distribution. Whatever you decide for capping (by 
standard deviation or by winsorizing), your data is now ready for further process-
ing and analysis.

Finally, an alternative, automatic solution is to let Scikit-learn automatically 
transform your data and clip outliers by using the RobustScaler, a scaler based 
on the IQR (as in the boxplot previously discussed in this chapter):

from sklearn.preprocessing import RobustScaler
 
robust_rescale = RobustScaler().fit_transform(
    X[features])
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Developing a Multivariate Approach
Working on single variables allows you to spot a large number of outlying obser-
vations. However, outliers do not necessarily display values too far from the norm. 
Sometimes outliers are made of unusual combinations of values in more variables. 
They are rare, but influential, combinations that can especially trick machine 
learning algorithms.

In such cases, the precise inspection of every single variable won’t suffice to rule 
out anomalous cases from your dataset. Only a few selected techniques, taking  
in consideration more variables at a time, will manage to reveal problems in  
your data.

The presented techniques approach the problem from different points of view:

 » Dimensionality reduction

 » Density clustering

 » Nonlinear distribution modeling

Using these techniques allows you to compare their results, taking notice of the 
recurring signals on particular cases — sometimes already located by the univari-
ate exploration, sometimes as yet unknown.

Using principal component analysis
Principal component analysis (PCA) can completely restructure the data, remov-
ing redundancies and ordering newly obtained components according to the 
amount of the original variance that they express. This type of analysis offers a 
synthetic and complete view over data distribution, making multivariate outliers 
particularly evident.

The first two components, being the most informative in term of variance, can 
depict the general distribution of the data if visualized. The output provides a good 
hint at possible evident outliers.

The last two components, being the most residual, depict all the information that 
could not be otherwise fitted by the PCA() method. They can also provide a sug-
gestion about possible but less evident outliers.

%matplotlib inline
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale
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from pandas.plotting import scatter_matrix
import pandas as pd
import matplotlib.pyplot as plt
 
pca = PCA()
pca_mat = pca.fit_transform(scale(X))
first_comps = sum(pca.explained_variance_ratio_[:2] * 100)
last_comps = sum(pca.explained_variance_ratio_[-2:] * 100)
print(f"variance by the first two components: "
      f"{first_comps:.1f}%")
print(f"variance by the last two components: "
      f"{last_comps:.1f}%")
df_pca = pd.DataFrame(
    pca_mat, columns=[f"comp_{j}" for j in range(10)])
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5))
first_two = df_pca.plot.scatter(
    x="comp_0", y="comp_1", s=50, grid=True,
    c="Azure", edgecolors="DarkBlue", ax=axes[0])
last_two = df_pca.plot.scatter(
    x="comp_8", y="comp_9", s=50, grid=True,
    c="Azure", edgecolors="DarkBlue", ax=axes[1])
plt.show() 

Figure 16-3 shows two scatterplots of the first and last components. The output 
also reports the variance explained by the first two components (half of the 
informative content of the dataset) of the PCA and by the last two ones:@

variance by the first two components : 55.2%
variance by the last two components: 0.9%

FIGURE 16-3: 
The first two  
and last two 
components  

from the PCA.
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Pay particular attention to the data points along the axis (where the x axis defines 
the independent variable and the y axis defines the dependent variable). You can 
see a possible threshold to use for separating regular data from suspect data.

Using the two last components, you can locate a few points to investigate using 
the threshold of –0.3 for the tenth component and of –1.0 for the ninth. All cases 
below these values are possible outliers.

outlying = (pca_mat[:,-1] > 0.3) | (pca_mat[:,-2] > 1.0)
df_pca[outlying].index 

The selection will point out the index of the outlying examples:

Int64Index([23, 58, 110, 169, 254, 322, 323, 353, 371, 394],
    dtype='int64')

Using cluster analysis for spotting outliers
Outliers are isolated points in the space of variables, and DBScan is a clustering 
algorithm that links dense data parts together and marks the too-sparse parts. 
DBScan is therefore an ideal tool for an automated exploration of your data for 
possible outliers to verify.

Here is an example of how you can use DBScan for outlier detection:

from sklearn.cluster import DBSCAN
DB = DBSCAN(eps=2.5, min_samples=25)
DB.fit(pca_mat)
 
from collections import Counter
print(Counter(DB.labels_))
df_pca[DB.labels_==-1].index 

The code will output the index of the outlying examples (which is quite long this 
time):

Int64Index([ 15,  23,  29,  35,  78, 117, 123, 141, 161,
            169, 230, 248, 251, 261, 276, 321, 322, 323,
            336, 349, 352, 353, 367, 376, 394, 405, 422,
            441], dtype='int64')

DBSCAN requires two parameters, eps and min_samples. Finding the optimal val-
ues for these parameters often involves multiple iterations, which can make 
parameter selection a bit challenging and tricky.
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As hinted in the previous chapter, start with a low value of min_samples and try 
growing the values of eps from 0.1 upward. After every trial with modified param-
eters, check the situation by counting the number of observations in the class –1 
inside the attribute labels, and stop when the number of outliers seems reason-
able for a visual inspection.

There will always be points on the fringe of the dense parts’ distribution, so it’s 
hard to provide you with a threshold for the number of cases that might be clas-
sified in the –1 class. Normally, outliers should not be more than 5 percent of 
cases, so use this indication as a generic rule of thumb.

The output from the previous example will report to you how many examples are 
in the –1 group, which the algorithm considers not part of the main cluster, and 
the list of the cases that are part of it.

It is less automated, but you can also use the K-means clustering algorithm for 
outlier detection. You first run a cluster analysis with a reasonable enough num-
ber of clusters. (You can try different solutions if you’re not sure.) Then you look 
for clusters featuring just a few examples (or maybe a single one); they are prob-
ably outliers because they appear as small, distinct clusters that are separate from 
the large clusters that contain the majority of examples.

Automating detection with  
Isolation Forests
Random Forests and Extremely Randomized Trees are powerful machine learning 
techniques. They work by dividing your dataset into smaller sets based on certain 
variable values to make it easier to predict the classification or regression on each 
smaller subset (a divide et impera, or divide and conquer, solution).

IsolationForest is an algorithm that takes advantage of the fact that an outlier 
is easier to separate from majority cases based on differences between its values 
or combination of values. The algorithm keeps track of how long it takes to sepa-
rate a case from the others and get it into its own subset. The less effort it takes to 
separate it, the more likely the case is an outlier. As a measure of such effort, 
IsolationForest produces a distance measurement (the shorter the distance, the 
more likely the case that it’s an outlier).

When your machine learning algorithms are in production, a trained Isolation 
Forest can act as a sanity check because many machine learning algorithms  
cannot cope with outlying and novel examples.
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To set IsolationForest to catch outliers, all you have to decide is the level of 
contamination, which is the percentage of cases considered outliers based on the 
distance measurement. You decide such a percentage based on your experience 
and expectation of data quality. Executing the following script creates a working 
IsolationForest:

from sklearn.ensemble import IsolationForest
 
auto_detection = IsolationForest(max_samples=50, 
                                 contamination=0.05,
                                 random_state=0)
auto_detection.fit(pca_mat)
iforest = auto_detection.predict(pca_mat)
df_pca[iforest==-1].index

The output reports the index list of the cases suspected of being outliers:

Int64Index([ 10,  11,  15,  23,  32,  58, 110, 123, 141,
            202, 230, 260, 261, 269, 286, 321, 322, 323,
            352, 353, 382, 394, 441], dtype='int64')

In addition, the algorithm is trained to recognize what normal examples in the 
dataset should look like. When you provide new cases to the dataset and you eval-
uate them using the trained IsolationForest, you can immediately spot whether 
something is wrong with your new data.

IsolationForest is a computationally intensive algorithm. Performing an analy-
sis on a large dataset takes a long time and a lot of memory.
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Chapter 17
Exploring Four Simple 
and Effective Algorithms

In this new part of the book, you start to explore algorithms and tools necessary 
for learning from data, meaning a training a model, and being capable of pre-
dicting a numeric estimate (such as house pricing in some areas of California) 

or a class (such as the species of penguins that can be found in the Palmer 
Archipelago in Antarctica) given any new example that you didn’t have before. In 
this chapter, you start with the simplest algorithms and work toward those that 
are more complex. The four algorithms in this chapter represent a good starting 
point for any data scientist.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions). 
The source code for this chapter appears in the P4DS4D3_17_ Exploring_Four_ 
Simple_and_Effective_Algorithms.ipynb file.

Guessing the Number: Linear Regression
Regression has a long history in statistics, from building simple but effective lin-
ear models of economic, psychological, social, or political data, to hypothesis 
testing for understanding group differences, to modeling more complex problems 
with ordinal values, binary and multiple classes, count data, and hierarchical 

IN THIS CHAPTER

 » Using linear and logistic regression

 » Understanding Bayes’ theorem and 
using it for naive classification

 » Predicting on the basis of cases being 
similar with KNN
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relationships. Regression is also a common tool in data science; it’s a Swiss Army 
knife of machine learning that you can use for every problem. Stripped of most of 
its statistical assumptions, linear regression is perceived by data science practi-
tioners as an easily explainable, yet effective, algorithm for numeric estimations, 
and, in its logistic regression version, for classification as well.

Defining the family of linear models
Linear regression is a statistical model that defines the relationship between a 
target variable and a set of predictive features. It does so by using a formula of the 
following type:

y = bx + a

You can translate this formula into something readable and useful for a wide 
range of real-world problems. For instance, if you’re trying to guess your sales 
based on historical results and available data about advertising expenditures, the 
preceding formula becomes

sales = b * (advertising expenditure) + a

CONSIDERING SIMPLE AND COMPLEX 
FORMULATIONS
The concepts of simple and complex in machine learning refer to the mathematical for-
mulation underlying the algorithm’s operations. Some algorithms are simple summa-
tions, while others require complex calculations and data manipulations (and Python 
deals with both the simple and complex algorithms for you). Although complex algo-
rithms generally demonstrate higher predictive accuracy, it’s not an absolute rule. As a 
good practice, test multiple models, starting from the basic ones. You may discover that 
a simple solution performs better in many cases. For example, you may want to keep 
things simple and use a linear model, which is based on simple summations of data, 
instead of a more sophisticated approach. This type of situation is in essence what is 
implied by the “no free lunch” theorem: No one approach suits all problems, and even 
the most simple solution may hold the key to solving an important problem.

The “no free lunch” theorem by David Wolpert and William Macready states that “any 
two optimization algorithms are equivalent when their performance is averaged across 
all possible problems.” If the algorithms are equivalent in the abstract, no one algorithm 
is superior to the other unless proved in a specific, practical problem. See the discussion 
at http://www.no-free-lunch.org/ for more details about no-free-lunch theorems; 
two of them are actually used for machine learning.

http://www.no-free-lunch.org/
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Memories from your high school algebra and geometry tell you that the formula-
tion y = bx + a is a line in a coordinate plane made of an x axis (the abscissa) and 
a y axis (the ordinate). Most machine learning mathematics is actually at the high 
school level, making them easily understandable and applicable to real-world 
problems.

You can demystify the formula by explaining its components: a is the value of the 
intercept (the value of y when x is zero) and b is a coefficient that expresses the 
slope of the line (the relationship between x and y). If b is positive, y increases and 
decreases as x increases and decreases. When b is negative, y behaves in the oppo-
site manner. You can understand b as the unit change in y given a unit change in 
x. When the value of b is near zero, the effect of x on y is slight, but if the value of 
b is high, either positive or negative, the effect of changes in x on y are great.

Linear regression, therefore, can find the best y = bx + a and represent the rela-
tionship between your target variable, y, with respect to your predictive feature, x. 
The values of both a (alpha or intercept) and b (beta coefficient) are determined 
based on the data, and they are found using the linear regression algorithm so 
that the difference between all the real y target values and all the y values derived 
from the linear regression formula are the minimum possible.

You can express this relationship graphically as the sum of the square of all the 
vertical distances between all the data points and the regression line. Such a sum 
is always the minimum possible when you calculate the regression line correctly 
using an estimation called ordinary least squares, which is derived from statistics or 
the equivalent machine learning method, named gradient descent. The differences 
between the real y values and the regression line (the predicted y values) are 
defined as residuals (because they are what are left after a regression: the errors).

Using more variables
When employing a single variable to predict y, the linear regression is considered 
simple, whereas when working with multiple variables, it becomes a multiple lin-
ear regression. When you have many variables, their scale isn’t important in pro-
ducing accurate predictions. But a good habit is to statistically standardize your 
variables (a procedure discussed in Chapter 13) because their scale can ease the 
computations of certain types of regression (as discussed later), and comparing 
coefficients in terms of their impact on the target is insightful for data analysis.

The following example is based on the California Housing dataset from Scikit-
learn, and it employs linear regression to predict housing prices in California. The 
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example also tries to determine which variables influence the result more, so the 
example standardizes the predictors.

from sklearn.datasets import fetch_california_housing
import pandas as pd
 
def load_california_housing_data():
    dataset = fetch_california_housing()
    X = pd.DataFrame(data=dataset.data,
                     columns=dataset.feature_names)
    y = pd.Series(data=dataset.target, name="target")
    return X, y
 
X, y = load_california_housing_data()

The regression class in Scikit-learn is part of the linear_model module. As dem-
onstrated in Chapter 12, you can set up a pipeline that can scale the variables and 
pass them to the model immediately afterward:

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
 
regression = Pipeline(steps=[
    ('scaler', StandardScaler()),
    ('model', LinearRegression())])
 
regression.fit(X, y)

Now that the algorithm is fitted, you can use the score method to report the R2 
measure, which is a measure that ranges from 0 to 1 and points out how using a 
particular regression model is better in predicting y than using a simple mean 
would be. (The act of fitting creates a line or curve that best matches the data 
points provided by the data; you fit the line or curve to the data points in order to 
perform various tasks, such as predictions, based on the trends or patterns pro-
duced by the data.) You can also see R2 as being the quantity of target information 
explained by the model (the same as the squared correlation), so getting near 1 
means being able to explain most of the y variable using the model.

Here is the code used to access the score() method, which is used to report the R2 
measure:

score = regression.score(X, y)
print(f"{score:.3f}")
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Here is the resulting R2 score:

0.606

In this case, R2 on the previously fitted data is about 0.606, a good result for a 
simple model. You can interpret the R2 score as the percentage of information 
present in the target variable that has been explained by the model using the pre-
dictors. A score of 0.606, therefore, means that the model has fit about 60 percent 
of the information you wanted to the model and prediction, and that a residual  
40 percent of it remains unexplained.

Calculating R2, as well as any other predictive performance score, on the same set 
of data used for training is considered reasonable only when using linear models 
because of their simplicity. However, as a general rule, in data science and machine 
learning, it’s always the correct practice to test scores on data that has not been 
used for training. More complex algorithms, compared to linear regression, have 
the tendency to memorize the data rather than truly learn from it, resulting in a 
phenomenon known as overfitting. Overfitting can lead to excessively high scores 
that may not accurately reflect the model’s true performance.

To understand what drives the estimates in the multiple regression model, you 
have to look at the coefficients_ attribute, which is an array containing the 
regression coefficients. The coefficients are the numbers estimated by the linear 
regression model to effectively transform the input variables in the formula into 
the target y prediction. In the following code snippet, the zip function will gener-
ate an iterable of both variable names and coefficient values, and you can print it 
for reporting.

for feature, coefficient in zip(X.columns,  
                              regression['model'].coef_):

    print(f"{feature:12}: {coefficient:>7.3f}")

The reported variables and their rounded coefficients (beta coefficient values, or 
slopes, as described in the “Defining the family of linear models” section, earlier 
in this chapter) are

MedInc      :   0.830
HouseAge    :   0.119
AveRooms    :  -0.266
AveBedrms   :   0.306
Population  :  -0.005
AveOccup    :  -0.039
Latitude    :  -0.900
Longitude   :  -0.871



312      PART 5  Learning from Data

In terms of absolute values, the coefficients that are most noteworthy are MedInc 
(median income in an area), Latitude, and Longitude. This emphasis indicates 
that, according to the linear regression model, the location of your property in 
California and the income level of your neighbors play a significant role in esti-
mating the value of your property.

Understanding limitations and problems
Although linear regression is a simple and effective tool for estimation, it has 
limitations that can impact its usefulness in certain cases, depending on the data. 
To determine whether these limitations are present, it’s important to use some 
method to test its effectiveness. If you don’t apply appropriate data-handling 
techniques (such as basic transformations, discussed here, or more advanced 
manipulations, as discussed in Chapter  19), you may encounter the following 
issues:

 » Linear regression can model only numeric data as a target. When 
modeling classes as response, you need to address the problem using a 
logistic regression, discussed in the next section.

 » If data is missing and you don’t deal with it properly, the model won’t 
work at all. Therefore, it is crucial to fill in the missing values beforehand by 
substituting them with a suitable value, such as the mean of that variable.

 » As discussed in Chapter 16, outliers are quite disruptive to the machine 
learning model. Linear regression tries to minimize the square value of the 
residuals, and outliers produce large residuals, forcing the algorithm to focus 
more on them than on the majority of regular points.

 » The major limitation of linear regression is that it provides only a 
summation of terms, which may not adequately capture the impact of 
variables that affect the outcome differently based on their values. This 
limitation makes it challenging to represent complex data situations with 
linear regression, which is better suited for simpler scenarios where the 
relationship between variables is more straightforward. For instance, the 
relation between the target and each predictor variable is based on a single 
coefficient, and there isn’t an automatic way to represent complex relations 
like a parabola (there is a unique value of x maximizing y) or exponential 
growth. The only way you can manage to model such relations is to use 
mathematical transformations of your variables (and sometimes of your 
target) or add new variables. Chapter 19 explores both the use of complex 
transformations and the addition of new variables.
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Moving to Logistic Regression
Linear regression is well suited for estimating values, but it isn’t the best tool for 
predicting the class of an observation. In spite of the statistical theory that advises 
against it, you can actually try to classify a binary class by scoring one class as 1 
and the other as 0. The results are disappointing most of the time, so the statisti-
cal theory wasn’t wrong!

The fact is that linear regression works on a continuum of numeric estimates. 
However, in order to classify correctly, you need a more suitable measure, such as 
the probability of class ownership. Thanks to the following formula, you can 
transform a linear regression numeric estimate into a probability that is more apt 
to describe how a class fits an observation:

probability of a class = exp(r) / (1+exp(r))

r is the regression result (the sum of the variables weighted by the coefficients) 
and exp is the exponential function. exp(r) corresponds to Euler’s number e ele-
vated to the power of r. A linear regression using such a formula (also called a link 
function) for transforming its results into probabilities is a logistic regression.

Logistic regression is just part of a large number of extensions of the linear 
regression model, called the Generalized Linear Models (GLMs). GLMs are statis-
tical models used to analyze data with a response variable that follows a particular 
probability distribution. Typical examples are binomial, Poisson, or gamma dis-
tribution. GLMs consist of three main components: a linear predictor; a probabil-
ity distribution; and a link function that connects the linear predictor to the mean 
of the response variable. GLMs are widely used in various fields for predicting and 
understanding the relationship between variables in a flexible and interpreta-
ble way.

The Scikit-learn package offers a good choice of models that you can use for dif-
ferent problems in the same way as they were a linear regression model. You can 
explore the options at https://scikit-learn.org/stable/modules/linear_ 
model.html#generalized-linear-models.

Applying logistic regression
Logistic regression is similar to linear regression, with the only difference being 
the target, which should contain integer values indicating the class relative to the 
observation. This example uses the Palmer Penguins dataset to demonstrate both 
the case of predicting two classes (called a binary prediction, one labeled as 0 and 
the other as 1) or multiple classes (a multiclass problem). The Palmer Penguins 

https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models
https://scikit-learn.org/stable/modules/linear_model.html#generalized-linear-models
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dataset is a widely used and popular dataset in the field of data science and 
machine learning. It contains measurements of various physical characteristics of 
penguin specimens collected from three different species of penguins: Adélie, 
Chinstrap, and Gentoo. The dataset is named after the Palmer Station, a research 
station located in Antarctica where the data was collected. You can download it 
directly from the internet using the following code:

import pandas as pd
 
def load_palmer_penguins(only_numeric=True,
                         no_missing=True,
                         multiclass=True):
    url = "https://raw.githubusercontent.com/"
    url += "allisonhorst/palmerpenguins/main/"
    url += "inst/extdata/penguins.csv"
    numeric_features = ["bill_length_mm",
                        "bill_depth_mm",
                        "flipper_length_mm",
                        "body_mass_g"]
    categorical_features = ["island", "sex"]
    data = pd.read_csv(url)
    if no_missing:
        data = data.dropna()
    if multiclass:
        target = data.species.replace({'Adelie':1,
                                       'Gentoo':2,
                                       'Chinstrap':3})
    else:
        target = data.species.replace({'Adelie':1,
                                       'Gentoo':0,
                                       'Chinstrap':0})
    if only_numeric:
        return data[numeric_features], target
    else:
        return data[numeric_features + 
                    categorical_features], target
    
X, y = load_palmer_penguins(only_numeric=True,
                            no_missing=True,
                            multiclass=False)
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The following example fits a logistic regression model to determine whether a 
penguin is an Adélie or not and leaves the last example of the dataset apart for 
testing purposes:

from sklearn.linear_model import LogisticRegression
 
logistic = Pipeline(steps=[
    ('scaler', StandardScaler()),
    ('model', LogisticRegression())])
 
logistic.fit(X.iloc[:-1], y.iloc[:-1])
 
excluded_row = X.iloc[[-1]]
pred = logistic.predict(excluded_row)
proba = logistic.predict_proba(excluded_row)
print (f"Predicted class {pred[0]}, real class " +
       f"{y.iloc[-1]}") 
print (f"with probability {proba[0, 0]:.3f}")

The preceding code snippet outputs the following result and probability, correctly 
verifying that the last example is not an Adélie penguin:

Predicted class 0, real class 0
with probability 0.987

In contrast to linear regression, logistic regression doesn’t just output the result-
ing class (in this case, the class 0 – not an Adélie penguin) but also estimates the 
probability of the observation’s being part of the predicted class. Based on the 
observation used for prediction, logistic regression estimates a probability of  
99 percent of its being from class 0 — a very high probability, but not a perfect 
score, therefore leaving a slight margin of uncertainty.

Using probabilities lets you guess the most probable class of an example, but you 
can also order the predictions with respect to being part of that class. This is espe-
cially useful for medical purposes; for instance, ranking a prediction in terms of 
likelihood with respect to others can reveal which patients are most at risk of get-
ting or already having a disease.

Considering the case when there  
are more classes
The previous problem, logistic regression, automatically handles a binary class 
problem (it started guessing whether a penguin is an Adélie). Most algorithms 
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provided by Scikit-learn that predict probabilities or a score for class can auto-
matically handle multiclass problems using two different strategies:

 » One versus rest: The algorithm compares every class with all the remaining 
classes, building a model for every class. If you have ten classes to guess, you 
have ten models. This approach relies on the OneVsRestClassifier class 
from Scikit-learn.

 » One versus one: The algorithm compares every class against every individual 
remaining class, building a number of models equivalent to n * (n-1) / 2, 
where n is the number of classes. If you have ten classes, you have 45 models: 
10 * (10 - 1) / 2. This approach relies on the OneVsOneClassifier class 
from Scikit-learn.

In the case of logistic regression, the default multiclass strategy is the one versus 
rest. The example in this section shows how to use both the strategies with the 
Palmer Penguins dataset, when the target is a number representing each of the 
three species. The following code loads the data in multiclass format and splits a 
part of it for testing purposes:

from sklearn.model_selection import train_test_split
 
X, y = load_palmer_penguins(only_numeric=True,
                            no_missing=True,
                            multiclass=True)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.33, random_state=42)

Now it’s time to evaluate the performance of both the one-versus-rest and the 
one-versus-one approaches. The following code trains two separate models and 
assesses their performance on the holdout dataset:

from sklearn.multiclass import OneVsRestClassifier 
from sklearn.multiclass import OneVsOneClassifier
ovr = OneVsRestClassifier(logistic).fit(X_train, y_train)
ovo = OneVsOneClassifier(logistic).fit(X_train, y_train)
print('One vs rest accuracy: %.3f' % ovr.score(
    X_test, y_test))
print('One vs one accuracy: %.3f' % ovo.score(
    X_test, y_test))

The performances of the two multiclass strategies are

One vs rest accuracy: 0.973
One vs one accuracy: 0.982
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The two multiclass classes, OneVsRestClassifier and OneVsOneClassifier, 
operate by incorporating the estimator (in this case, LogisticRegression). After 
incorporation, they usually work just like any other learning algorithm in Scikit-
learn. Interestingly, the one-versus-one strategy obtained the highest accuracy 
thanks to its paired comparisons.

Making Things as Simple as Naïve Bayes
You may wonder why anyone would name an algorithm Naïve Bayes. The naïve 
part comes from its formulation; it makes some extreme simplifications to stan-
dard probability calculations. The reference to Bayes in its name relates to the 
Reverend Bayes and his theorem on probability. The Reverend Thomas Bayes 
(1701–1761) was an English statistician and a philosopher who formulated his 
theorem during the first half of the 18th century. The theorem was never pub-
lished while he was alive. It has deeply revolutionized the theory of probability by 
introducing the idea of conditional probability — that is, probability conditioned 
by evidence.

Of course, it helps to start from the beginning — probability itself. Probability tells 
you the likelihood of an event and is expressed in a numeric form. The probability 
of an event is measured in the range from 0 to 1 (from 0 percent to 100 percent) and 
it’s empirically derived from counting the number of times the specific event hap-
pened with respect to all the events. When you observe events (for example, when 
a feature has a certain characteristic), and you want to estimate the probability 
associated with the event, you count the number of times the characteristic appears 
in the data and divide that figure by the total number of observations available. The 
result is a number ranging from 0 to 1, which expresses the probability.

When you estimate the probability of an event, you tend to believe that you can 
apply the probability in each situation. The term for this belief is a priori because 
it constitutes the first estimate of probability with regard to an event (the one that 
comes to mind first). For example, if you estimate the probability of an unknown 
person’s being a female, you may say, after some counting, that it’s 50 percent, 
which is the prior, or the first, probability that you will stick with.

The prior probability can change in the face of evidence, that is, something that can 
radically modify your expectations. One possible example to demonstrate Bayes’ 
theorem could be related to the probability of a person being a student based on 
whether they carry a backpack. For instance, assume that in the general popula-
tion, 30 percent of people carry a backpack, while among students, 90 percent 
carry a backpack. If you encounter a person who is carrying a backpack, you may 
want to estimate from this evidence the probability that the person is a student.
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This sounds like a predictive problem for Bayes’ theorem, and in the end, this 
situation is really similar to predicting a categorical variable from data: You have 
a target variable with different categories, and you have to guess the probability of 
each category on the basis of evidence, the data. The Reverend Bayes provided a 
useful formula:

P(A|B) = P(B|A)*P(A) / P(B)

The formula looks like statistical jargon and is a bit counterintuitive, so it needs 
to be explained in depth. Reading the formula using the previous example as input 
makes the meaning behind the formula quite a bit clearer:

 » P(A|B) is the probability of being a student (event A) given that you carry a 
backpack (evidence B). This part of the formula defines what you want to 
predict. In short, it says to predict y given x, where y is an outcome (student or 
not) and x is the evidence (using a backpack).

 » P(B|A) is the probability of carrying a backpack if you are a student. In this 
case, you already know that it’s 90 percent. In every data problem, you can 
obtain this figure easily by simple cross-tabulation of the features against the 
target outcome.

 » P(A) is the probability of being a student, a 20 percent chance in the popula-
tion (a priori).

 » P(B) is the probability of carrying a backpack, which is 30 percent (another  
a priori).

When reading parts of the formula such as P(A|B), you should read them as fol-
lows: probability of A given B.  The | symbol translates as given. A probability 
expressed in this way is a conditional probability, because it’s the probability of  
A conditioned by the evidence presented by B.  In this example, plugging the  
numbers into the formula translates into: 90% * 20% / 30% = 60%.

Therefore, getting back to the previous example, even if being a student is a  
20 percent probability, just knowing evidence like carrying a backpack takes it up 
to 60 percent, which is a more favorable chance for the guess. In similar classifi-
cation problems, gathering multiple pieces of evidence can raise the probability of 
making a correct prediction using Bayesian probabilities.

Finding out that Naïve Bayes isn’t so naïve
Naïve Bayes, leveraging the simple Bayes’ rule, takes advantage of all the evidence 
available to modify the a priori base probability of your predictions. Because your 
data contains so much evidence — that is, it has many features — the algorithm, 
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based on a simplified Naïve Bayes formula, accumulates all the probabilities to 
derive a confident prediction.

As discussed in the “Guessing the number: linear regression” section, earlier in 
this chapter, summing variables implies that the model takes them as separate 
and unique pieces of information. But this isn’t true in reality, because applica-
tions exist in a world of interconnections, with every piece of information con-
necting to many other pieces. Using one piece of information more than once 
means giving more emphasis to that particular piece.

Because you don’t know (or simply ignore) the relationships between each piece 
of evidence, you may wonder if it’s correct to just plug all evidence into a Naïve 
Bayes algorithm. Actually, the simple and naïve move of throwing everything that 
you know at the formula works well indeed in many occurrences, and many stud-
ies report good performance despite the fact that you make a bold assumption. 
Here are some of the ways in which you commonly see Naïve Bayes effectively 
used:

 » Building spam detectors (catching all annoying emails in your inbox)

 » Sentiment analysis (guessing whether a text contains positive or negative 
attitudes with respect to a topic, and detecting the mood of the speaker)

 » Text-processing tasks such as spell correction, or guessing the language used 
to write or classify the text into a larger category

Naïve Bayes is also popular because it doesn’t need much data to work. In addi-
tion, it can naturally handle multiple classes. With some slight variable modifica-
tions (transforming them into classes), it can also handle numeric variables. 
Scikit-learn provides three Naïve Bayes classes in the sklearn.naive_bayes 
module:

 » MultinomialNB: Assigns probabilities based on the presence of a feature in 
the data. It is often used to make predictions on textual data problems, after 
having transformed the text into a bag of words, as explained in Chapter 8.

 » BernoulliNB: Assigns a different probability when the feature is present than 
when it’s absent, which is different from multinomial Naïve Bayes. It also 
penalizes the absence of a feature. In fact, it treats all features as binary 
variables (the Bernoulli distribution is typical of binary problems). It’s versatile 
for tasks like text classification and fraud detection.

 » GaussianNB: Defines a version of Naïve Bayes that expects a normal distribu-
tion of all the features. Hence, this class is suboptimal for textual data in which 
words are sparse (use the multinomial or Bernoulli distributions instead). If 
your variables are numeric ones, this version is the best choice.
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Predicting text classifications
Naïve Bayes is particularly popular for document classification because it doesn’t 
need many documents to perform sufficiently well in a problem. In textual prob-
lems, you often have myriads of features involved, one for each word spelled cor-
rectly or incorrectly. Sometimes the text is associated with other nearby words in 
n-grams, that is, sequences of consecutive words. Naïve Bayes can quickly learn 
the patterns from the textual features and provide fast predictions.

This section tests text classifications using the binomial and multinomial Naïve 
Bayes models offered by Scikit-learn. The examples rely on the 20newsgroups 
dataset, which contains a large number of posts from 20 kinds of newsgroups. The 
dataset is divided into a training set, for building your textual models, and a test 
set, which is composed of posts that temporarily follow the training set. You use 
the test set to test the accuracy of your predictions:

import numpy as np
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text \
    import CountVectorizer
import sklearn.feature_extraction.text as txt
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.metrics import accuracy_score
 
newsgroups_train = fetch_20newsgroups(
    subset='train', remove=('headers', 'footers',
                            'quotes'))
newsgroups_test = fetch_20newsgroups(
    subset='test', remove=('headers', 'footers',
                           'quotes'))

After loading the two sets into memory, you instantiate the two Naïve Bayes mod-
els by setting their alpha values, which are useful for avoiding a zero probability 
for rare features (a zero probability would exclude these features from the analy-
sis). You typically use a small value for alpha, as shown in the following code:

bernoulli_nb = BernoulliNB(alpha=0.01)
multinomial_nb = MultinomialNB(alpha=0.01)
 
multinomial_vectorizer = CountVectorizer(
    stop_words='english', binary=False)
binary_vectorizer = CountVectorizer(
    stop_words='english', binary=True)
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In this example, CountVectorizer converts a collection of text documents into a 
numerical matrix. When used with the parameters stop_words set to 'english' 
and binary set to false, CountVectorizer removes common English stop words 
(such as a, the, in, and so on) from the text, converts the text to lowercase, and 
counts the frequency of occurrence of each word in the text documents. 

train_targets = newsgroups_train.target
test_targets = newsgroups_test.target
 
multinomial_X = np.abs(
    multinomial_vectorizer.fit_transform(
        newsgroups_train.data))
multinomial_Xt = np.abs(
    multinomial_vectorizer.transform(
        newsgroups_test.data))
binary_X = binary_vectorizer.fit_transform(
    newsgroups_train.data)
binary_Xt = binary_vectorizer.transform(
    newsgroups_test.data)

After transforming the text, you can train the two classifiers and test them on the 
test set, which is a set of posts that haven’t been involved in the training. The test 
measure is accuracy, which is the percentage of right guesses that the algorithm 
makes.

multinomial_nb.fit(multinomial_X, train_targets)
bernoulli_nb.fit(binary_X, train_targets)
 
for name, model, data in [
    ('BernoulliNB', bernoulli_nb, binary_Xt),
    ('MultinomialNB', multinomial_nb, multinomial_Xt)]:
    accuracy = accuracy_score(
        y_true=test_targets, y_pred=model.predict(data))
    print(f"Accuracy for {name}: {accuracy:.3f}")

The reported accuracies for the two Naïve Bayes models are

Accuracy for BernoulliNB: 0.567
Accuracy for MultinomialNB: 0.653

You may notice that it won’t take a long time for both models to train and report 
their predictions on the test set. Consider that the training set is made up of more 
than 11,000 posts containing 300,000 words, and the test set contains about 7,500 
other posts.
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print(f'training posts: {len(newsgroups_train.data)}')
D = {word: True for post in newsgroups_train.data 
     for word in post.split(' ')}
print(f'training words: {len(D)}')
print(f'test posts: {len(newsgroups_test.data)}')

Running the code returns all these useful text statistics:

training posts: 11314
training words: 300972
test posts: 7532

Learning Lazily with Nearest Neighbors
K-Nearest Neighbors (KNN) is not about building rules from data based on coef-
ficients or probability. KNN works on the basis of similarities. When you have to 
predict something like a class, your best approach may be to find the most similar 
observations to the one you want to classify or estimate. You can then derive the 
answer you need from the similar cases.

Observing how many observations are similar doesn’t imply learning something, 
but rather measuring. Because KNN isn’t learning anything, it’s considered lazy, 
and you’ll hear it referenced as a lazy learner or an instance-based learner. The 
idea is that similar premises usually provide similar results, and it’s important 
not to forget to get such low-hanging fruit before trying to climb the tree!

The algorithm is fast during training because it has to memorize only data about 
the observations. It actually performs more calculations during predictions.  
When there are too many observations, the algorithm can become slow and  
memory consuming. You’re best advised not to use it with big data or it may take 
almost forever to predict anything! Moreover, this simple and effective algorithm 
works better when you have distinct data groups without too many variables 
involved because the algorithm is also sensitive to the curse of dimensionality.

The curse of dimensionality happens as the number of variables increases. Consider 
a situation in which you’re measuring the distance between observations and, as 
the space becomes larger and larger, it becomes difficult to find real neighbors — 
a problem for KNN, which sometimes mistakes a far observation for a near one. 
Rendering the idea is just like playing chess on a multidimensional chessboard. 
When playing on the classic 2-D board, most pieces are near, and you can more 
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easily spot opportunities and menaces for your pawns when you have 32 pieces 
and 64 positions. However, when you start playing on a 3-D board, such as those 
found in some sci-fi films, your 32 pieces can become lost in 512 possible posi-
tions. Now just imagine playing with a 12-D chessboard. You can easily misunder-
stand what is near and what is far, which is what happens with KNN.

There are ways to enhance KNN’s ability in detecting similarities between obser-
vations by removing redundant information and simplifying the data dimension-
ality using data reduction techniques, as explained in Chapter 14.

Predicting after observing neighbors
For an example showing how to use KNN, you can start with the digit dataset (as 
found in Chapters 12, 14, and 15). KNN is particularly useful, just like Naïve Bayes, 
when you have to predict many classes, or in situations that would require you to 
build too many models or rely on a complex model.

import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
 
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(
    digits.data, digits.target, 
    test_size=0.33, random_state=42)

KNN is an algorithm that’s quite sensitive to outliers. Moreover, you have to res-
cale your variables and remove some redundant information. In this example, 
rescaling is not necessary because the data represents pixels, which means that 
it’s already scaled and constrained in a range of values.

You can avoid the problem with outliers by keeping the neighborhood small — 
that is, by not looking too far for similar examples because outliers by definition 
lie further apart other observations.

In the following code snippet, you instantiate and train your KNN classifier by 
using a neighborhood (n_neighbors of 5 cases):

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, p=2)
knn.fit(X_train, y_train)
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KNN uses a distance measure to determine which observations to consider as pos-
sible neighbors for the target case. You can easily change the predefined distance 
using the p parameter:

 » When p is 2, use the Euclidean distance (discussed as part of the clustering 
topic in Chapter 15).

 » When p is 1, use the Manhattan distance metric, which is the absolute 
distance between observations. In a 2-D square, when you go from one 
corner to the opposite one, the Manhattan distance is the same as walking 
the perimeter, whereas Euclidean is like walking on the diagonal. Although the 
Manhattan distance isn’t the shortest route, it’s a more realistic measure than 
Euclidean distance, and it’s less sensitive to noise and high dimensionality.

The Euclidean distance is the commonly used measure, but sometimes it can give 
you worse results, especially when the analysis involves many correlated vari-
ables. The following code shows that the analysis seems fine with it.

print('Accuracy: %.3f' % knn.score(X_test, y_test) )
print(f"Prediction: {knn.predict(X_test[-15:,:])}")
print(f"Actual:     {y_test[-15:]}")

The code returns the accuracy and a sample of the predictions you can compare 
with the actual values in order to spot differences:

Accuracy: 0.993
Prediction: [2 1 1 2 2 4 8 7 5 8 8 9 4 9 0]
Actual:     [2 1 1 2 2 4 8 7 5 8 8 9 4 9 0]

Choosing your k parameter wisely
A critical parameter that you have to define in KNN is k. As k (the number of 
neighbors checked to determine the classification of a specific query point) 
increases, KNN considers more points for its predictions, and the decisions are 
less influenced by noisy instances that could exercise an undue influence. Your 
decisions are based on an average of more observations, and they become more 
solid. When the k value you use is too large, you start considering neighbors that 
are too far, sharing less and less with the case you have to predict.

It’s an important trade-off. When the value of k is less, you consider a more 
homogeneous pool of neighbors but can more easily make an error by taking the 
few similar cases for granted. When the value of k is more, you consider more 
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cases at a higher risk of observing neighbors that are too far or that are outliers. 
Getting back to the previous example with digit dataset, you can experiment with 
changing the k value, as shown in the following code:

for k in [1, 3, 5, 7, 10, 50, 100]:
    kNN = KNeighborsClassifier(n_neighbors=k)
    kNN.fit(X_train, y_train)
    test_score = kNN.score(X_test, y_test)
    print(f"k= {k:3} \t accuracy= {test_score:.3f}")

After running this code, you get an overview of what happens when k changes, 
and can determine the value of k that best fits the data:

k=   1   accuracy= 0.985
k=   3   accuracy= 0.990
k=   5   accuracy= 0.993
k=   7   accuracy= 0.990
k=  10   accuracy= 0.983
k=  50   accuracy= 0.929
k= 100   accuracy= 0.899

Through experimentation, you find that setting n_neighbors (the parameter rep-
resenting k) to 5 is the optimum choice, resulting in the highest accuracy. Using 
just the nearest neighbor (n_neighbors =1) isn’t a bad choice, however, setting 
the value above 5 returns decreasing results in the classification task.

As a rule of thumb, when your dataset doesn’t have many observations, set k as a 
number near the square root of available observations. However, there is no gen-
eral rule, and trying different k values is always a good way to optimize your KNN 
performance. Always start from low values and work toward higher values.
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Chapter 18
Performing Cross-
Validation, Selection, 
and Optimization

This chapter is about how machine learning algorithms learn, and it explores 
some methods for making them learn better. Machine learning algorithms 
can indeed learn from data. For instance, the four algorithms presented in 

the previous chapter, although not complex, can effectively estimate a class or a 
value after being presented with examples associated with outcomes. It is all a 
matter of learning by induction, which is the process of extracting general rules 
from specific examples. From childhood, humans commonly learn by seeing 
examples, deriving some general rules or ideas from them, and then successfully 
applying the derived rule to new situations as we grow up. For example, if we see 
someone being burned after touching fire, we understand that fire is dangerous, 
and we don’t need to touch it ourselves to know that.

Currently, machine learning algorithms can’t fully match human learning abili-
ties. However, the knowledge they acquire can be highly advantageous for some 
assignments. To improve the situation, a human detects issues in the machine 

IN THIS CHAPTER

 » Learning about overfitting and 
underfitting

 » Choosing the right metric to monitor

 » Cross-validating the results

 » Selecting the best features for your 
model

 » Optimizing hyperparameters
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learning process and then provides methods for overcoming any issues, which are 
the two main focuses of this chapter. Learning by example using machine algo-
rithms has pitfalls. Here are a few issues that might arise:

 » There aren’t enough examples to endorse a rule, no matter what machine 
learning algorithm you are using.

 » The machine learning application is presented with the wrong examples and 
consequently cannot define suitable rules.

 » Even when the model sees enough correct examples, it may still struggle to 
understand the underlying rules because they are just too complicated for the 
model to comprehend.

It’s important to consider these pitfalls as you read through this chapter because 
they affect your machine learning experience. The quantity of data, its quality, 
and the characteristics of the learning algorithm decide whether a machine learn-
ing application can generalize well to new cases. If anything is wrong with any of 
them, the resulting model will suffer serious limits. As a data science practitioner, 
you must recognize and learn to avoid these types of pitfalls in your data science 
experiments.

You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions). 
The source code for this chapter appears in the P4DS4D3_18_Performing_Cross_ 
Validation_Selection_and_Optimization.ipynb file.

Pondering the Problem of Fitting a Model
Providing a model with examples is commonly referred to as training or fitting data 
to the model. Fitting a model implies learning from data a representation of the 
rules that generated the data in the first place. From a mathematical perspective, 
fitting a model is analogous to guessing an unknown function of the kind you 
faced in high school, such as y=4x^2+2x, just by observing its y results. Therefore, 
under the hood, you expect that machine learning algorithms generate math for-
mulations by guessing how reality works based on the examples provided.

Determining the validity of such formulations is typically outside the realm of 
data science, and often the most practical approach is to test whether a working 
model can be constructed using the data. What is most important is that models 
work by producing exact predictions. To summarize, as a data scientist, you 
should always strive to approximate the real, unknown functions underlying the 
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problems you face using the best information available. The result of your work is 
evaluated based on your capacity to predict specific outcomes (the target out-
come) given certain premises (the data) thanks to a useful range of tools (the 
machine learning algorithms).

Linear regression is presented as a simple formula (y = bx + a) earlier in Chapter 17. 
It can approximate training data well, even if it’s not linear. As with linear regres-
sion, all other machine learning algorithms have an internal formulation them-
selves and some, such as neural networks, even require that you define their 
formulation from scratch. The linear regression’s formulation is one of the sim-
plest ones; formulations from other learning algorithms can appear quite complex. 
You don’t need to know exactly how they work. You just need to have an idea of 
how complex they are, whether they represent a line or a curve, and how they  
can respond to outliers or noisy data. When planning to learn from data, you  
should address the following problematic aspects based on the formulation you 
intend to use:

 » Whether the learning algorithm is the best one to approximate the unknown 
function that you imagine behind the data you’re using. In order to make such 
a decision, you must consider the learning algorithm’s formulation perfor-
mance on the data at hand and compare it with other, alternative formula-
tions from other algorithms.

 » Whether the specific formulation of the learning algorithm is too simple, with 
respect to the hidden function, to make an estimate (this is called a bias 
problem).

 » Whether the specific formulation of the learning algorithm is too complex, 
with respect to the hidden function to be guessed (leading to the variance 
problem).

Not all algorithms are suitable for every data problem. If you don’t have enough 
data or the data is full of noisy information, it may be difficult for some formula-
tions to figure out the real function.

Understanding bias and variance
If your chosen learning algorithm can’t learn properly from data and isn’t  
performing well, the cause is bias or variance in its estimates:

 » Bias: Given the simplicity of formulation, your algorithm tends to overesti-
mate or underestimate the real rules behind the data and is systematically 
wrong in certain situations. Simple algorithms have high bias; having few 
internal parameters, they tend to represent only simple formulations well.
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 » Variance: Given the complexity of formulation, your algorithm tends to learn 
too much information from the data and detect rules that don’t exist, which 
causes its predictions to be erratic when faced with new data. You can think of 
variance as a problem connected to memorization. Complex algorithms can 
memorize data features thanks to the algorithms’ high number of internal 
parameters. However, memorization doesn’t imply any understanding about 
the rules.

Bias and variance depend on the complexity of the formulation at the core of the 
learning algorithm with respect to the complexity of the formulation that is pre-
sumed to have generated the data you are observing. However, when you consider 
a specific problem using the available data rules, you end up having either high 
bias or variance when

 » You have few observations. Simpler algorithms perform better, no matter 
what the unknown function is. Complex algorithms tend to learn too much 
from data, and then output inaccurate estimates.

 » You have many observations. Complex algorithms tend to reduce variance. 
The reduction occurs because sophisticated data requires complex algorithms 
to learn all its nuances. However, this works only if the complex algorithm isn’t 
too complicated for the data.

 » You have many variables. Provided that you also have many observations, 
simpler algorithms tend to find a way to approximate even complex hidden 
functions.

Defining a strategy for picking models
When faced with a machine learning problem, you usually know little about the 
problem and don’t know whether a particular algorithm will manage it well. Con-
sequently, you don’t really know whether the source of a problem is caused by bias 
or variance — although you can usually use the rule of thumb that if an algorithm 
is simple, it will have high bias, and if it is complex, it will have high variance. 
Even when working with common, well-documented data science applications, 
you’ll notice that what works in other situations (as described in academic and 
industry papers) often doesn’t operate very well for your own application because 
the data is different.

You can summarize this situation using the famous no-free-lunch theorem of the 
mathematician David Wolpert: Any two machine learning algorithms are equiva-
lent in performance when tested across all possible problems. Consequently, it 
isn’t possible to say that one algorithm is always better than another; it can be 
better than another one only when used to solve specific problems. You can view 
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the concept in another way: For every problem, there is never a fixed recipe! The 
best and only strategy is to try everything you can and verify the results using a 
controlled scientific experiment. Using this approach ensures that what seems to 
work is what really works and, most important, what will keep on working with 
new data.

At this point, you must consider a critical, yet underrated, aspect to ensure the suc-
cess of your data project. For a best model and greatest results, it’s essential to 
define an evaluation metric that distinguishes a good model from a bad one with 
respect to the business or scientific problem that you want to solve. In fact, for some 
projects, you may need to avoid seeing negative cases (ones where the evaluation 
metric shows a bad model) as if they are positive cases (ones where the evaluation 
metric shows a good model); for others, you may want to absolutely spot all the 
positive ones; and for still others, all you need to do is order them so that positive 
ones come before the negative ones so that you don’t need to check them all.

By picking an algorithm, you automatically also pick an optimization process 
ruled by an evaluation metric that reports its performance to the algorithm so that 
the algorithm can better adjust its parameters. For instance, when using a linear 
regression, the metric is the mean squared error given by the vertical distance of 
the observations from the regression line. Therefore, it’s automatic, and you can 
more easily accept the algorithm performance provided by such a default evalua-
tion metric.

Apart from accepting the default metric, some algorithms do let you choose a 
preferred evaluation function or even allow you to create a custom one. In most 
cases, however, when you can’t point out your favorite evaluation function, you 
can still influence the existing evaluation metric by appropriately fixing some of 
its hyperparameters, thus optimizing the algorithm indirectly for another, differ-
ent, metric.

Scikit-learn offers access to a wide range of measures for both classification and 
regression problems. The sklearn.metrics module allows you to call the optimi-
zation procedures using a simple string or by calling an error function from its 
modules. Table 18-1 shows the measures commonly used for regression problems.

TABLE 18-1 Regression Evaluation Measures
Callable String Function

mean_absolute_error sklearn.metrics.mean_absolute_error

mean_squared_error sklearn.metrics.mean_squared_error

r2 sklearn.metrics.r2_score
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The r2 string specifies a statistical measure for linear regression called R2 (R 
squared). It expresses how the model compares in predictive power with respect 
to a simple mean. Machine learning applications seldom use this measure because 
it doesn’t explicitly report errors made by the model, although high R2 values 
imply fewer errors; more viable metrics for regression models are the mean 
squared errors and the mean absolute errors.

Squared errors penalize extreme values more, whereas absolute error weights all 
the errors the same. So it’s really a matter of considering the trade-off between 
reducing the error on extreme observations as much as possible (squared error) or 
trying to reduce the error for the majority of the observations (absolute error). The 
choice you make depends on the application. When extreme values represent crit-
ical situations for your application, a squared error measure is better. However, 
when your concern is to minimize the common and usual observations, as often 
happens in forecasting sales problems, you should use a mean absolute error as 
the reference. The choices even apply to complex classification problems, as you 
can see in Table 18-2.

Accuracy is the simplest error measure in classification, counting (as a percent-
age) how many of the predictions are correct. It takes into account whether the 
machine learning algorithm has guessed the right class. This measure works with 
both binary and multiclass problems. Even though it’s a simple measure, opti-
mizing accuracy may cause problems when an imbalance exists between classes. 
For example, it could be a problem when a class is frequent or preponderant, such 
as in fraud detection, where most transactions are actually legitimate with respect 
to a few criminal transactions. In such situations, machine learning algorithms 
optimized for accuracy tend to guess in favor of the preponderant class and be 
wrong most of time with the minor classes, which is an undesirable behavior for 
an algorithm that you expect to guess all the classes correctly, not just a few 
selected ones.

TABLE 18-2 Classification Evaluation Measures
Callable String Function

accuracy sklearn.metrics.accuracy_score

precision sklearn.metrics.precision_score

recall sklearn.metrics.recall_score

f1 sklearn.metrics.f1_score

roc_auc sklearn.metrics.roc_auc_score
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Precision and recall, and their conjoint optimization by F1 score, can solve prob-
lems not addressed by accuracy. Precision is about being precise when guessing. 
It tracks the percentage of times, when forecasting a class, that a class was right. 
For example, you can use precision when diagnosing cancer in patients after eval-
uating data about their exams. Your precision in this case is the percentage of 
patients who really have cancer among those diagnosed with cancer. Therefore, if 
you have diagnosed ten ill patients and nine are truly ill, your precision is  
90 percent.

You face different consequences when you don’t diagnose cancer in a patient who 
has it or you do diagnose it in a healthy patient. Precision tells just a part of the 
story, because there are patients with cancer that you have diagnosed as healthy, 
and that’s a terrible problem. The recall measure tells the second part of the story. 
It reports, among an entire class, your percentage of correct guesses. For example, 
when reviewing the previous example, the recall metric is the percentage of 
patients that you correctly guessed have cancer. If there are 20 patients with can-
cer and you have diagnosed just 9 of them, your recall will be 45 percent, which 
isn’t acceptable performance.

When using your model, you can be accurate but still have low recall, or have a 
high recall but lose accuracy in the process. Fortunately, precision and recall  
can be maximized together using the F1 score, which uses the formula F1 = 2 *  
(precision * recall) / (precision + recall). Using the F1 score ensures that 
you always get the best precision and recall combined.

Receiver Operating Characteristic Area Under Curve (ROC AUC) is useful when you 
want to order your classifications according to their probability of being correct. 
Therefore, when optimizing ROC AUC in the previous example, the learning algo-
rithm will first try to order (sort) patients starting from those most likely to have 
cancer to those least likely to have cancer. The ROC AUC is higher when the order-
ing is good and low when it is bad. If your model has a high ROC AUC, you need to 
check the most likely ill patients. Another example is in a fraud-detection prob-
lem, when you want to order customers according to the risk of them producing a 
fraudulent transaction. If your model has a good ROC AUC, you need to check just 
the riskiest customers closely.

Dividing between training and test sets
Having explored how to decide among the different error metrics for classification 
and regression, the next step in the strategy for choosing the best model is to 
experiment and evaluate the solutions by viewing their ability to generalize to 
new cases. As an example of correct procedures for experimenting with machine 
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learning algorithms, begin by loading the California housing dataset used in pre-
vious chapters:

from sklearn.datasets import fetch_california_housing
import pandas as pd
 
def load_california_housing_data():
    dataset = fetch_california_housing()
    X = pd.DataFrame(data=dataset.data,
                     columns=dataset.feature_names)
    y = pd.Series(data=dataset.target, name="target")
    return X, y
 
X, y = load_california_housing_data()
print(X.shape, y.shape)

The goal is to be able to predict the price of a house in a given neighborhood. The 
output shows that the dataset contains 20640 observations and 8 features. The 
target is a price measure, and because it’s common in house evaluation to look for 
how neighboring estates are valued, you decide to use a k-nearest neighbor algo-
rithm (KNN) and to optimize the result using the R squared. The objective is to 
ensure that a KNN is a good model for the dataset and to quantify how good it is 
(which lets you compare it with alternative models).

from sklearn.neighbors import KNeighborsRegressor
 
knn_model = KNeighborsRegressor(n_jobs=-1)
knn_model.fit(X, y)
 
r2 = knn_model.score(X, y)
 
print(f"R-squared value: {r2:.2f}") 

The resulting mean square error generated by the commands is

R-squared value: 0.47

After having fitted the model with the data (which is called the training data 
because it provides examples to learn from), the score evaluation method, applied 
to the same data used for training, reports the data fitting error. An R squared 
value of 0.47 tells us that almost half the information in the data can be repre-
sented by the model but it’s calculated directly on the training set, so you can’t be 
sure the model will work as well with new data (machine learning algorithms are 
both good at learning and at memorizing from examples).
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Ideally, you need to perform a test on data that the algorithm has never seen in 
order to exclude any memorization. Only in this way can you discover whether 
your algorithm will work well when new data arrives. To perform this task, you 
wait for new data, make the predictions on it, and then compare the predictions to 
reality. However, performing the task this way may take a long time and could 
become both risky and expensive, depending on the type of problem you want to 
solve using machine learning (for example, some applications such as cancer 
detection can be incredibly risky to experiment with because lives are at a stake).

Luckily, you have another way to obtain the same result. To simulate having new 
data, you can divide the observations into test and training cases. It’s quite com-
mon in data science to have a test size of 20–30 percent of the available data and 
to train the predictive model using the remaining 70–80 percent. Here is an 
example of how you can achieve data partitioning in Python:

from sklearn.model_selection import train_test_split
 
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.20, random_state=0)
 
print(f"Training set shape: {X_train.shape}")
print(f"Testing set shape: {X_test.shape}")

The code prints the resulting shapes of the training and test sets, with the former 
being 80 percent of the initial dataset size and the latter just 20 percent:

Training set shape: (16512, 8)
Testing set shape: (4128, 8)

The example separates training and test X and y variables into distinct variables 
using the train_test_split() function. The test_size parameter indicates a 
test set made of 20 percent of the available observations. The function always 
chooses the test sample randomly. Now you can use the training set for training:

from sklearn.metrics import mean_squared_error
 
knn_model.fit(X_train, y_train)
 
preds_train = knn_model.predict(X_train)
preds_test = knn_model.predict(X_test)
 
test_mse = mean_squared_error(y_true=y_test, 

                             y_pred=preds_test)
print(f"Train mean squared error: {train_mse:.5f}")
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This time, you evaluate the mean squared error instead of the R squared. The out-
put shows the training set’s mean squared error:

Train mean squared error: 0.73442

At this point, you use the model to predict on the test set:

test_mse = mean_squared_error(y_true=y_test, y_pred=preds_test)
print(f"Test mean squared error: {test_mse:.5f}")

The code reports a test error of 1.11733, which is higher than what you obtained as 
a training error:

Test mean squared error: 1.11733

What a difference, indeed! Somehow, the estimate on the training set was too 
optimistic. However, although using the test set, is more realistic in error estima-
tion, it really makes your result depend on a small portion of the data. If you 
change that small portion, the test result may also change. That’s a common 
problem with machine learning algorithms. You know that each algorithm has a 
certain bias or variance in predicting an outcome. The problem is that you can’t 
estimate its impact for sure because the training performances are always too 
optimistic and misleading, and by using a test set, you may get different results 
depending on what sample you use.

Using training data is always unsuitable when evaluating algorithm performance 
because the learning algorithm may actually predict the training data better than 
any test set. This is especially true when an algorithm has strong memorization 
capabilities because of its complexity. In this case, you can expect a lower error 
when predicting the training data, which means that you get an overly optimistic 
result that doesn’t compare it fairly with other algorithms (which may have a dif-
ferent bias/variance profile), nor are the results useful for this example’s evalua-
tion. By using the test data, you actually reduce the number of training examples 
(which may cause the algorithm to perform less well), but in exchange, you get a 
more reliable and comparable error estimate, though an uncertain and vari-
able one.

Cross-Validating
If test sets provide unstable results because of sampling, the solution is to sys-
tematically sample a certain number of test sets and then average the results. That 
gets you more stable results. Averaging multiple observed measures is a statistical 
approach, and that’s the basis of cross-validation. The recipe is straightforward:
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1. Divide your data into folds.

Each fold is a container that holds an even distribution of the cases, usually 10, 
but fold sizes of 3, 5, and 20 are viable alternative options.

2. Hold out one fold as a test set and use the others as training sets.

3. Train and record the test set result.

If you have little data, it’s better to use a larger number of folds, because the 
quantity of data and the use of additional folds positively affects the quality  
of training.

4. Perform Steps 2 and 3 again, using each fold in turn as a test set.

5. Calculate the average and the standard deviation of all the folds’ test 
results.

The average is a reliable estimator of the quality of your predictor. The 
standard deviation will tell you the predictor reliability (if it is too high, the 
cross-validation error could be imprecise). Expect that predictors with high 
variance will have a high cross-validation standard deviation.

Even though this technique may appear complicated, Scikit-learn handles it using 
the functions in the sklearn.model_selection module.

Using cross-validation on k folds
To run cross-validation, you first have to initialize an iterator. KFold is the itera-
tor that implements k folds cross-validation. There are other iterators available 
from the sklearn.model_selection module, mostly derived from the statistical 
field, but KFold is the most widely used in data science practice.

KFold requires you to specify the n_splits number (the number of folds to gen-
erate), and indicate whether you want to shuffle the data (by using the shuffle 
parameter). As a rule, the higher the expected variance, increasing the number of 
splits improves the mean estimate. It’s a good idea to shuffle the data because 
ordered data can introduce confusion into the learning processes for some algo-
rithms if the first observations are different from the last ones.

After setting KFold, call the cross_val_score function, which returns an array of 
results containing a score (from the scoring function) for each cross-validation 
fold. You have to provide cross_val_score with your data (both X and y) as an 
input, your estimator (the regression class), and the previously instantiated KFold 
iterator (as the cv parameter). In a matter of a few seconds or minutes, depending 
on the number of folds and data processed, the function returns the results. You 
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average these results to obtain a mean estimate, and you can also compute the 
standard deviation to check how stable the mean is.

from sklearn.model_selection import cross_val_score, KFold
import numpy as np
 
cv = KFold(n_splits=10, shuffle=True, random_state=0)
scores = cross_val_score(knn_model, X, y, cv=cv,  

  scoring='neg_mean_squared_error', n_jobs=-1)
mean_mse = np.mean(np.abs(scores))
std_mse = np.std(scores)
 
print(f"cv mean squared error: {mean_mse:.5f} std: 

{std_mse:.5f}")

Here is the result:

cv mean squared error: 1.10818 std: 0.02739

Cross-validating can work in parallel because no estimate depends on any other 
estimate. You can take advantage of the multiple cores present on your computer 
by setting the parameter n_jobs=-1 or you can set n_jobs=-2 in order to use all 
your CPU cores but one.

Sampling stratifications for complex data
Cross-validation folds are decided by random sampling. Sometimes it may be 
necessary to track if and how much of a certain characteristic is present in the 
training and test folds to avoid malformed samples. For instance, in the California 
housing dataset, latitude and longitude point out different areas in California. 
This information is important to understand the value of the house and determine 
whether people would like to spend more for it. You can see the effect of geo-
graphical coordinates using the following code:

import matplotlib.pyplot as plt
import pandas as pd
 
plt.hexbin(X.Longitude, X.Latitude, C=y, gridsize=50,
           cmap='Oranges')
cb = plt.colorbar()
cb.set_label('Median House Value')
plt.xlabel('Longitude'); plt.ylabel('Latitude'); plt.show() 
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The code will plot a heatmap of real estate values through California, represented 
in Figure 18-1, highlighting more expensive areas along the cost.

Using cluster analysis, as explained in Chapter 15, you can segment the coordi-
nates into homogeneous areas that you can test for their average housing value:

from sklearn.cluster import KMeans
coordinates = X[["Latitude","Longitude"]]
clustering = KMeans(n_clusters=20, n_init=10,
                    random_state=0)
clustering.fit(coordinates)
area = clustering.predict(coordinates)
df_area = pd.DataFrame({"area": area, "median_house_value": y})
df_area.boxplot("median_house_value", by="area");

A boxplot, represented in Figure 18-2, reveals how house prices are indeed varied 
in California due to the location.

In similar situations, when a characteristic is rare or influential, you can’t be sure 
when it’s present in the sample because the folds are created in a random way. 
Having too many or too few of a particular characteristic in each fold implies that 
the machine learning algorithm may derive incorrect rules.

FIGURE 18-1: 
Spatial 

 distribution of 
house prices in 

California.
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The StratifiedKFold class provides a simple way to control the risk of building 
malformed samples during cross-validation procedures. It can control the sam-
pling so that certain features, or even certain outcomes (when the target classes 
are extremely unbalanced), will always be present in your folds in the right pro-
portion. You just need to point out the variable you want to control by using the y 
parameter, as shown in the following code.

from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import mean_squared_error
 
skf = StratifiedKFold(n_splits=10, shuffle=True,
                      random_state=0)
scores = list()
 
for train_index, test_index in skf.split(X, area):
    X_train, X_test = X.iloc[train_index], \
        X.iloc[test_index]
    y_train, y_test = y[train_index], y[test_index]
    knn_model.fit(X_train, y_train)
    y_pred = knn_model.predict(X_test)
    scores.append(mean_squared_error(y_true=y_test,
                                     y_pred=y_pred))
 
print('%i folds cv mean squared error: %.5f std: %.5f' % 
      (len(scores),np.mean(np.abs(scores)),
       np.std(scores)))

FIGURE 18-2: 
Boxplot of house 

prices, grouped 
by clusters.
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The result from the ten-fold stratified cross-validation is

10 folds cv mean squared error: 1.09899 std: 0.04505

Although the validation error is similar, by controlling the latitude and longitude 
variables, you can be more confident that training and validation samples are 
more homogeneous.

Selecting Variables Like a Pro
Selecting the right variables can improve the learning process by reducing the 
amount of noise (useless information) that can influence the learner’s estimates. 
Variable selection, therefore, can effectively reduce the variance of predictions. To 
use just the useful variables in training and leave out the redundant ones, you can 
use these techniques:

 » Univariate approach: Select the variables most related to the target  
outcome.

 » Forward or backward approach: Keep only the variables that you can add or 
remove from the learning process without damaging its performance.

The following sections depend on a couple of variables, as shown here (which are 
follow-ons of previous sections):

df_area = pd.get_dummies(area, prefix="area")
df_X = pd.concat([X, df_area], axis=1)

The meaning of these variables will become clearer as the following sections 
progress; just know that you need to define them to make the code functional 
for now.

Selecting by univariate measures
If you decide to select a variable by its level of association with its target, you can 
refer to different metrics depending on whether your problem is a regression or 
classification. The available metrics for association are

 » f_regression or r_regression: Used only for numeric targets and based on 
linear regression performance.
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 » f_classif: Used only for categorical targets and based on the Analysis of 
Variance (ANOVA) statistical test.

 » chi2: Performs the chi-square statistic for categorical targets, which is less 
sensitive to the nonlinear relationship between the predictive variable and  
its target.

When evaluating candidates for a classification problem, f_classif and chi2 
tend to provide the same set of top variables. It’s still a good practice to test the 
selections from both the association metrics.

The regression example tests each feature’s predictive power by testing its  
correlation with the target. The r_regression command will extract this infor-
mation for each feature all simultaneously:

from sklearn.feature_selection import r_regression
correlations = r_regression(df_X, y)
for n, s in zip(df_X.columns, correlations):
    print(f"F-score: {s:+2.3f} for feature {n}")

The code will print each feature accompanied by its target correlation.

Using the correlation as a selection measure (higher absolute values signal more 
association of a feature with the target variable) helps you to pick the most impor-
tant variables for your machine learning model, but you should watch out for 
these possible problems:

 » Some variables with high association could also be highly correlated, introduc-
ing duplicated information, which acts as noise in the learning process.

 » Some variables may be penalized, especially binary ones (variables indicating 
a status or characteristic using the value 1 when it is present, 0 when it is not).

Apart from applying a direct selection of the top correlations, Scikit-learn provides 
some helper functions. SelectPercentile (https://scikit-learn.org/stable/ 
modules/generated/sklearn.feature_selection.SelectPercentile.html) 
can rank the best variables to make it easier to decide at what percentile to exclude 
a feature from participating in the learning process. The class SelectKBest 
(https://scikit-learn.org/stable/modules/generated/sklearn.feature_ 
selection.SelectKBest.html) is analogous in its functionality, but it selects the 
top k variables, where k is a number, not a percentile.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
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The univariate selection process can give you a real advantage when you have a 
huge number of variables to select from and the other methods turn computation-
ally infeasible. The best procedure is first to reduce the value of Select 
Percentile by half or more of the available variables, and then to proceed using 
a more precise method such as a forward or backward greedy selection.

Employing forward and backward selection
Forward and backward feature selection are two common techniques used in 
machine learning to select the most relevant features that contribute to the pre-
diction of a target variable. Forward and backward feature selection techniques 
choose features based on how they work together, instead of just looking at each 
feature individually. In forward feature selection, the algorithm starts with an 
empty set of features and iteratively adds one feature at a time that improves the 
performance of the model. In contrast, backward feature selection begins with a 
full set of features and removes one feature at a time until the model’s perfor-
mance does not improve.

The provided SequentialFeatureSelector (https://scikit-learn.org/ 
stable/modules/generated/sklearn.feature_selection.Sequential 
FeatureSelector.html) by Scikit-learn allows you to set the direction of your 
search: forward if you are looking for a minimal set of features; backward if you 
want to just remove the non-useful features and have a set that’s as complete as 
possible. Here is an example of using forward feature selection with our California 
housing data: 

from sklearn.feature_selection \
    import SequentialFeatureSelector
 
selector = SequentialFeatureSelector(
    estimator=knn_model,
    direction='forward',
    cv=3,
    scoring='neg_mean_squared_error',
    n_features_to_select=14
)
 
selector.fit(df_X, y)
feature_mask = selector.support_
selected = [feature for feature, 
            support in zip(df_X.columns, 
                           feature_mask) if support]
print(f"Selected features: {selected}") 

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html
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Using the forward procedure to select the best features for our model will take 
some time, but it helps us find a list of features that work the best for predicting 
outcomes:

Selected features: ['MedInc', 'HouseAge', 'AveRooms',
 'AveBedrms', 'AveOccup', 'area_0', 'area_3', 'area_4',
 'area_5', 'area_8', 'area_10', 'area_14', 'area_17',
 'area_19']

The next experiments found in the sections that follow try to improve the model’s 
settings using the features chosen in the forward procedure. This is just like what 
would happen in a real project.

Pumping Up Your Hyperparameters
As a last example for this chapter, you can see the procedures for searching for the 
optimal hyperparameters of a machine learning algorithm to achieve the best 
possible predictive performance. Actually, much of the performance of your algo-
rithm has already been decided by

 » The choice of the algorithm: Not every machine learning algorithm is a good 
fit for every type of data, and choosing the right one for your data can make 
the difference.

 » The selection of the right variables: Predictive performance is increased 
dramatically by feature creation (newly created variables are more predictive 
than old ones) and feature selection (removing redundancies and noise).

Fine-tuning the correct hyperparameters could provide even better predictive 
generalizability and pump up your results, especially in the case of complex algo-
rithms that don’t work well using the out-of-the-box default settings.

Hyperparameters are parameters that you have to decide on yourself, because an 
algorithm can’t learn them automatically from data. As with all other aspects of 
the learning process that involve a decision by the data scientist, you have to make 
your choices carefully after evaluating the cross-validated results.

The Scikit-learn sklearn.model_selection module has a section specializing in 
hyperparameters optimization. It contains a few utilities for automating and sim-
plifying the process of searching for the best values of hyperparameters. The code 
in the following paragraphs illustrates the correct procedures, starting from 
reprising the initial KNN model.
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Grid searching is easy to perform as a parallel task because the results of a tested 
combination of hyperparameters are independent from the results of the others. 
Using a multicore computer at its full power requires that you change n_jobs  
to –1 when instantiating any of the grid-search classes from Scikit-learn.

Implementing a grid search
The best way to verify the optimal hyperparameters for an algorithm is to test 
them all and then pick the combination with the highest score. This means, in the 
case of complex settings of multiple parameters, that you have to run hundreds, if 
not thousands, of slightly differently tuned models. Grid searching is a systematic 
search method that combines all the possible combinations of the hyperparame-
ters into individual sets. It’s a time-consuming technique. However, grid search-
ing provides one of the leading ways to optimize a machine learning application 
that could have many working combinations, but just a single best one. Hyperpa-
rameters that have many acceptable solutions (called local minima) may trick you 
into thinking that you have found the optimal solution when you could actually 
improve their performance.

In the example for demonstrating how to implement a grid search effectively on 
the California housing dataset, you reprise the previously seen algorithm, the 
KNN classifier:

knn_model = KNeighborsRegressor(n_jobs=1)

The KNN classifier has quite a few hyperparameters that you can set for optimal 
performance:

 » The number of neighbor points to consider in the estimate

 » How to weight each of them

 » What metric to use for finding the neighbors

Using a range of possible values for all the parameters makes it apparent that 
you’re going to test a large number of models. Specifically, the total number of 
evaluation models in this case is the product of the number of parameters, which 
is 8, 2, and 3, resulting in 48:

param_grid = {'n_neighbors': [1, 3, 5, 7, 10, 25, 50, 100],
              'weights': ['uniform', 'distance'],
              'metric': ['euclidean', 'manhattan',
                         'cosine']}
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To set the instructions for the search, you build a Python dictionary whose keys 
are the names of the parameters, and the dictionary’s values are lists of the values 
you want to test. For instance, the example shows a list of values for the hyperpa-
rameter n_neighbors, which is used in sequence during the grid search. Before 
starting, you also determine the cross-validation score using a vanilla model, a 
model with the following default parameters:

from sklearn.model_selection import cross_val_score
 
score_metric = 'neg_mean_squared_error'
scores = cross_val_score(
   knn_model, X=df_X.loc[:, feature_mask], y=y,
   cv=10, scoring=score_metric, n_jobs=-1)
baseline_score = np.mean(np.abs(scores))
print(f"Baseline with default parameters: {baseline_score:.3f}")

You take note of the result to determine the increase provided by optimizing the 
parameters: 

Baseline with default parameters: 0.538

Using the mean squared error metric, the example first tests the baseline, which 
consists of the algorithm’s default parameters (also clarified when instantiating 
the classifier variable with its class). Now the search locates a better set of 
hyperparameters using a tenfold cross-validation:

from sklearn.model_selection import GridSearchCV
 
search = GridSearchCV(
    estimator=knn_model, param_grid=param_grid,
    scoring=score_metric, n_jobs=-1, refit=True, 
    return_train_score=True, cv=10)
search.fit(df_X.loc[:, feature_mask], y)

After being instantiated with the learning algorithm, the search dictionary, the 
scoring metric, and the cross-validation folds, the GridSearch class operates with 
the fit() method. Optionally, after the grid search ends, it refits the model with 
the best found parameter combination (refit=True), allowing it to immediately 
start predicting by using the GridSearch class itself. Finally, you print the result-
ing best parameters and the score of the best combination:

print(f"Best parameters: {search.best_params_}")
best_score = abs(search.best_score_)
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print(f"CV mean squared error of best parameters: 
{best_score:.3f}")

Here are the printed values: 

Best parameters: {'metric': 'cosine', 'n_neighbors': 50, 
                  'weights': 'distance'}
CV mean squared error of best parameters: 0.481

When the search is completed, you can inspect the results using the best_params_ 
and best_score attributes. The best squared error found was 0.481, an improve-
ment over the initial baseline. To better understand how the optimization works 
with respect to the number of neighbors used by your algorithm, you can launch 
a Scikit-learn class for visualization. The validation_curve method gives you 
detailed information about how train and validation behave when used with 
different n_neighbors hyperparameters.

from sklearn.model_selection import validation_curve
 
tuned_model = KNeighborsRegressor(**search.best_params_,  

                                n_jobs=-1)
 
train, test = validation_curve(tuned_model,  

  df_X.loc[:, feature_mask], y, 
    param_name='n_neighbors', param_range=range(10, 101, 10), 
    cv=3, scoring=score_metric, n_jobs=-1)

The validation_curve class provides you with two arrays containing the results 
arranged with the parameters values on the rows and the cross-validation folds 
on the columns:

import matplotlib.pyplot as plt
 
mean_test = abs(np.mean(test, axis=1))
x_ticks_labels = range(10, 101, 10)
x_ticks_values = range(0, len(x_ticks_labels))
plt.plot(x_ticks_values, mean_test, 'bD-.',  

       label='Cross-validation')
plt.grid()
plt.xlabel('Number of neighbors')
plt.xticks(x_ticks_values, x_ticks_labels)
plt.ylabel('Mean squared error')
plt.legend(loc='upper right', numpoints=1); plt.show()
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Projecting the row means creating a graphic visualization, as shown in Figure 18-3, 
which helps you understand what is happening with the learning process.

You can obtain an important piece of information from the visualization. The 
mean squared error tends to decline with more neighbors up to 40; then it  
starts increasing slowly. As with many hyperparameters in machine learning,  
n_neighbors has a sweet spot. This pattern happens frequently, and sometimes 
hyperparameters even interact between themselves; only certain combinations 
unlock the best score for your model.

It’s part of the data science process to query, test, and query again. Even though 
Python and its packages offer you many automated processes in data learning and 
discovering, it is up to you to ask the right questions and to check whether the 
answers are the best ones by using statistical tests and visualizations.

Trying a randomized search
Grid searching provides an exhaustive examination of data, but it’s also a 
time-consuming activity. It’s prone to overfitting the cross-validation folds when 
you have few observations in your dataset and you extensively search for an opti-
mization. You have options other than grid searching. As an experimental option, 
you also can try HalvingGridSearchCV (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.HalvingGridSearchCV.html). 

FIGURE 18-3: 
Validation curves.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
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HalvingGridSearchCV is a hyperparameter optimization technique that uses an 
iterative process to search for the best hyperparameters by repeatedly evaluating 
subsets of randomly selected hyperparameters. It discards underperforming sub-
sets and continues with the best ones until a set of optimal hyperparameters is 
found. Here is our example:

from sklearn.experimental import enable_halving_search_cv
from sklearn.model_selection import HalvingGridSearchCV
 
search = HalvingGridSearchCV(
    estimator=knn_model, param_grid=param_grid,
    scoring=score_metric, n_jobs=-1, refit=True,
    return_train_score=True, cv=10, factor=2,
    max_resources='auto', aggressive_elimination=True,
    random_state=42)
 
search.fit(df_X.loc[:, feature_mask], y)
print(f"Best parameters: {search.best_params_}")
best_score = abs(search.best_score_)
print(f"CV mean squared error of best parameters: "  

   f"{best_score:.3f}")

In a fraction of the time, the code returns the very same result from the standard 
grid search:

Best parameters: {'metric': 'cosine', 'n_neighbors': 50, 
                  'weights': 'distance'}
CV mean squared error of best parameters: 0.481

Grid searching is like fishing with a large net. But there’s a smarter way. Start 
with a large net with loose meshes to find where the “fish” (optimal hyperparam-
eter values) are. Then, use a smaller net with tight meshes to catch the “fish” in 
those areas. This is a Scikit-learn experimental feature as of this writing, but we 
expect it to become part of the Scikit-learn package in the near future.

Another interesting alternative option is to try a randomized search. In this case, 
you define a grid search to test only some of the combinations, picked at random. 
Even though it may sound like betting on blind luck, a randomized search is actu-
ally quite useful because it’s efficient — if you pick enough random combinations, 
you have a high statistical probability of finding an optimum hyperparameter 
combination, without risking overfitting at all. For instance, in the previous 
example, the code tested 48 different models using a systematic search, but using 
a randomized search, you can reduce the number of tests to just ten tests!
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Using a randomized search is straightforward. You import the class from the 
grid_search module and input the same parameters as the GridSearchCV, adding 
a n_iter parameter that indicates how many combinations to sample. As a rule of 
thumb, you choose from a quarter or a third of the total number of hyperparam-
eter combinations:

from sklearn.model_selection import RandomizedSearchCV
 
param_grid = {'n_neighbors': range(1, 100),
              'weights': ['uniform', 'distance'],
              'metric': ['euclidean', 'manhattan', 'cosine']}
 
random_search = RandomizedSearchCV(estimator=knn_model, 
    param_distributions=param_grid, n_iter=10, cv=10,
    scoring=score_metric, refit=True, random_state=0, n_jobs=-1)
 
random_search.fit(df_X.loc[:, feature_mask], y)
print(f"Best parameters: {random_search.best_params_}")
best_score = abs(random_search.best_score_)
print(f"CV mean squared error of best parameters: "  

    f"{best_score:.3f}")

Having completed the search using the same technique as before, you can exam-
ine the outputted best scores and best hyperparameters:

Best parameters: {'weights': 'distance', 
'n_neighbors': 37, 'metric': 'cosine'}
CV mean squared error of best parameters: 0.480 

From the reported results, it appears that a random search can actually obtain 
even better results compared to a much more CPU-expensive exhaustive grid 
search.
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Chapter 19
Increasing Complexity 
with Linear and 
Nonlinear Tricks

Previous chapters introduce you to some of the simplest, yet effective, 
machine learning algorithms, such as linear and logistic regression, Naïve 
Bayes, and K-Nearest Neighbors (KNN). At this point, you can successfully 

complete a regression or classification project in data science. This chapter 
explores more complex and powerful machine learning techniques, including the 
following: reasoning on how to enhance your data; improving your estimates by 
regularization; and learning from big data by breaking it into manageable chunks.

This chapter also introduces you to the support vector machine (SVM), a powerful 
family of algorithms for classification and regression. The chapter touches on 
neural networks as well. Both SVMs and neural networks can tackle the most dif-
ficult data problems in data science. However, neural networks and tree ensem-
bles have overtaken SVMs as the state-of-the-art predictive tool. Decision trees, 
random forests, and other tree-like structures are covered in a progressively more 
complex manner in Chapter 20, “Understanding the Power of the Many.” Neural 
networks have a long history, but in the last few years, they have improved by 
giant leaps to the point of becoming incredible and indispensable tools for 

IN THIS CHAPTER

 » Expanding your features using 
polynomials

 » Regularizing your model

 » Learning from big data

 » Using support vector machines 
and neural network
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prediction and generation of images and text. Given the complexity of both regres-
sion and classification using advanced techniques, quite a few pages of this 
 chapter are devoted to SVM and some to neural networks, but increasing your 
understanding of both strategies is definitely worth the time and effort.

You don’t have to type the source code for this chapter manually; using the 
 downloadable source is a lot easier (see the Introduction for download  instructions). 
The source code for this chapter appears in the P4DS4D3_19_Increasing_ Complexity. 
ipynb file. You can also plot some of the complex drawings illustrating SVM algo-
rithms by running the code in the P4DS4D3_19_Representing_SVM_boundaries.
ipynb source file.

Using Nonlinear Transformations
Linear models, such as linear and logistic regression, actually sum the values of 
your features (after having weighted them by some learned coefficients) and 
 provide a simple but effective model. In most situations, they offer a good approx-
imation of the complex reality they represent. Even though they’re characterized 
by a high bias, using a large number of observations can improve the estimates of 
their coefficients and make them more performant when compared to complex 
algorithms.

However, they can perform better when solving certain problems if you pre- 
analyze the data using the Exploratory Data Analysis (EDA) approach. After per-
forming the analysis, you can transform and enrich the existing features by

 » Creating new features based on your understanding of the problem. This 
operation is called feature engineering.

 » Linearizing the relationships between features and the target variable using 
transformations that increase their correlation and make their cloud of points 
in the scatterplot more similar to a line.

 » Making variables interact by multiplying them so that you can better repre-
sent their conjoint behavior.

 » Expanding the existing variables using the polynomial expansion in order to 
represent relationships more realistically (such as ideal point curves, when 
there is a peak in the variable representing a maximum, akin to a parabola).
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Doing variable transformations
An example is the best way to explain the kind of transformations you can suc-
cessfully apply to data to improve a linear model. The example in this section, and 
the “Regularizing Linear Models” and “Fighting with Big Data Chunk by Chunk” 
sections that follow, relies on the California housing dataset. The problem relies 
on regression, and the data originally has seven variables to explain the median 
house values for California districts. Here is the code to download the dataset on 
your notebook:

from sklearn.datasets import fetch_california_housing
import pandas as pd
 
def load_california_housing_data():
    dataset = fetch_california_housing()
    X = pd.DataFrame(data=dataset.data,  

                  columns=dataset.feature_names)
    y = pd.Series(data=dataset.target, name="target")
    print(dataset.DESCR)
    return X, y
 
X, y = load_california_housing_data()

After downloading the dataset, the code prints a verbose description of the dataset.

You can find out more details about the meaning of the variables present in the 
California housing dataset by reading the description returned by the code. It will 
explain the meaning of the variables in the dataset and provide some historical 
background about the data itself.

To begin with the data transformation process, you can start feature engineering 
new variables based on your understanding of the problem. First, you clip any 
outlying value among the average number of household members (AveOccup) to a 
maximum of 100. Second, you compute new metrics based on the average number 
of individuals per room or per bedroom, as well as the same ratios but considering 
the overall population. Finally, you calculate the ratio between the number of bed-
rooms and the total number of rooms.

X["AveOccup"] = X["AveOccup"].clip(upper=100)
X['AveOccupRooms'] = X['AveOccup'] / X['AveRooms']
X['AveOccupBedrms'] = X['AveOccup'] / X['AveBedrms']
X['Rooms_capita'] = X['Population'] / X['AveRooms']
X['Bedrms_capita'] =  X['Population'] / X['AveBedrms']
X['Bedrms_pct'] = X['AveBedrms'] / X['AveRooms']
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When it comes to improving the performance of your machine learning model, 
feature engineering plays a crucial role. This process involves creating new vari-
ables that enhance how the model learns from data. Additionally, you can also 
enhance the existing variables by applying certain functions that transform them 
into more useful representations.

Logarithmic transformation can help in such situations. However, your values 
should range from zero to one (as with percentages) as demonstrated in this 
example. In other cases, other useful transformations for your x variable could 
include x**2, x**3, 1/x, 1/x**2, 1/x**3, and sqrt(x). The key is to try them and 
test the result. As for testing, you can use the following script as an example for 
testing a logarithmic transformation on one of the features from the dataset:

import numpy as np
from sklearn.feature_selection import f_regression
 
single_variable = X["AveOccup"].values.reshape(-1, 1)
F, pval = f_regression(single_variable, y)
print(f'F score for the original feature {F[0]:.1f}')
 
F, pval = f_regression(np.log1p(single_variable),y)
print(f'F score for the transformed feature {F[0]:.1f}') 

The code prints the F score, a measure to evaluate how predictive a feature is in 
a machine learning problem, both the original and the transformed feature. The 
score for the transformed feature is a great improvement over the untrans-
formed one.

F score for the original feature 275.8
F score for the transformed feature 1434.7

The F score is useful for variable selection. You can also use it to assess the use-
fulness of a transformation because both f_regression and f_classif are them-
selves based on linear models, and are therefore sensitive to every effective 
transformation used to make variable relationships more linear.

Creating interactions between variables
When performing a weighted summation using all the features, the model 
responds independently to changes in each variable, without considering their 
interactions with other variables. In statistics, this type of model is referred to as 
a main effects model because it considers only the individual effects of each feature, 
treating them as standalone elements.
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The Naïve Bayes classifier makes a similar assumption for probabilities, and it 
also works well with complex text problems.

Even though machine learning works by using approximations and a weighted 
sum of a set of variables can produce predictions that work well in most situa-
tions, sometimes you may miss an important part of the picture. You can easily 
catch this problem by depicting the variation in your target associated with the 
conjoint variation of two or more variables in two simple and straightforward 
ways:

 » Existing domain knowledge of the problem: For instance, in the car market, 
having a noisy engine is a nuisance in a family car but considered a plus for 
sports cars (car aficionados want to hear that you have an ultra-cool and 
expensive car). By knowing a consumer preference, you can model a noise 
level variable and a car type variable together to obtain exact predictions 
using a predictive analytic model that guesses the car’s value based on 
its features.

 » Testing combinations of different variables: By performing group tests, 
you can see the effect that certain variables have on your target variable. 
Therefore, even without knowing about the relationship between noisy 
engines and sports cars, you could have caught a difference in the average  
of preference level when analyzing your dataset split by type of cars and  
noise level.

The following example shows how to automatically test and detect interactions in 
the California housing dataset. You start creating a pipeline that puts together a 
StandardScaler and a LinearRegression. In this way, all the features are stan-
dardized, meaning they have zero mean and standard deviation one, before being 
processed by the algorithm. Afterward, you compute the mean squared error 
(MSE) using a tenfold cross-validation:

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection  import \
    cross_val_score, KFold
 
regression = Pipeline([("scaler", StandardScaler()),
                       ("model",LinearRegression())])
crossvalidation = KFold(n_splits=10, shuffle=True,
                        random_state=1)
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baseline = np.mean(cross_val_score(
    regression, X, y,
    scoring='neg_mean_squared_error',
    cv=crossvalidation))
print(f'Baseline MSE: {abs(baseline):.3f}')

After completing the instructions, the code prints the baseline MSE value, which 
is calculated using the mean of the cross-validation scores:

Baseline MSE: 0.507

The idea now is to try to add one different interaction term, given by the 
 multiplication of two existing variables, and check whether the MSE diminishes. 
Less MSE means an improvement because it corresponds to the quantity of errors 
the model contains. The fewer errors, the better. First, you need to compute the 
interactions between features. Polynomial features with degree 2 are created  
for the selected features using PolynomialFeatures. The interaction_only 
parameter is set to True to include only interaction terms, and include_bias is 
set to False to exclude an additional interaction term.

from sklearn.preprocessing import PolynomialFeatures
 
poly = PolynomialFeatures((2, 2), interaction_only=True,
                          include_bias=False)
features = ["MedInc", "HouseAge", "Population",
            "AveRooms", "AveBedrms", "AveOccup"]
poly.fit(X[features])
interactions = pd.DataFrame(
    poly.transform(X[features]),
    columns=poly.get_feature_names_out(features))

After all these instructions are completed, you can check the shape interactions 
DataFrame containing the interactions terms:

print(interactions.shape)

The print instructions reports having being created 15 interaction terms.

(20640, 15)

At this point, for each interaction term, you concatenate the existing features with 
the interaction term and compute the MSE error again using the same cross-
validation procedure as before:
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for col in interactions:
    Xt = pd.concat([X, interactions[col]], axis=1)
    
    test = np.mean(cross_val_score(
        regression, Xt, y, 
        scoring='neg_mean_squared_error',
        cv=crossvalidation))
    if test > baseline:
        print(f"adding interaction {col} improves " +
              f"MSE to {abs(test):0.3f}")

If the resulting MSE is better than the baseline, the code prints the interaction 
terms and reports the improved score:

adding interaction MedInc HouseAge improves MSE to 0.504
adding interaction MedInc Population improves MSE to 0.500
adding interaction MedInc AveRooms improves MSE to 0.501
adding interaction MedInc AveBedrms improves MSE to 0.506
adding interaction MedInc AveOccup improves MSE to 0.507
adding interaction HouseAge Population improves MSE to 0.506
adding interaction Population AveOccup improves MSE to 0.490

The most effective interactions terms are those that multiply Population with 
AveOccup and MedInc with Population, implying that there is a much different 
impact on the median house value for California districts depending on the com-
bination of these variables. They certainly would make an important addition to 
the model.

Regularizing Linear Models
Instead of looking for specific interactions and selectively adding them to your 
model, you could have just computed all the possible interactions and added them 
to your model. But there can be a problem with doing that. Linear models have a 
high bias, but as you add more features, more interactions, and more transforma-
tions, they start gaining adaptability to the data characteristics and memorizing 
power for data noise, thus increasing the variance of their estimates. Trading 
higher variance for less bias isn’t always the best choice, but, as mentioned   
earlier, sometimes it’s the only way to increase the predictive power of linear 
algorithms.

You can introduce L1 and L2 regularization as a way to control the trade-off 
between bias and variance in favor of an increased generalization capability of the 
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model. When you introduce one of the regularizations, an additive function that 
depends on the complexity of the linear model penalizes the optimized cost func-
tion. In linear regression, the cost function is the squared error of the predictions, 
and the cost function is penalized using a summation of the coefficients of the 
predictor variables.

If the model is complex but the predictive gain is little, the penalization forces the 
optimization procedure to remove the useless variables, or to reduce their impact 
on the estimate. The regularization also acts on highly correlated features  — 
attenuating or excluding their contribution, thus stabilizing the results and 
reducing the consequent variance of the estimates:

 » L1 (also called Lasso): Shrinks some coefficients to zero, making your 
coefficients sparse. It performs variable selection.

 » L2 (also called Ridge): Reduces the coefficients of the most problematic 
features, making them smaller, but seldom equal to zero. All coefficients keep 
participating in the estimate, but many become small and irrelevant.

You can control the strength of the regularization using a hyperparameter, usually 
a coefficient itself, often called alpha. When alpha approaches 1.0, you have stron-
ger regularization and a greater reduction of the coefficients. In some cases, the 
coefficients are reduced to zero. Don’t confuse alpha with C, a parameter used by 
LogisticRegression and by support vector machines, because C is 1/alpha, so it 
can be greater than 1. Smaller C numbers actually correspond to more regulariza-
tion, exactly the opposite of alpha.

Regularization works because it is the sum of the coefficients of the predictor 
variables, therefore it’s important that they’re on the same scale or the regular-
ization may find it difficult to converge, and variables with larger absolute coef-
ficient values will greatly influence it, generating an infective regularization. It’s 
good practice to standardize the predictor values or bind them to a common min-
max, such as the [-1,+1] range. The following sections demonstrate various 
methods of using both L1 and L2 regularization to achieve various effects.

Relying on Ridge regression (L2)
The first example uses the L2 type regularization, reducing the strength of the 
coefficients. This example uses all the original features, the features engineered 
and interactions built as part of the previous examples. The Ridge class imple-
ments L2 for linear regression. Its usage is simple; it presents just the parameter 
alpha to fix. Ridge regression performs better when applied to features that have 
been rescaled or standardized. If the features are not rescaled, it can take a longer 
time for the regression to converge and reach a solution. To address this issue, the 
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example sets up a pipeline that includes the StandardScaler along with our model. 
This approach of using a pipeline with feature scaling will be applied to all regu-
larized linear models we present, because they share the same problem.

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge
 
Xt = pd.concat([X, interactions], axis=1)
 
ridge = Pipeline([("scaler", StandardScaler()),
                  ("model",Ridge())])
search_grid = {'model__alpha': np.logspace(-6, 4, 20)}
search = GridSearchCV(estimator=ridge, 
                      param_grid=search_grid, 
                      scoring='neg_mean_squared_error', 
                      refit=True, cv=crossvalidation)
search.fit(Xt, y)
print(f'Best parameters: {search.best_params_}')
score = abs(search.best_score_)
print(f'CV MSE of best parameters: {score:.3f}')

After searching for the best alpha parameter, the resulting best model is

Best parameters: {'model__alpha': 263.6650898730355}
CV MSE of best parameters: 0.499

A good search space for the alpha value is in the range np.logspace(-6,4,20). Of 
course, if the resulting optimum value is on one of the extremities of the tested 
range, you need to enlarge the range and retest.

Using the Lasso (L1)
The second example uses the L1 regularization, the Lasso class, whose principal 
characteristic is to reduce the effect of less useful coefficients down toward zero. 
This action enforces sparsity in the coefficients, with just a few having values 
above zero. The class uses the same parameters of the Ridge class that are dem-
onstrated in the previous section.

from sklearn.linear_model import Lasso
from warnings import simplefilter
from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)
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lasso = Pipeline([("scaler", StandardScaler()),
                  ("model",Lasso(selection='random'))])
search_grid = {'model__alpha': np.logspace(-6, 4, 20)}
search = GridSearchCV(estimator=lasso, 
                      param_grid=search_grid, 
                      scoring='neg_mean_squared_error', 
                      refit=True, cv=crossvalidation)
search.fit(Xt, y)
best_alpha = search.best_params_
print(f'Best parameters: {search.best_params_}')
score = abs(search.best_score_)
print(f'CV MSE of best parameters: {score:.3f}')

In setting the Lasso, the code uses a random approach for its optimization 
(selection='random'). The resulting mean squared error obtained is lower than 
it is using the L2 regularization:

Best parameters: {'model__alpha': 0.004832930238571752}
CV MSE of best parameters: 0.492

Leveraging regularization
Because you can choose the sparse coefficients resulting from a L1 regression as a 
feature selection procedure, you can effectively use the Lasso class for selecting 
the most important variables. By tuning the alpha parameter, you can select a 
greater or lesser number of variables. In this case, the code sets the alpha param-
eter to about 0.005, obtaining a much simplified solution as a result:

selection = np.abs(
    search.best_estimator_["model"].coef_) > 0
print(Xt.columns[selection].tolist())

The simplified solution is made of a handful of interactions:

['MedInc', 'HouseAge', 'AveRooms', 'AveOccup', 'Latitude',
 'Longitude', 'AveOccupRooms', 'AveOccupBedrms',
 'Rooms_capita', 'Bedrms_capita', 'Bedrms_pct',
 'MedInc HouseAge', 'MedInc Population',
 'MedInc AveRooms', 'HouseAge Population',
 'HouseAge AveOccup', 'Population AveRooms',
 'Population AveOccup']
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Combining L1 & L2: Elasticnet
L2 regularization reduces the impact of correlated features, whereas L1 regular-
ization tends to select them. A good strategy is to mix them using a weighted sum 
by using the ElasticNet class. You control both L1 and L2 effects by using the 
same alpha parameter, but you can decide the L1 effect’s share by using the l1_
ratio parameter. Clearly, if l1_ratio is 0, you have a ridge regression; on the 
other hand, when l1_ratio is 1, you have a lasso.

from sklearn.linear_model import ElasticNet
 
elastic = Pipeline([
    ("scaler", StandardScaler()),
    ("model", ElasticNet(selection='random'))])
search_grid = {'model__alpha': np.logspace(-6, 4, 20), 
          'model__l1_ratio': [0.05, 0.10 ,0.25, 0.5, 
                              0.75, 0.90, 0.95]}
search = GridSearchCV(estimator=elastic, 
                      param_grid=search_grid, 
                      scoring='neg_mean_squared_error', 
                      refit=True, cv=crossvalidation)
search.fit(Xt, y)
print(f'Best parameters: {search.best_params_}')
score = abs(search.best_score_)
print(f'CV MSE of best parameters: {score:.3f}')

After a while, you get a result that’s quite similar to L1’s because L1 regularization 
is predominant on L2:

Best parameters: {'model__alpha': 0.004832930238571752, 
                  'model__l1_ratio': 0.95}
CV MSE of best parameters: 0.493

Fighting with Big Data Chunk by Chunk
Up to this point, the book has dealt with small example databases. Real data, apart 
from being messy, can also be quite big — sometimes so big that it can’t fit in 
memory, no matter what the memory specifications of your machine are.
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The Xt and y variables used for the examples in the sections that follow are cre-
ated as part of the example in the “Creating interactions between variables” sec-
tion, earlier in this chapter. If you haven’t worked through that section, the 
examples in this section will fail to work properly.

Determining when there is too much data
In a data science project, data can be deemed big when one of these two situations 
occur:

 » It can’t fit in the available computer memory.

 » Even if the system has enough memory to hold the data, the application can’t 
elaborate the data using machine learning algorithms in a reasonable amount 
of time.

Implementing Stochastic Gradient Descent
When you have too much data, you can use the Stochastic Gradient Descent 
Regressor (SGDRegressor) or Stochastic Gradient Descent Classifier (SGDClassi-
fier) as a linear predictor. The only difference with other methods described ear-
lier in the chapter is that they actually optimize their coefficients using only one 
observation at a time. It therefore takes more iterations before the code reaches 
comparable results using a ridge or lasso regression, but it requires much less 
memory and time.

This is because both predictors rely on Stochastic Gradient Descent (SGD) 
 optimization — a kind of optimization in which the parameter adjustment occurs 
after the input of every observation, leading to a longer and a bit more erratic jour-
ney toward minimizing the error function. Of course, optimizing based on single 
observations, and not on huge data matrices, can have a tremendously beneficial 
impact on the algorithm’s training time and the amount of memory resources.

When using the SGDs, apart from different cost functions that you have to test for 
their performance, you can also try using L1, L2, and Elasticnet regularization just 
by setting the penalty parameter and the corresponding controlling alpha and 
l1_ratio parameters. Some of the SGDs are more resistant to outliers, such as 
modified_huber for classification or huber for regression.

SGD is sensitive to the scale of variables, and not just because of regularization but 
also because of the way it works internally. Consequently, you must always stand-
ardize your features (for instance, by using StandardScaler) or you force them in 
the range [0,+1] or [-1,+1] using the MinMaxScaler as done in the example in 
this section. Failing to do so will lead to poor results.
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When using SGDs, you’ll always have to deal with chunks of data unless you can 
load all the training data into memory. To make the training effective, you should 
standardize by having the StandardScaler infer the mean and standard deviation 
from the first available data. The mean and standard deviation of the entire  dataset 
is most likely different, but the transformation by an initial estimate will suffice 
to develop a working learning procedure.

from sklearn.linear_model import SGDRegressor
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
 
scaling = MinMaxScaler(feature_range=(0, 1))
scaled_X = scaling.fit_transform(Xt)
 
X_tr, X_t, y_tr, y_t = train_test_split(scaled_X, y, 
                                        test_size=0.20, 
                                        random_state=0)
SGD = SGDRegressor(loss='squared_error', 
                   penalty='l1', 
                   alpha=0.00001, 
                   max_iter=2000,
                   learning_rate="adaptive",
                   random_state=0)
SGD.fit(X_tr, y_tr)
 
score = mean_squared_error(y_t, SGD.predict(X_t))
print(f'test MSE: {score:.3f}') 

The resulting mean squared error after running the SGDRegressor is

CV MSE: 0.494

In the preceding example, you used the fit() method, which requires that you 
preload all the training data into memory. You can train the model in successive 
steps by using the partial_fit() method instead, which runs a single iteration 
on the provided data, then keeps it in memory and adjusts it when receiving new 
data. The following example monitors the results obtained by the model during 
the iterations:

SGD = SGDRegressor(loss='squared_error', 
                   penalty='l1', 
                   alpha=0.00001,
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                   learning_rate="adaptive",
                   random_state=0)
 
improvements = list()
 
for z in range(2000):
    SGD.partial_fit(X_tr, y_tr)
    score = mean_squared_error(y_t, SGD.predict(X_t))
    improvements.append(score)
 
print(f'test MSE: {improvements[-1]:.3f}') 

Having kept track of the algorithm’s partial improvements during 2000 iterations 
over the same data, you can produce a graph that helps you understand the 
improvements shown in the following code. Note that you could have used differ-
ent data at each step.

%matplotlib inline
import matplotlib.pyplot as plt
 
plt.figure(figsize=(8, 4))
plt.subplot(1,2,1)
range_1 = range(0,50,5)
score_1 = np.abs(improvements[0:100:10])
plt.plot(range_1, score_1,'o--')
plt.xlabel('Iterations up to 100')
plt.ylabel('Test mean squared error')
plt.subplot(1,2,2)
range_2 = range(100,2000,100)
score_2 = np.abs(improvements[100:2000:100])
plt.plot(range_2, score_2,'o--')
plt.xlabel('Iterations from 101 to 2000')
plt.show() 

As shown in the first of the two panes in Figure 19-1, the algorithm initially starts 
with a high error rate, but it manages to reduce it in just a few iterations, usually 
5–10. After that, the error rate slowly improves by a smaller amount with each 
iteration. In the second pane, you can see that after 1,500 iterations, the error rate 
reaches a minimum and starts fluctuating. At that point, you’re starting to overfit 
because data already understands the rules, and you’re actually forcing the SGD to 
learn more when nothing is left in the data other than noise. Consequently, it 
starts learning noise and erratic rules.
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Unless you’re working with all the data in memory, grid-searching and cross-
validating the best number of iterations will be difficult. A good trick is to keep a 
chunk of training data to use for validation apart in memory or storage. By check-
ing your performance on that untouched part, you can see when SGD learning 
performance starts decreasing. At that point, you can interrupt iterating over the 
data (a stopping method known as early stopping).

Understanding Support Vector Machines
Support vector machines (SVM) are one of the most complex and powerful 
machine learning techniques in the data scientist’s toolbox. However, since the 
recent success of neural networks, you usually find this topic solely in advanced 
manuals. In our opinion, you shouldn’t turn away from this great learning algo-
rithm. The Scikit-learn library offers you a wide and accessible range of SVM-
supervised classes for regression and classification. When evaluating whether you 
want to try SVM algorithms as a machine learning solution, consider these main 
benefits:

 » Comprehensive family of techniques for binary and multiclass classification, 
regression, and novelty detection

 » Good prediction generator that provides robust handling of overfitting, noisy 
data, and outliers

 » Successful handling of situations that involve many variables

 » Effective when you have more variables than examples

FIGURE 19-1: 
A slow descent 

optimizing 
squared error.
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 » Fast, when you’re working with up to 10,000 training examples

 » Detects nonlinearity in your data automatically, so you don’t have to apply 
complex transformations of your variables

Wow, that sounds great. However, you should also consider a few relevant draw-
backs before you jump into importing the SVM module:

 » Performs better when applied to binary classification (which was the initial 
purpose of SVM), so SVM doesn’t work as well on other prediction problems

 » Less effective when you have a lot more variables than examples; you have to 
look for other solutions like SGD

 » Provides you with only a predicted outcome; you can obtain a probability 
estimate for each response at the cost of more time-consuming computations

 » Works satisfactorily out of the box, but if you want the best results, you have 
to spend time experimenting in order to tune the many parameters

Relying on a computational method
Vladimir Vapnik and his colleagues invented SVM in the 1990s while working at 
AT&T laboratories. SVM gained success thanks to its high performance in many 
challenging problems for the machine learning community of the time, especially 
when used to help a computer read handwritten input. Today, data scientists fre-
quently apply SVM to an incredible array of problems, from medical diagnosis to 
image recognition and textual classification. You’ll likely find SVM quite useful for 
your problems, too!

The code for this section is relatively long and complex. It appears in the 
P4DS4D4_19_Representing_SVM_boundaries.ipynb file, along with the outputs 
described in this section. You should refer to the source code to see how the code 
generates the figures in this section.

The idea behind SVM is simple, but the mathematical implementation is quite 
complex and requires many computations to work. This section helps you under-
stand the technology behind the technique — knowing how a tool works always 
helps you figure out where and how to employ it best. Start considering the prob-
lem of separating two groups of data points. It’s a classic binary classification 
problem in which a learning algorithm has to figure out how to separate one class 
of instances from the other one using the information provided by the data at 
hand. The first pane in Figure 19-2 shows a representation of a similar problem.
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If the two groups are separate from one another, you may solve the problem in 
many different ways just by choosing different separating lines. Of course, you 
must pay attention to the details and use fine measurements. Even though it may 
seem like an easy task, you need to consider what happens when the data changes, 
such as when you add more data points later. You may not be able to be sure that 
you chose the right separation line.

The second pane in Figure 19-2 shows two possible solutions, but even more can 
exist. Both chosen solutions are too near to the existing observations (as shown by 
the proximity of the lines to the data points), but there is no reason to think that 
new observations will behave precisely like those shown in the figure. SVM mini-
mizes the risk of choosing the wrong line (as you may have done by selecting 
solution A or B from Figure 19-3) by choosing the solution characterized by the 
largest distance from the bordering points of the two groups. Having so much 
space between groups (the maximum possible) should reduce the chance of pick-
ing the wrong solution!

The largest distance between the two groups is the margin. When the margin is 
large enough, you can be quite sure that it’ll keep working well, even when you 
have to classify previously unseen data. The margin is determined by the points 
that are present on the limit of the margin — the support vectors (the support vec-
tor machines algorithm takes its name from them).

You can see an SVM solution in the first pane in Figure 19-3. The figure shows the 
margin as a dashed line, the separator as the continuous line, and the support 
vectors as the circled data points.

FIGURE 19-2: 
Dividing two 

groups.
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Real-world problems don’t always provide neatly separable classes, as in this 
example. However, a well-tuned SVM can withstand some ambiguity (some mis-
classified points). An SVM algorithm with the right parameters can really do 
miracles.

When working with example data, it’s easier to look for neat solutions so that the 
data points can better explain how the algorithm works and you can grasp the core 
concepts. With real data, though, you need approximations that work. Therefore, 
you rarely see large and clear margins.

Apart from binary classifications on two dimensions, SVM can also work on com-
plex data. You can consider the data as complex when you have more than two 
dimensions, or in situations that are similar to the layout depicted in the second 
pane in Figure 19-3, when separating the groups by a straight line isn’t possible.

In the presence of many variables, SVM can use a complex separating plane (the 
hyperplane). SVM also works well when you can’t separate classes by a straight 
line or plane because it can explore nonlinear solutions in multidimensional space 
thanks to a computational technique called the kernel trick, a method used to 
bridge linearity and nonlinearity. (You can find a full discussion of the kernel trick 
at https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f.)

Fixing many new parameters
Although SVM is complex, it’s a great tool. After you find the most suitable SVM 
version for your problem, you have to apply it to your data and work a little to 
optimize some of the many parameters available and improve your results. Set-
ting up a working SVM predictive model involves these general steps:

FIGURE 19-3: 
A viable SVM 

solution for  
the problem of 
the two groups 

and more.

https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f
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1. Choose the SVM class you’ll use.

2. Train your model with the data.

3. Check your validation error and make it your baseline.

4. Try different values for the SVM parameters.

5. Check whether your validation error improves.

6. Train your model again using the data with the best parameters.

To choose the right SVM class, you have to think about your problem. For exam-
ple, you could choose a classification (guess a class) or regression (guess a num-
ber). When working with a classification, you must consider whether you need to 
classify just two groups (binary classification) or more than two (multiclass clas-
sification). Another important aspect to consider is the quantity of data you have 
to process. After taking notes of all your requirements on a list, a quick glance at 
Table 19-1 will help you to narrow your choices.

The first step is to check the number of examples in your data. Having more than 
10,000 examples could mean slow and cumbersome computations, but you can 
still use SVM to obtain acceptable performance for classification problems by 
using sklearn.svm.LinearSVC. When solving a regression problem, you may find 
that the LinearSVC isn’t fast enough, in which case you use a stochastic solution 
for SVM (as described in the sections that follow).

TABLE 19-1 The SVM Module of Learning Algorithms
Class Characteristic Usage Key Parameters

sklearn.svm.SVC Binary and multiclass classification when the  
number of examples is less than 10,000

C, kernel, degree, 
gamma

sklearn.svm.NuSVC Similar to SVC nu, kernel, degree, 
gamma

sklearn.svm.
LinearSVC

Binary and multiclass classification when the number 
of examples is more than 10,000; sparse data

Penalty, loss, C

sklearn.svm.SVR Regression problems C, kernel, degree, 
gamma, epsilon

sklearn.svm.NuSVR Similar to SVR Nu, C, kernel, degree, 
gamma

sklearn.svm.
OneClassSVM

Outliers detection nu, kernel, degree, 
gamma
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The Scikit-learn SVM module wraps two powerful libraries written in C, libsvm 
and liblinear. When fitting a model, there is a flow of data between Python and the 
two external libraries. A cache smoothes the data exchange operations. However, 
if the cache is too small and you have too many data points, the cache becomes a 
bottleneck! If you have enough memory, it’s a good idea to set a cache size greater 
than the default 200MB (1000MB, if possible) using the SVM class’ cache_size 
parameter. Smaller numbers of examples require only that you decide between 
classification and regression.

In each case, you’ll have two alternative algorithms. For example, for classifica-
tion, you may use sklearn.svm.SVC or sklearn.svm.NuSVC. The only difference 
with the Nu version is the parameters it takes and the use of a slightly different 
algorithm. In the end, it gets basically the same results, so you normally choose 
the non-Nu version.

After deciding on which algorithm to use, you find that you have a number of 
parameters from which to choose, and the C parameter is always among them. 
The C parameter indicates how much the algorithm has to adapt to training points. 
When C is small, the SVM adapts less to the points and tends to take an average 
direction, just using a few of the available points and variables. Larger C values 
tend to force the learning process to follow more of the available training points 
and to get involved with many variables.

The right C is usually a middle value, and you can find it after a bit of experimen-
tation. If your C is too large, you risk overfitting, a situation in which your SVM 
adapts too much to your data and cannot properly handle new problems. If your C 
is too small, your prediction will be rougher and imprecise. You’ll experience a 
situation called underfitting — your model is too simple for the problem you want 
to solve.

After deciding the C value to use, the important block of parameters to fix is 
 kernel, degree, and gamma. All three interconnect and their value depends on the 
kernel specification (for instance, the linear kernel doesn’t require degree or 
gamma, so you can use any value). The kernel specification determines whether 
your SVM model uses a line or a curve in order to guess the class or the point 
 measure. Linear models are simpler and tend to guess well on new data, but they 
sometimes underperform when variables in the data relate to each other in 
 complex ways. Because you can’t know in advance whether a linear model works 
for your problem, it’s good practice to start with a linear kernel, fix its C value, 
and use that model and its performance as a baseline for testing nonlinear 
 solutions afterward.
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Classifying with SVC
It’s time to build the first SVM model. Because SVM initially performed so well 
with handwritten classification, starting with a similar problem is a great idea. 
Using this approach can give you an idea of how powerful this machine learning 
technique is. The example uses the digits dataset available from the module data-
sets in the Scikit-learn package. The digits dataset contains a series of 8-x-8-
pixel images of handwritten numbers ranging from 0 to 9.

from sklearn import datasets
digits = datasets.load_digits()
X, y = digits.data, digits.target

After loading the datasets module, the load.digits function imports all the data, 
from which the example extracts the predictors (digits.data) as X and the pre-
dicted classes (digits.target) as y.

You can look at what’s inside this dataset using the matplotlib functions sub-
plot (for creating an array of drawings arranged in two rows of five columns) and 
imshow (for plotting grayscale pixel values onto an 8-x-8 grid). The code arranges 
the information inside digits.images as a series of matrices, each one containing 
the pixel data of a number.

%matplotlib inline
 
import matplotlib.pyplot as plt
for k, img in enumerate(range(10)):
plt.subplot(2, 5, k+1)
plt.imshow(digits.images[img],
           cmap='binary',
           interpolation='none')
plt.show()

The code displays the first ten numbers as an example of the data used in the 
example. You can see the result in Figure 19-4.

By observing the data, you can also determine that SVM could guess a particular 
number by associating a probability with the values of specific pixels in the grid.  
A number 2 could turn on different pixels than a number 1, or maybe different 
groups of pixels. Data science involves testing many programming approaches and 
algorithms before reaching a solid result, but it helps to be imaginative and intui-
tive in order to determine which approach to try first. In fact, if you explore X, you 
discover that it’s made of exactly 64 variables, each one representing the grayscale 
value of a single pixel, and that you have plentiful examples — exactly 1,797 cases.

print(X[0])
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The code returns a vector of the first example in the dataset:

[ 0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15.
  5. 0. 0. 3. 15. 2. 0. 11. 8. 0. 0. 4. 12. 0.
  0. 8. 8. 0. 0. 5. 8. 0. 0. 9. 8. 0. 0. 4.
  11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12. 0. 0.
  0. 0. 6. 13. 10. 0. 0. 0.]

If you reprint the same vector as an 8-x-8 matrix, you spot the image of a zero:

print(X[0].reshape(8, 8))

You interpret the zero values as the color white and the higher values as darker 
shades of gray:

[[ 0. 0.  5. 13.  9.  1. 0. 0.]
 [ 0. 0. 13. 15. 10. 15. 5. 0.]
 [ 0. 3. 15.  2.  0. 11. 8. 0.]
 [ 0. 4. 12.  0.  0.  8. 8. 0.]
 [ 0. 5.  8.  0.  0.  9. 8. 0.]
 [ 0. 4. 11.  0.  1. 12. 7. 0.]
 [ 0. 2. 14.  5. 10. 12. 0. 0.]
 [ 0. 0.  6. 13. 10.  0. 0. 0.]]

At this point, you might wonder what to do about labels. You can try getting a 
count of the labels using the unique function in the NumPy package:

np.unique(y, return_counts=True)

FIGURE 19-4: 
The first ten 
handwritten 

digits from the 
digits dataset.
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The output associates the class label (the first number) with its frequency and is 
worth observing (it is the second row of output):

(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
 array([178, 182, 177, 183, 181, 182, 181, 179, 174, 180]))

All the class labels present about the same number of examples. That means your 
classes are balanced and the SVM won’t be led to think that one class is more 
probable than any of the others. If one or more of the classes had a significantly 
different number of cases, you’d face an unbalanced class problem. An unbalanced 
class scenario requires you to perform an evaluation:

 » Keep the unbalanced class and get predictions biased toward the most 
frequent classes

 » Establish equality among the classes using weights, which means allowing 
some observations to count more

 » Use selection to cut some cases from the classes that have too many cases

An imbalanced class problem requires you to set some additional parameters. 
sklearn.svm.SVC has both a class_weight parameter and a sample_weight key-
word in the fit method. The most straightforward and easiest way to solve the 
problem is to set class_weight='balanced' when defining your SVC and let the 
algorithm fix everything by itself.

Now you’re ready to test the SVC with the linear kernel. However, don’t forget to 
split your data into training and test sets, or you won’t be able to judge the effec-
tiveness of the modeling work. Always use a separate data fraction for perfor-
mance evaluation or the results will look good at the start but turn worse when 
adding fresh data.

from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import MinMaxScaler
X_tr, X_t, y_tr, y_t = train_test_split(
    X, y, test_size=0.3, random_state=0)

The train_test_split function splits X and y into training and test sets, using 
the test_size parameter value of 0.3 as a reference for the split ratio.

scaling = MinMaxScaler(feature_range=(-1, 1)).fit(X_tr)
X_tr = scaling.transform(X_tr)
X_t = scaling.transform(X_t)
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As a best practice, after splitting the data into training and test parts, you scale the 
numeric values, first by getting scaling parameters from the training data and 
then by applying a transformation on both training and test sets.

Another important action to take before feeding the data into an SVM is scaling. 
Scaling transforms all the values to the range between –1 to 1 (or from 0 to 1, if you 
prefer). Scaling transformation avoids the problem of having some variables 
influence the algorithm (they may trick it into thinking they are important because 
they have big values) and it makes the computations exact, smooth, and fast.

The following code fits the training data to an SVC class with a linear kernel. It 
also cross-validates and tests the results in terms of accuracy (the percentage of 
numbers correctly guessed).

from sklearn.svm import SVC
svc = SVC(kernel='linear', class_weight='balanced')

The code instructs the SVC to use the linear kernel and to reweight the classes 
automatically. Reweighting the classes ensures that they remain equally sized 
after the dataset is split into training and test sets.

cv = cross_val_score(svc, X_tr, y_tr, cv=10)
test_score = svc.fit(X_tr, y_tr).score(X_t, y_t)

The code then assigns two new variables. Cross-validation performance is 
recorded by the cross_val_score function, which returns a list with all ten scores 
after a tenfold cross-validation (cv=10). The code obtains a test result by using 
two methods in sequence on the learning algorithm — fit(), that fits the model, 
and score(), which evaluates the result on the test set using mean accuracy 
(mean percentage of correct results among the classes to predict).

print(f'CV accuracy score: {np.mean(cv):.3f}')
print(f'Test accuracy score: {test_score:.3f}')

Finally, the code prints the two variables and evaluates the result. The result is 
quite good: 97.6 percent correct predictions on the test set:

CV accuracy score: 0.981
Test accuracy score: 0.976

You might wonder what would happen if you optimize the principal parameter C 
instead of using the default value of 1.0. The following script provides you with an 
answer, using gridsearch to look for an optimal value for the C parameter:
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from sklearn.model_selection import GridSearchCV
svc = SVC(class_weight='balanced', random_state=1)
search_space = {'C': np.logspace(-3, 3, 7)}
gridsearch = GridSearchCV(svc,
                          param_grid=search_space,
                          scoring='accuracy',
                          refit=True, cv=10)
gridsearch.fit(X_tr,y_tr)

Using GridSearchCV is a little more complex, but it allows you to check many 
models in sequence. First, you must define a search space variable using a Python 
dictionary that contains the exploration schedule of the procedure. To define  
a search space, you create a dictionary (or, if there is more than one dictionary, a 
dictionary list) for each tested group of parameters. Inside the dictionary, you 
place the name of the parameters as keys and associate them with a list (or a 
function generating a list, as in this case) containing the values to test.

The NumPy logspace() function creates a list of seven C values, ranging from 
10^–3 to 10^3. This is a computationally expensive number of values to test, but 
it’s also comprehensive, and you can always be safe when you test C and the other 
SVM parameters using such a range.

You then initialize GridSearchCV, defining the learning algorithm, search space, 
scoring function, and number of cross-validation folds. The next step is to instruct 
the procedure, after finding the best solution, to fit the best combination of 
parameters, so that you can have a ready-to-use predictive model:

cv = gridsearch.best_score_
test_score = gridsearch.score(X_t, y_t)
best_c = gridsearch.best_params_['C']

In fact, gridsearch now contains a lot of information about the best score (and 
best parameters, plus a complete analysis of all the evaluated combinations) and 
methods, such as score, which are typical of fitted predictive models in 
Scikit-learn.

print(f'CV accuracy score: {cv:.3f}')
print(f'Test accuracy score: {test_score:.3f}')
print(f'Best C parameter: {best_c:.1f}')
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Here, the code extracts cross-validation and test scores, and outputs the C value 
related to these best scores:

CV accuracy score: 0.989
Test accuracy score: 0.987
Best C parameter: 10.0

The last step prints the results and shows that using a C=10.0 increases perfor-
mance compared to before, both on the cross-validation and the test set.

Going nonlinear is easy
Having defined a simple linear model as a benchmark for the handwritten digit 
project, you can now test a more complex hypothesis, and SVM offers a range of 
nonlinear kernels:

 » Polynomial (poly)

 » Radial Basis Function (rbf)

 » Sigmoid (sigmoid)

 » Advanced custom kernels

Even though so many choices exist, you rarely use something different from the 
radial basis function kernel (rbf for short) because it’s faster than other kernels 
and can approximate almost any nonlinear function.

Here’s a basic, practical explanation about how rbf works: It separates the data 
into many clusters, so it’s easy to associate a response to each cluster.

The rbf kernel requires that you set the degree and gamma parameters besides set-
ting C. They’re both easy to set (and a good grid search will always find the right 
value).

The degree parameter has values that begin at 2. It determinates the complexity 
of the nonlinear function used to separate the points. As a practical suggestion, 
don’t worry too much about degree — test values of 2, 3, and 4 on a grid search. 
If you notice that the best result has a degree of 4, try shifting the grid range 
upward and test 3, 4, and 5. Continue proceeding upward as needed, but using a 
value greater than 5 is rare.

The gamma parameter’s role in the algorithm is similar to C (it provides a trade-off 
between overfit and underfit). It’s exclusive of the rbf kernel. High gamma values 
induce the algorithm to create nonlinear functions that have irregular shapes 
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because they tend to fit the data more closely. Lower values create more regular, 
spherical functions, ignoring most of the irregularities present in the data.

Now that you know the details of the nonlinear approach, it’s time to try rbf on the 
previous example. Be warned that, given the high number of combinations tested, 
the computations may take some time to complete, depending on the character-
istics of your computer.

from sklearn.model_selection import GridSearchCV
 
svc = SVC(class_weight='balanced', random_state=1)
search_space = [{'kernel': ['linear'], 
                 'C': np.logspace(-3, 3, 7)},
                {'kernel': ['rbf'], 
                 'degree':[2, 3, 4], 
                 'C':np.logspace(-3, 3, 7), 
                 'gamma': np.logspace(-3, 2, 6)}]
gridsearch = GridSearchCV(svc, 
                          param_grid=search_space, 
                          scoring='accuracy', 
                          refit=True, cv=10,
                          n_jobs=-1)
gridsearch.fit(X_tr, y_tr)
cv = gridsearch.best_score_
test_score = gridsearch.score(X_t, y_t)
print(f'CV accuracy score: {cv:0.3f}')
print(f'Test accuracy score: {test_score:0.3f}')
print(f'Best parameters: {gridsearch.best_params_}')
print('Best parameters: %s' % gridsearch.best_params_)

Notice that the only difference in this script is that the search space is more 
sophisticated. By using a list, you enclose two dictionaries — one containing the 
parameters to test for the linear kernel and another for the rbf kernel. In this way, 
you can compare the performance of the two approaches at the same time. The 
code will take quite a while to run. Afterward, it will report to you:

CV accuracy score: 0.990
Test accuracy score: 0.993
Best parameters: {'C': 1.0, 'degree': 2, 'gamma': 0.1,
                  'kernel': 'rbf'}

The results confirm that rbf performs better. However, it’s a small margin of vic-
tory over the linear models, gained at the expense of more complexity and com-
putational time. In such cases, having more data available could help in 
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determining the better model with greater confidence. Unfortunately, getting 
more data may be expensive in terms of money and time. When faced with the 
absence of a clear winning model, the best suggestion is to decide in favor of the 
simpler model. In this case, the linear kernel is much simpler than rbf.

Performing regression with SVR
Up to now, you have dealt only with classification, but SVM can also handle 
regression problems. Having seen how a classification works, you don’t need to 
know much more than that the SVM regression class is SVR and there is an addi-
tional parameter to fix, epsilon. Everything else previous sections discussed for 
classification works precisely the same with regression.

This example uses a synthetic dataset, created by the make_regression() func-
tion in Scikit-learn. The underlying solution behind the data is made by combin-
ing three variables, but this example tries to confuse the algorithm by providing 
more irrelevant variables and adding plenty of noise to the values. In total, the 
dataset has 500 cases and 15 numeric variables (only three of which are meaning-
ful for the solution).

from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR
from sklearn.datasets import make_regression
 
X, y = make_regression(n_samples=500, 
                       n_features=15, 
                       n_informative=3, 
                       noise=10,
                       random_state=101)
 
X_tr, X_t, y_tr, y_t = train_test_split(X, y, 
                                        test_size=0.3, 
                                        random_state=0)
scaling = MinMaxScaler(feature_range=(-1, 1)).fit(X_tr)
X_tr = scaling.transform(X_tr)
X_t  = scaling.transform(X_t)

You’ll try to guess the solution using SVR (epsilon-Support Vector Regression). In 
addition to C, kernel, degree, and gamma, SVR also has epsilon, as mentioned 
previously. Epsilon is a measure of how much error the algorithm considers 
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acceptable. A high epsilon implies fewer support points, and a lower epsilon 
requires a larger number of support points. In other words, epsilon provides 
another way to trade off underfit against overfit.

As a search space for this parameter, experience tells you that the sequence [0, 
0.01, 0.1, 0.5, 1, 2, 4] works quite fine. Starting from a minimum value of 
0 (when the algorithm doesn’t accept any error) and reaching a maximum of 4, 
you should enlarge the search space only if you notice that higher epsilon values 
bring better performance.

Having included epsilon in the search space and assigning SVR as a learning 
algorithm, you can complete the script. Be warned that, given the high number of 
combinations evaluated, the computations may take quite some time, depending 
on the characteristics of your computer.

svr = SVR()
search_space = [{'kernel': ['linear'], 
                 'C': np.logspace(-3, 2, 6), 
                 'epsilon': [0, 0.01, 0.1, 0.5, 1, 2, 4]},
                {'kernel': ['rbf'], 
                 'degree':[2,3], 
                 'C':np.logspace(-3, 3, 7), 
                 'gamma': np.logspace(-3, 2, 6), 
                 'epsilon': [0, 0.01, 0.1, 0.5, 1, 2, 4]}]
gridsearch = GridSearchCV(svr, 
                          param_grid=search_space, 
                          refit=True, 
                          scoring= 'r2',
                          cv=10, n_jobs=-1)
gridsearch.fit(X_tr, y_tr)
cv = gridsearch.best_score_
test_score = gridsearch.score(X_t, y_t)
print(f'CV R2 score: {cv:.3f}')
print(f'Test R2 score: {test_score:.3f}')
print(f'Best parameters: {gridsearch.best_params_}')

The grid search may take a while on your computer. Even though the example 
uses all the computational power in your system (n_jobs=-1), the computer has 
to test quite a few combinations; for each kernel, you can figure out how many 
models it has to compute by multiplying the number of values it has to test for 
each parameter. For instance, for the rbf kernel, it has two values for degree, 
seven for C, six for gamma, and seven for epsilon, which equates to 2 * 7 * 6 * 7 = 
588 models, each one replicated 10 times (because cv=10). That is 5,880 models 
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tested just for the rbf kernel. (The code also tests the linear model, which requires 
420 tests.) Finally, you should get these results:

CV R2 score: 0.990
Test R2 score: 0.992
Best parameters: {'C': 100.0, 'epsilon': 0.5, 
                  'kernel': 'linear'}

Note that on the error measure, as a regression, the error is calculated using R 
squared, a measure in the range from 0 to 1 that indicates the model’s perfor-
mance (with 1 being the best possible result to achieve).

Creating a stochastic solution with SVM
Now that you’re at the end of the overview of the family of SVM machine learning 
algorithms, you should see that they’re a fantastic tool for a data scientist. Of 
course, even the best solutions have problems. For example, you might think that 
the SVM has too many parameters. Certainly, the parameters are a nuisance, 
especially when you have to test so many combinations of them, which can take a 
lot of CPU time. However, the key problem is the time necessary for training the 
SVM. You may have noticed that the examples use small datasets with a limited 
number of variables, and performing some extensive grid searches still takes a lot 
of time. Real-world datasets are much bigger. Sometimes it may seem to take for-
ever to train and optimize your SVM on your computer.

A possible solution when you have too many cases (a suggested limit is 10,000 
examples) is found inside the same SVM module, the LinearSVC class. This algo-
rithm works only with the linear kernel, and its focus is to classify (sorry, no 
regression) large numbers of examples and variables at a higher speed than the 
standard SVC.  Such characteristics make the LinearSVC a good candidate for  
textual-based classification. LinearSVC has fewer and slightly different parame-
ters to fix than the usual SVM (it’s similar to a regression class):

 » C: The penalty parameter. Small values imply more regularization (simpler 
models with attenuated or set to zero coefficients).

 » loss: A value of l1 (just as in SVM) or l2 (errors weigh more, so it strives 
harder to fit misclassified examples).

 » penalty: A value of l2 (attenuation of less important parameters) or l1 
(unimportant parameters are set to zero).

 » dual: A value of true or false. It refers to the type of optimization problem 
solved and, though it won’t change the obtained scoring much, setting the 
parameter to false results in faster computations than when it is set to true.
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The loss, penalty, and dual parameters are also bound by reciprocal constraints, 
so please refer to Table 19-2 to plan which combination to use in advance.

The algorithm doesn’t support the combination of penalty='l1' and loss='l1'. 
However, the combination of penalty='l2' and loss='l1' perfectly replicates 
the SVC optimization approach.

As mentioned previously, LinearSVC is quite fast, and a speed test against SVC 
demonstrates the level of improvement to expect in choosing this algorithm. Even 
this example uses a synthetic data example, this time for classification, thanks to 
Scikit-learn’s make_classification() function:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
 
X,y = make_classification(n_samples=500, 
                          n_features=15, 
                          n_informative=5, 
                          random_state=101)
X_tr, X_t, y_tr, y_t = train_test_split(X, y, 
                                        test_size=0.3, 
                                        random_state=1)
 
from sklearn.svm import SVC, LinearSVC
svc = SVC(kernel='linear', random_state=0)
linear = LinearSVC(loss='hinge', max_iter=100_000,
                   random_state=0)
 
svc.fit(X_tr, y_tr)
linear.fit(X_tr, y_tr)
svc_score = svc.score(X_t, y_t)
libsvc_score = linear.score(X_t, y_t)
print(f'SVC test accuracy: {svc_score:.3f}')
print(f'LinearSVC test accuracy: {libsvc_score:.3f}') 

TABLE 19-2 The Loss, Penalty, and Dual Constraints
Penalty Loss Dual

l1 l2 False

l2 l1 True

l2 l2 True; False
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The results are similar to SVC:

SVC test accuracy: 0.787
LinearSVC test accuracy: 0.787

After you create an artificial dataset using make_classfication(), the code 
obtains confirmation of how the two algorithms arrive at almost identical results. 
At this point, the code tests the speed of the two solutions on the synthetic dataset 
to understand how they scale to use more data:

import timeit
import numpy as np
 
X,y = make_classification(n_samples=10**3, 
                          n_features=15, 
                          n_informative=5, 
                          random_state=101)
t_svc = timeit.timeit(
    'svc.fit(X, y)',
    'from __main__ import svc, X, y',
    number=3)
t_libsvc = timeit.timeit(
    'linear.fit(X, y)',
    'from __main__ import linear, X, y',
    number=3)
print(f'best avg secs for SVC: {np.mean(t_svc):0.1f}')
print(f'best avg secs for LinearSVC: '
      f'{np.mean(t_libsvc):0.1f}') 

The example system shows the following result (the output of your system may 
differ):

best avg secs for SVC: 0.2
best avg secs for LinearSVC: 0.1

Clearly, given the same data quantity, LinearSVC is faster than SVC. However, it’s 
important to understand what happens when you increase the size of the sample 
because what counts is how an algorithm scales when you increase the size of the 
problem. For example, here’s what happens when you triple the size:

Avg time for SVC: 1.6 secs
Avg time for LinearSVC: 0.1 secs
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The point here is that the time required for SVC grows much faster than that 
required by LinearSVC. This is because SVC requires nonlinearly more time to pro-
cess the data provided, and the time will grow even more as the sample size 
increases. Here are the results when you have five times more data, highlighting 
even more differences:

Avg time for SVC: 984.9 secs
Avg time for LinearSVC: 5.5 secs

Using SVC with large amounts of data soon becomes unfeasible; LinearSVC should 
be your choice if you need to work with large data amounts. Yet, even if LinearSVC 
is quite fast at performing tasks, you may need to classify or regress millions of 
examples. You need to know whether LinearSVC is still a better choice. You previ-
ously saw how the SGD class, using SGDClassifier and SGDRegressor, helps you  
implement an SVM-type algorithm in situations with millions of data rows  
without investing too much computational power. All you have to do is to set  
their loss to 'hinge' for SGDClassifier and to 'epsilon_insensitive' for 
SGDRegressor (in which case, you have to tune the epsilon parameter).

Another performance and speed test makes the advantages and limitations of 
using LinearSVC or SGDClassifier clear:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.svm import LinearSVC
import timeit
 
from sklearn.linear_model import SGDClassifier
X, y = make_classification(n_samples=10**5, 
                           n_features=15, 
                           n_informative=10, 
                           random_state=101)
X_tr, X_t, y_tr, y_t = train_test_split(X, y,
                                        test_size=0.3, 
                                        random_state=1) 

The sample now is quite big — 100,000 cases. If you have enough memory and a 
lot of time, you may even want to increase the number of trained cases or the 
number of features and more extensively test how the two algorithms scale with 
even bigger data.

linear = LinearSVC(penalty='l2', 
                   loss='hinge', 
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                   dual=True,
                   random_state=101)
linear.fit(X_tr, y_tr)
score = linear.score(X_t, y_t)
t = timeit.timeit("linear.fit(X_tr, y_tr)", 
        "from __main__ import linear, X_tr, y_tr", 
        number=1)
print(f'LinearSVC test accuracy: {score:.3f}')
print(f'Avg time for LinearSVC: {np.mean(t):.1f} secs') 

On the test computer, LinearSVC completed its computations on all the rows in 
about 4.2 seconds:

LinearSVC test accuracy: 0.796
Avg time for LinearSVC: 4.2 secs

The following code tests SGDClassifier using the same procedure:

sgd = SGDClassifier(loss='hinge',
                    penalty='l2',
                    alpha=0.1,
                    max_iter=1000, 
                    shuffle=True, 
                    random_state=101) 
sgd.fit(X_tr, y_tr)
score = sgd.score(X_t, y_t)
t = timeit.timeit("sgd.fit(X_tr, y_tr)", 
                  "from __main__ import sgd, X_tr, y_tr", 
                  number=1)
print(f'SGDClassifier test accuracy: {score:.3f}')
print(f'Avg time for SGDClassifier: {np.mean(t):.1f} secs') 

SGDClassifier instead took about a fraction of the time for processing the same 
data and obtaining a comparable score:

SGDClassifier test accuracy: 0.796
Avg time SGDClassifier: 0.2 secs

Increasing the n_iter parameter can improve the performance, but it proportion-
ally increases the computation time. Increasing the number of iterations up to a 
certain value (that you have to find out by test) increases the performance. How-
ever, after that value, performance starts to decrease because of overfitting.
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Playing with Neural Networks
Starting with the idea of reverse-engineering how a brain processes signals, 
researchers based neural networks on biological analogies and their components, 
using brain terms such as neurons and axons as names. However, you’ll discover 
that neural networks resemble nothing more than a sophisticated kind of linear 
regression because they are a summation of coefficients multiplied by numeric 
inputs. You also find that neurons are just where such summations happen.

Even if neural networks don’t mimic a brain very well (they’re arithmetic), these 
algorithms are extraordinarily effective against complex problems such as image 
and sound recognition, or machine language translation. They also execute quickly 
when predicting, if you use the right hardware. Well-devised neural networks use 
the name deep learning and are behind powerful tools like Siri and other digital 
assistants, along with more astonishing machine learning applications, such as 
ChatGPT (https://chat.openai.com/), as well.

Running deep learning requires special hardware (a computer with a GPU) and 
installing special frameworks such as Keras and TensorFlow (https://www. 
tensorflow.org/), MXNet (https://mxnet.apache.org/), Pytorch (https:// 
pytorch.org/) or Chainer (https://chainer.org/). This book doesn’t delve into 
complex neural networks but does explore a simpler implementation offered by 
Keras and TensorFlow instead; that implementation allows you to create neural 
network quickly and compare them to other machine learning algorithms.

Understanding neural networks
The core neural network algorithm is the neuron (also called a unit). Many neu-
rons arranged in an interconnected structure make up the layers of a neural net-
work, with each neuron linking to the inputs and outputs of other neurons. Thus, 
a neuron can input features from examples or from the results of other neurons, 
depending on its location in the neural network.

Contrary to other algorithms, which have a fixed pipeline that determines how 
algorithms receive and process data, neural networks require you to decide how 
information flows by fixing the number of units (the neurons) and their distribu-
tion in layers. For this reason, setting up neural networks is more an art than a 
science; you learn from experience how to arrange neurons into layers and obtain 
the best predictions. In a more detailed view, neurons in a neural network take 
many weighted values as inputs, sum them, and provide the summation as the 
result.

https://chat.openai.com/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://mxnet.apache.org/
https://pytorch.org/
https://pytorch.org/
https://chainer.org/
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A neural network can process only numeric, continuous information; it can’t pro-
cess qualitative variables (for example, labels indicating a quality such as red, 
blue, or green in an image). You can process qualitative variables by transforming 
them into a continuous numeric value, such as a series of binary values.

Neurons also provide a more sophisticated transformation of the summation. In 
observing nature, scientists noticed that neurons receive signals but don’t always 
release a signal of their own. It depends on the amount of signal received. When a 
neuron in a brain acquires enough stimuli, it fires an answer; otherwise, it remains 
silent. In a similar fashion, neurons in a neural network, after receiving weighted 
values, sum them and use an activation function to evaluate the result, which 
transforms it in a possibly nonlinear way. For instance, the activation function 
can release a zero value unless the input achieves a certain threshold, or it can 
dampen or enhance a value by nonlinearly rescaling it, thus transmitting a 
 rescaled signal.

Each neuron in the network receives inputs from the previous layers (when 
 starting, it connects directly with data), weights them, sums them all, and trans-
forms the result using the activation function. After activating, the computed out-
put becomes the input for other neurons or the prediction of the network. 
Consequently, given a neural network made of a certain number of neurons and 
layers, what makes this structure efficient in its predictions is the weights used by 
each neuron for its inputs. Such weights aren’t different from the coefficients of a 
linear regression, and the network learns their value by repeated passes (itera-
tions or epochs) over the examples of the dataset.

Classifying and regressing with neurons
This example uses Keras, which is now part of the TensorFlow framework. There 
are instructions for installing TensorFlow on your system at https://docs. 
anaconda.com/free/anaconda/applications/tensorflow/ if you’re working 
with Anaconda. You may need to ask an administrator to perform the installation 
for you if you don’t have administrator privileges on your host machine. You need 
to have TensorFlow 2.0 or above installed, which you can check in Jupyter   
Notebook using the following code:

import tensorflow as tf
print(tf.__version__)

In addition to TensorFlow version 2.0 and above, Google has integrated the Keras 
package with Colab. Keras serves as a tool for constructing complex neural net-
works through a series of straightforward commands. What sets Keras apart is its 
ability to simplify the creation of deep learning applications, making it accessible 
to a wide range of users. Originally developed as an independent package by 
 Francois Chollet, Keras has gained significant popularity over time, favored by 

https://docs.anaconda.com/free/anaconda/applications/tensorflow/
https://docs.anaconda.com/free/anaconda/applications/tensorflow/
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practitioners, due to its intuitive and user-friendly nature. It effectively simplifies 
the complexities associated with TensorFlow, offering a performing solution.

Unlike other machine learning algorithms, the construction of neural networks 
for classification and regression tasks does not involve distinct sets of commands. 
Instead, the key differences reside in the output neurons of the network and the 
choice of loss function utilized to optimize the neural network’s outcomes. Hence, 
this demonstration delves into a single example for classification, but it can also 
apply to a regression problem, with just a few tweaks. The example uses the hand-
written digits dataset as an example of multiclass classification. It starts by 
importing the necessary packages, in particular all the building blocks necessary 
for Keras to build the neural network, loading the dataset into memory, and split-
ting it into a training and a test set (as the chapter has done when demonstrating 
support vector machines):

import numpy as np
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import load_digits
from keras.models import Sequential
from keras.layers import Dense, Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits
 
X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size=0.2, random_state=0)

Preprocessing the data to feed to the neural network is an important aspect 
because the operations that neural networks perform under the hood are sensitive 
to the scale and distribution of data. Consequently, it’s good practice to normalize 
the data by putting its mean to zero and its variance to one, or to rescale it by fix-
ing the minimum and maximum between –1 and +1 or 0 and +1. Experimentation 
shows which transformation works better for your data, though most people find 
that rescaling between –1 and +1 works better. This example rescales all the values 
between –1 and +1:

scaler = MinMaxScaler(feature_range=(-1, 1))
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Regarding the target, neural networks require each terminal neuron to make a 
prediction, which can take the form of a numeric value or probability. The neuron 
accomplishes the prediction by utilizing activation functions, which transform 
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the input within the neuron. For example, in a classification task, neurons with a 
sigmoid transformation are employed as they produce values between zero and 
one, representing probabilities. In the case of multiclass classification, one 
approach involves encoding the classes using one-hot encoding (which is reviewed 
in Chapter 12 and you can find explained in detail at https://www. geeksforgeeks.
org/ml-one-hot-encoding-of-datasets-in-python/) and assigning a separate 
neuron with sigmoid activation to predict the probability for each class. The class 
with the highest probability is then considered the winner among the others. The 
following code just transforms your target classes for train and test sets into a 
matrix of one-encoded values:

num_classes = 10
y_train = np.eye(num_classes)[y_train]
y_test = np.eye(num_classes)[y_test]

The next step involves constructing the architecture of the neural network and 
training it using the training data. This process employs the Keras Sequential 
API. It begins by initializing an empty network and subsequently adds layers of 
neurons progressively, starting from the top, where the data is inputted, and 
moving toward the bottom, where the results are obtained. This example incorpo-
rates two layers consisting of 64 and 32 neurons respectively, activated by the 
ReLU function. The activation function enables the network to learn nonlinear 
patterns. Each of these layers is followed by a dropout layer, which serves as a 
regularization technique to prevent overfitting, avoiding excessive adaptation to 
the data. The network concludes with a layer containing the probabilities for the 
classes, from which the winning class will be determined. To determine the  
outcome, the softmax activation function is employed in the final layer. 

model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(64,)))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax')) 

Now, the code proceeds to compile the model to configure it for training. The loss 
parameter is specified as categorical_crossentropy, which is the appropriate loss 
function for tackling multi-class classification problems. For optimization, the 
optimizer parameter is set to Adam, a widely used algorithm known for its 
 efficiency. Furthermore, the metrics parameter is set to accuracy, enabling the 
monitoring of the model’s accuracy during the training process. When fitting  
the model, the code iterates over the data 50 times, processes the data in batches 
of 32 examples each, and utilizes the test data to provide progress updates:

https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/
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model.compile(loss='categorical_crossentropy', 
              optimizer='adam', metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=50,
                    batch_size=32,
                    validation_data=(X_test, y_test))

During the training process, you will receive updates and guidance regarding the 
progress made:

Epoch 32/50
45/45 [==============================] - 0s 3ms/step - loss:  

0.0752 - accuracy: 0.9812 - val_loss: 0.0843 - val_accuracy:  
0.9778

The script notifies you about the completion of a specific number of iterations, 
referred to as epochs, during which it processed a certain number of data batches. 
The script provides information on the loss and evaluation metrics for both the 
training data and the test data. By plotting this information, it’s possible to assess 
how well the model learned to generalize by examining its performance on the 
test data, in comparison to its fit on the training data.

When the script has completed, you can check how it finally performs on the  
test data:

loss, accuracy = model.evaluate(X_test, y_test)
print('Test accuracy score:', accuracy)

The script also confirms the performance of the model:

12/12 [==============================] - 0s 2ms/step –  
loss: 0.0832 - accuracy: 0.9750
Test accuracy score: 0.9750000238418579

In addition, you can visualize the entire training process:

import matplotlib.pyplot as plt
 
train_loss = history.history['loss']
val_loss = history.history['val_loss']
 
# Plot the training and validation loss over epochs
epochs = range(5, len(train_loss) + 1)
plt.plot(epochs, train_loss[4:], 'b', 
         label='Training loss')



390      PART 5  Learning from Data

plt.plot(epochs, val_loss[4:], 'r', 
         label='Validation loss')
plt.axvline(x=val_loss.index(min(val_loss)), 
            color='r', linestyle='--')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

You can see the output in Figure 19-5.

Looking at the figure, it is evident that the training loss consistently decreased 
over time, which is a common pattern observed in neural networks that are either 
appropriately sized or oversized for a given problem. Such networks have a tend-
ency to extract increasingly fine-grained details from the data, potentially even 
memorizing it. However, what’s more noteworthy is the behavior of the test data, 
which is not being used during the training process but is used only for prediction 
purposes. The test loss gradually decreases until it reaches a minimum, after 
which it begins to deteriorate due to overfitting. The red dashed line indicates that 
the minimum loss was achieved prior to the end of the training. In neural  
networks, monitoring the model’s performance and deciding when to stop train-
ing is a crucial factor for achieving a well-performing predictor model.

FIGURE 19-5: 
The training and 

test scores of the 
neural network  

as it learns  
from data.
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Chapter 20
Understanding the 
Power of the Many

In this chapter, you go beyond the single machine learning models you’ve seen 
until now and explore the power of ensembles, which are groups of models that 
can outperform single models. Ensembles work like the collective intelligence 

of crowds, using pooled information to make better predictions. The basic idea is 
that a group of simple algorithms can produce better results than a single well-
trained model.

Maybe you’ve participated in one of those games that ask you to guess the number 
of sweets in a jar at parties or fairs. Even though a single person has a slim chance 
of guessing the right number, various experiments have confirmed that if you 
take the wrong answers of a large number of game participants and average them, 
you can get close to the right answer! Such incredible shared group knowledge 
(also known as the wisdom of crowds) is possible because wrong answers tend to 
distribute around the true one. By taking a mean of these wrong answers, you get 
almost the right answer.

In data science projects involving complex predictions, you can leverage the wis-
dom of various machine learning algorithms and become more precise and accu-
rate at predictions than you can when using a single algorithm. This chapter 
creates a process you can use to leverage the power of many different algorithms 
to obtain a better single answer.

IN THIS CHAPTER

 » Understanding how a decision tree 
works

 » Using Random Forest and other 
bagging techniques

 » Taking advantage of the best 
performing ensembles by boosting
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You don’t have to type the source code for this chapter manually; using the down-
loadable source is a lot easier (see the Introduction for download instructions). 
The source code for this chapter appears in the P4DS4D3_20_Understanding_the_
Power_of_the_Many.ipynb file.

Starting with a Plain Decision Tree
Decision trees have long been part of data mining tools. The first models date well 
before the 1970s. Since then, decision trees have enjoyed popularity in many fields 
because of their intuitive algorithm, understandable output, and effectiveness 
with respect to simple linear models. With the introduction of better-performing 
algorithms, decision trees slowly went out of the machine learning scene for a 
time, blamed for being too easy to overfit, but they came back in recent years as 
an essential building block of ensemble algorithms. Today, tree ensembles such as 
Random Forest or Gradient Boosting Machines are the core of many data science 
applications and are considered to be state-of-the-art of machine learning tools.

Understanding a decision tree
The basis of decision trees is the idea that you can divide your dataset into smaller 
and smaller parts using specific rules based on the values of the dataset’s features. 
When dividing the dataset in this way, the algorithm must choose splits that 
increase the chance of guessing the target outcome correctly, either as a class or 
as an estimate. Therefore, the algorithm must try to maximize the presence of a 
certain class or a certain average of values in each split.

As an example of an application and execution of a decision tree, you could try to 
predict the likelihood of passenger survival from the RMS Titanic, the British pas-
senger liner that sank in the North Atlantic Ocean in April 1912 after colliding with 
an iceberg. Quite a few datasets are available on the web that pertain to this trag-
edy at sea. Most notable among them is the one on the Encyclopedia Titanica web-
site (https://www.encyclopedia-titanica.org), which contains articles, 
biographies, and data. Another is a Kaggle data science competition that has 
involved tens of thousands of enthusiastic participants (https://www.kaggle.
com/c/titanic).

Many Titanic tragedy datasets differ in the data they contain. This chapter’s 
example relies on the Titanic dataset freely granted for use by the Department of 
Biostatistics at the Vanderbilt University School of Medicine and available for 
download at https://github.com/lmassaron/datasets/blob/master/titanic.
csv. This dataset features 1,309 recorded passengers with full stats. You don’t find 

https://www.encyclopedia-titanica.org
https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
https://github.com/lmassaron/datasets/blob/master/titanic.csv
https://github.com/lmassaron/datasets/blob/master/titanic.csv
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any of the crew in the dataset because the records focus on the paying passengers 
to determine whether surviving the disaster is a matter of luck or the place pas-
sengers were found on the ship at the time of the collision. The survival rate 
among passengers was 38.2 percent (500 of 1,309 passengers lost their lives). 
Based on the passengers’ characteristics, the decision tree determines the 
following:

 » Being male changes the likelihood of survival, lowering it from 38.2 percent to 
19.1 percent.

 » Being male, but being younger than 9.5 years of age, raises the chance of 
survival to 58.1 percent.

 » Being female, regardless of age, implies a survival probability of 72.7 percent.

Using such knowledge, you can easily to build a tree like the one depicted in  
Figure 20-1. Such visualization (and the visualization of the Mushroom dataset 
found later in the chapter) is possible because of the dtreeviz package developed 
by Prof. Terence Parr from San Francisco University (https://parrt.cs.usfca. 
edu) and Prince Grover, of the same faculty. If you are interested in creating  
visualizations of your decision trees, you can get the package and installation 
guidance at https://github.com/parrt/dtreeviz and read about the develop-
ment and the functioning of the package in Prof. Parr’s blog entry, “How to  
visualize decision trees,” at https://explained.ai/decision-tree-viz.

FIGURE 20-1: 
A tree model of 

survival rates 
from the Titanic 

disaster.

https://parrt.cs.usfca.edu
https://parrt.cs.usfca.edu
https://github.com/parrt/dtreeviz
https://explained.ai/decision-tree-viz
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Notice that the visualized tree looks upside down (with the root at the top and all 
the branches spreading out from there). It starts at the top using the entire sam-
ple. Then it splits on the gender feature, creating two branches, one that turns into 
a leaf. A leaf is a terminal segmentation. The diagram classifies the leaf cases by 
using the most frequent class or by calculating the base probability of cases with 
the same features as the leaf probability. The second branch is further split by age.

To read the nodes of the tree, consider that the topmost node begins by reporting 
the rule used to split that node into all the following nodes. You have to start from 
the top. The tree shown in Figure 20-1 implies that gender is the best predictor, 
and on the top node, the is_female variable is in vertical, stacked bars. The left 
bar is for males and the right bar is for females. At a first glance, you can see that, 
proportionally, females had a higher survivability because the survived share (the 
light-green area, which doesn’t show in color in the printed book) mostly occu-
pies all the area of the bar.

The tree splits this node in half, separating males from females. You can read the 
rest of the story told by the tree by observing what happens on the next level. On 
the second level of the tree representation, on the right, you find a node consisting 
only of females, and the stacked bars reveal a key insight: almost all the female 
first- and second-class passengers survived, and about half of the female third-
class passengers perished. This insight enables the tree to develop a first rule: 
Women in first and second class can be classified as survivors because that status 
is highly likely. As for third class, survival is uncertain, and the tree would need to 
split again to extract some other insight that the analysis doesn’t include.

As for males, the second level shows that age is a criterion that discriminates 
because males under the age of ten most likely survived, while older males most 
likely perished. Again, the tree stops, but additional criteria could provide a more 
precise set of partitioning rules that could explore the probability of surviving the 
Titanic disaster based on one’s own characteristics. From the top-level tree splits, 
you can see that most of the survivors were women with their children based on 
the “women and children first” code of conduct applied in situations when life-
saving resources are scarce. This code perfectly matches the Titanic’s situation 
because very few lifeboats were available as a result of the owners’ belief that the 
boat was unsinkable. (You can read more speculations about the lifeboats on the 
History on the Net website at https://www.historyonthenet.com/the- 
titanic-lifeboats.)

In this example tree, every split is binary, but multiple splits are also possible, 
depending on the tree algorithm. In Scikit-learn, the implemented class  
DecisionTreeClassifier and DecisionTreeRegressor in the sklearn.tree 
module are all binary trees. A decision tree can stop splitting the data when

https://www.historyonthenet.com/the-titanic-lifeboats
https://www.historyonthenet.com/the-titanic-lifeboats
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 » There are no more cases to split, so the data appears as part of leaf nodes.

 » The rule used to split a leaf has fewer than a predefined number of cases. This 
action keeps the algorithm from working with leaves that have little represen-
tation in general or are more specific than the data you’re analyzing, thus 
preventing overfitting (see Chapter 18) and variance of estimates.

 » One of the resulting leaves has fewer than a predefined number of cases — 
another sanity check for avoiding inferring general rules without the confi-
dence provided by a good sample size.

Decision trees tend to overfit the data. By setting the right number for splits and 
terminal leaves, you can reduce the variance of the estimates. Depending on your 
starting sample size, a limit of 30 cases is usually a good choice.

Apart from being intuitive, and easy to understand and represent (depending on 
how many branches and leaves you have in your tree), decision trees offer another 
strong advantage to the data science practitioner  — they don’t require any 
 particular data treatment or transformation because they model any nonlinearity 
using approximations. In fact, they accept any kind of variable, even categorical 
variables encoded with arbitrary codes for the represented classes. In addition, 
decision trees handle missing cases. All you need to do is to assign missing cases 
an unlikely value, such as an extreme or a negative value (depending on your data 
distribution of non-missing cases). Finally, decision trees are also incredibly 
resistant to outliers.

Creating classification trees
Data scientists call trees that specialize in guessing classes (the attributes,  qualities, 
or traits that identify groups) classification trees; trees that work with estimation 
instead are known as regression trees. Here’s a classification problem: trying to 
predict the likelihood of a mushroom being edible or poisonous based on its 
appearance. This is based on a dataset freely available on OpenML (https://www.
openml.org/search?type=data&status=active&id=24) that describes mush-
rooms in terms of their physical characteristics and classifies them as poisonous 
or edible. On OpenML, you can find a complete description of the recorded  
characteristics. The records are drawn from The Audubon Society Field Guide to North 
American Mushrooms (1981), and they are in the public domain thanks to the dona-
tion of Jeff Schlimmer.

from sklearn.datasets import fetch_openml
import pandas as pd
 
def load_mushroom_data():
    features, target = fetch_openml(

https://www.openml.org/search?type=data%26status=active%26id=24
https://www.openml.org/search?type=data%26status=active%26id=24
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        data_id=24, return_X_y=True, as_frame=True)
    X = pd.get_dummies(features)
    y = (target == "p").astype(int)
    return X, y
X, y = load_mushroom_data()

After loading the data into X, which contains predictors, and y, which holds the 
classifications (1 for poisonous, 0 for edible), you can define a cross-validation for 
checking the results using decision trees:

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
crossvalidation = KFold(n_splits=5, 
                        shuffle=True, 
                        random_state=0)

Using the DecisionTreeClassifier class, you define max_depth inside an itera-
tive loop to experiment with the effect of increasing the complexity of the result-
ing tree. The expectation is to reach an ideal point quickly and then witness 
decreasing cross-validation performance because of overfitting:

import numpy as np
from sklearn import tree
for depth in range(1,10):
    tree_classifier = tree.DecisionTreeClassifier(
        max_depth=depth, random_state=0)
    if tree_classifier.fit(X,y).tree_.max_depth < depth:
        break
    score = np.mean(cross_val_score(tree_classifier, 
                                    X, y, 
                                    scoring='accuracy', 
                                    cv=crossvalidation))
    print('Depth: %i Accuracy: %.3f' % (depth,score))

The code will iterate through deeper trees until the tree won’t expand anymore, 
and then the code will report the cross-validation score for accuracy:

Depth: 1 Accuracy: 0.887
Depth: 2 Accuracy: 0.954
Depth: 3 Accuracy: 0.984
Depth: 4 Accuracy: 0.991
Depth: 5 Accuracy: 0.999
Depth: 6 Accuracy: 0.999
Depth: 7 Accuracy: 1.00
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Note that the downloadable source includes some additional code that isn’t cov-
ered in the chapter due to space limitations. Reviewing this code will help you 
understand the example better. This code also works together to produce 
Figure 20-2.

The best solution is a tree with seven splits, but you could probably stop with five 
splits and accept a minimal risk of eating something not edible. There is some 
additional code in the downloadable source to display the results in a graphic for-
mat. Figure 20-2 shows the complexity of the resulting tree with depth five, which 
provides another insightful visualization obtained using the dtreeviz package. 
Visualizing helps show that the tree is not balanced in the way it grew, and the 
presence of certain characteristics help you quickly figure out whether a mush-
room is edible. Other characteristics make things more uncertain and necessitate 
a longer scrutiny. For instance, if the mushroom has no odor and its spores are 
green, you are 100 percent certain that the mushroom is poisonous, and you don’t 
need any other evidence.

Creating regression trees
Just as you use a classification tree for a classification problem in the previous sec-
tion, you can model a regression problem by using the DecisionTreeRegressor 
class. This example solves a regression problem using the California Housing data-
set (you first use this dataset in the “Defining applications for data science” section 
of Chapter 12). When dealing with a regression tree, the terminal leaves offer the 
average of the cases as the prediction output. Here is the code to obtain the data:

from sklearn.datasets import fetch_california_housing
import pandas as pd
 

INSTALL DTREEVIZ
Before you can proceed with the downloadable source, you must install dtreeviz using 
the instructions at https://github.com/parrt/dtreeviz for your particular plat-
form. The version numbers in these instructions are a little outdated. The book’s code 
was tested with the 8.0.5 version. Make sure you use the instructions for your particular 
platform. Ensure that you perform the test for dot.exe because you need this particular 
tool to display items onscreen. If you’re already running the downloadable source, save 
and exit both the downloadable source and Jupyter Notebook so that the changes will 
take effect. Performing this install doesn’t completely satisfy the Python requirement; you 
must still use the !pip install detreeviz line shown in the downloadable source.

https://github.com/parrt/dtreeviz
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def load_california_housing_data():
    dataset = fetch_california_housing()
    X = pd.DataFrame(data=dataset.data,
                     columns=dataset.feature_names)
    y = pd.Series(data=dataset.target, name="target")
    return X, y

You can now build the regression tree on the data: 

from sklearn.tree import DecisionTreeRegressor
 
X, y = load_california_housing_data()
regression_tree = tree.DecisionTreeRegressor(
    min_samples_split=30, min_samples_leaf=10, 
    random_state=0)
regression_tree.fit(X,y)
score = np.mean(cross_val_score(regression_tree, 
                   X, y, 
                   scoring='neg_mean_squared_error', 
                   cv=crossvalidation))
print('Mean squared error: %.3f' % abs(score))

The cross-validated mean squared error for the California Housing dataset is

Mean squared error: 0.367

FIGURE 20-2: 
A tree model of 
the Mushroom 
dataset using a 

depth of five 
splits.
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Getting Lost in a Random Forest
Random Forest is a classification and regression algorithm developed by Leo Brei-
man and Adele Cutler that uses a large number of decision tree models to provide 
precise predictions by reducing both the bias and variance of the estimates. When 
you aggregate many models to produce a single prediction, the result is an ensem-
ble of models. Random Forest isn’t just an ensemble model; it’s also a simple and 
effective algorithm to use as an out-of-the-box algorithm. It makes machine 
learning accessible to non-experts. The Random Forest algorithm uses these steps 
to perform its predictions:

1. Create a large number of decision trees, each one different from the other, 
based on different sets of observations and variables:

a. Bootstrap the dataset of observations for each tree, sampled from the 
original data with replacement. The same observation can appear multiple 
times in the same dataset.

b. Randomly select and use only a part of the variables for each tree.

2. Estimate the performance for each tree using the observations excluded by 
sampling (the Out Of Bag, or OOB, estimate).

3. Obtain the final prediction, which is the average for regression estimates or the 
most frequent class for prediction, after all the trees have been fitted and used 
for prediction.

You can reduce bias by using these steps, because the decision trees have a good 
fit on data and, by relying on complex splits, can approximate even the most com-
plex relationships between predictors and predicted outcome. Decision trees can 
produce a great variance of estimates, but you reduce this variance by averaging 
many trees. Noisy predictions, due to variance, tend to distribute evenly above and 
below the correct value that you want to predict — and when averaged together, 
they tend to cancel each other, leaving, as a result, a more correct average 
prediction.

Making machine learning accessible
Leo Breiman derived the idea for Random Forest from the bagging technique, which 
is described in detail at https://blog.paperspace.com/bagging-ensemble- 
methods/ as a method for aggregating multiple versions of a predicted model. 
Scikit-learn has a bagging class for both regression (BaggingRegressor) and 
classifying (BaggingClassifier) that you can use with any other predictor you 
want to choose from the Scikit-learn modules. The max_samples and  
max_features parameters let you decide the proportion of cases and variables to 

https://blog.paperspace.com/bagging-ensemble-methods/
https://blog.paperspace.com/bagging-ensemble-methods/
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sample (not bootstrapped, but sampled, so you can use a case only once) for build-
ing each model of the ensemble. The n_estimators parameter decides the total 
number of models in the ensemble. Here’s an example that loads the German 
Credit Data (https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+ 
Credit+Data%29) dataset that classifies a bank’s customers, described by a set of 
attributes, as good or bad credit risks. Credit risk classification is a common risk 
management activity in banking and finance. The dataset was donated in 1990s by 
Professor Dr. Hans Hofmann from Hamburg University.

import numpy as np
import pandas as pd
 
def load_german_credit_data():
    url = "https://archive.ics.uci.edu/ml/ "
    url += " machine-learning-databases"
    url += "/statlog/german/german.data-numeric"
    col_names = [
        "checking_account", "duration", "credit_history", 
        "credit_amount", "savings_account", 
        "employment_duration", "personal_status",
        "residence_duration", "property", "age", 
        "other_installment_plans", "number_credits", 
        "people_liable", "telephone", "foreign_worker",
        "purpose_car_new", "purpose_car_used", 
        "other_debtors_none",
        "other_debtors_coapplicant", 
        "housing_rent", "housing_own",
        "job_unskilled_non_resident", 
        "job_unskilled_resident", "job_employee", 
        "credit_risk"]
    df = pd.read_csv(
        url, header=None, names=col_names,
        delim_whitespace=True)
    X = df.iloc[:, :-1]
    y = (df.iloc[:, -1] == 2).astype(int) # 2 = "Bad"
    return X, y
 
X, y = load_german_credit_data()

The example then fits the classification model using bagging:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_auc_score

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
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from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
 
tree_classifier = DecisionTreeClassifier(random_state=0)
crossvalidation = KFold(
    n_splits=5, shuffle=True, random_state=0)
bagging = BaggingClassifier(tree_classifier, 
                            max_samples=0.7, 
                            max_features=0.7, 
                            n_estimators=300,
                            random_state=0)
scores = np.mean(cross_val_score(bagging, X, y, 
                                 scoring='roc_auc', 
                                 cv=crossvalidation))
print(f'ROC-AUC: {scores:.3f}')

Here’s the cross-validated ROC-AUC, a metric ranging up to 1.00 for perfect clas-
sifiers. It evaluates whether the riskier cases are assigned to higher probabilities:

ROC-AUC: 0.795

In bagging, as in Random Forest, the more models in the ensemble, the better. 
Here are some issues to consider:

 » You run little risk of overfitting because every model is different from the 
others, and errors tend to spread around the real value.

 » Adding more models adds stability to the result, but on the other hand, 
creating the model takes longer.

 » It permits estimation of variable importance while taking the presence of all 
the other predictors into account. In this way, you can determine which 
feature is important for predicting a target given the set of features that you 
have.

 » You can use the importance estimate as a guideline for variable selection.

In contrast to single decision trees, you can’t easily visualize or understand Ran-
dom Forest, making it act as a black box (a black box is a transformation that does-
n’t reveal its inner workings; all you see are its inputs and outputs). Given its 
opacity, importance estimation is the only way to understand how the algorithm 
works with respect to the features.

Importance estimation in a Random Forest is obtained in a straightforward way. 
After building each tree, the code fills each variable in turn with junk data, and the 
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example records how much the predictive power decreases. If the variable is 
important, crowding it with casual data harms the prediction; otherwise, the pre-
dictions are left almost unchanged and the variable is deemed unimportant.

Working with a Random Forest classifier
The example Random Forest classifier keeps using the previously loaded German 
Credit Data:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
 
crossvalidation = KFold(
    n_splits=5, shuffle=True, random_state=0)
random_forest = RandomForestClassifier(n_estimators=300,
                                       random_state=0)
score = np.mean(cross_val_score(random_forest, X, y, 
                                scoring='roc_auc', 
                                cv=crossvalidation))
print(f'ROC-AUC: {scores:.3f}') 

The cross-validated ROC-AUC score reported by this code for the Random Forest 
is equivalent to the bagging method tested in the previous section:

ROC-AUC: 0.795

Just setting the number of estimators is sufficient for most problems you encoun-
ter, and setting it correctly is a matter of using the highest number possible given 
the time and resource constraints of the host computer. You can demonstrate this 
by calculating and drawing a validation curve for the algorithm.

from sklearn.model_selection import validation_curve
 
param_range = [50, 150, 300, 600, 900, 1200, 1800, 
               2400, 3000, 3600]
crossvalidation = KFold(
    n_splits=5, shuffle=True, random_state=0)
random_forest = RandomForestClassifier(
    n_estimators=300, n_jobs=-1, random_state=0)
train_scores, test_scores = validation_curve(
    random_forest, X, y, param_name='n_estimators',
    param_range=param_range, cv=crossvalidation,
    scoring='roc_auc')
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mean_test_scores = np.mean(test_scores, axis=1)
for i, score in enumerate(mean_test_scores):
    print(f"n_estimators: {param_range[i]:4}, " +
          f"ROC-AUC score: {score:.3f}")

The code will print the results, and you can visualize them better in a plot depict-
ing the progress of the evaluation metric, the ROC-AUC score, with respect to the 
hyperparameter controlling the number of trees used in the ensemble. This plot is 
called a validation plot:

import matplotlib.pyplot as plt
 
plt.plot(param_range, mean_test_scores, 
         'bo-', label='CV score')
plt.xlabel('Number of Estimators')
plt.ylabel('ROC-AUC Score')
plt.title('Random Forest Validation Curve')
plt.legend(loc='lower right')
plt.grid(True)
plt.show() 

Figure 20-3 shows the results provided by the preceding code. The more estima-
tors, the better the results. However, at a certain point the gain becomes minimal 
and it makes little sense to add so many more trees for so little gain.

FIGURE 20-3: 
Verifying the 

impact of the 
number of 

estimators on 
Random Forest.
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Working with a Random Forest regressor
RandomForestRegressor works in a similar way as the Random Forest for clas-
sification, using exactly the same parameters. The following code tests it on the 
California Housing dataset:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score, KFold
 
X, y = load_california_housing_data()
rf_regressor = RandomForestRegressor(
    n_estimators=300, random_state=0)
cv = KFold(n_splits=5, shuffle=True, random_state=0)
scores = cross_val_score(
    rf_regressor, X, y, scoring='neg_mean_squared_error',
    cv=cv)
mean_mse = abs(scores.mean())
print(f"Mean squared error: {mean_mse:.3f}") 

Here is the resulting cross-validated mean squared error:

Mean squared error: 0.252

The Random Forest uses decision trees. Decision trees segment the dataset into 
small partitions, called leaves, when estimating regression values. The Random 
Forest takes the average of the values in each leaf to create a prediction. Using this 
procedure causes extreme and high values to disappear from predictions because 
of the averaging used for each leaf of the forest, producing damped values instead 
of much higher or much lower values.

Optimizing a Random Forest
Random Forest models are out-of-box algorithms that can work quite well with-
out optimization or worrying about overfitting. (The more estimators you use, the 
better the output, depending on your resources.) You can always improve perfor-
mance by removing redundant and less informative variables, fixing a minimum 
leaf size, and defining a sampling number that avoids having too many correlated 
predictors in the sample. The following example shows how to perform these 
tasks:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold
 
X, y = load_german_credit_data()
crossvalidation = KFold(
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    n_splits=5, shuffle=True, random_state=0)
clf = RandomForestClassifier(random_state=0)
scorer = "roc_auc"

Using the German Credit Data and a first default classifier, you can optimize both 
max_features and min_samples_leaf. When optimizing max_features, you use 
preconfigured options (None for all features, sqrt or log2 functions applied to the 
number of features) and integrate them using small feature numbers and a value 
of 1/3 of the features. Selecting the right number of features to sample tends to 
reduce the number of times when correlated and similar variables are picked 
together, thus increasing the predictive performances.

There is a statistical reason to optimize min_samples_leaf. Using leaves with few 
cases often corresponds to overfitting to very specific data combinations. You 
need to have at least 30 observations to achieve a minimal statistical confidence 
that data patterns correspond to real and general rules:

from sklearn.model_selection import GridSearchCV
 
max_features = [X.shape[1] // 3, "sqrt", "log2", None]
min_samples_leaf = [1, 10, 30]
n_estimators = [50, 100, 300, 500, 1000]
search_grid = {
    "n_estimators": n_estimators,
    "max_features": max_features,
    "min_samples_leaf": min_samples_leaf}
search_cv = GridSearchCV(
    estimator=clf, 
    param_grid=search_grid,
    scoring=scorer, 
    cv=crossvalidation)
search_cv.fit(X, y)
 
best_params = search_cv.best_params_
best_score = search_cv.best_score_
print(f"Best parameters: {best_params}")
print(f"Best score: {best_score}")

The best parameters and best accuracy obtained are then reported, highlighting 
that the parameters to act on is the number of trees:

Best parameters: {'max_features': 8, 'min_samples_leaf': 1, 
                  'n_estimators': 1000}
Best score: 0.8008907775588991 
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Boosting Predictions
Gathering different tree models is not the only ensemble technique possible. In 
fact, another machine learning technique, called boosting, uses ensembles effec-
tively. In boosting, you grow many trees sequentially. Each tree tries to build a 
model that successfully predicts what trees that were built before it weren’t able 
to forecast. The technique pools subsequent models and uses a weighted average 
or a weighted majority vote on the final prediction.

The following sections present two boosting applications: AdaBoost (Adaptive 
Boosting) and gradient boosting machines. You can use all boosting algorithms 
for both regression and classification. The examples in these sections start work-
ing with classification using the German Credit Data.

If you have already prepared the function load_german_credit_data, you just 
need to reassign the X and y variables as follows:

X, y = load_german_credit_data()

Knowing that many weak predictors win
AdaBoostClassifier fits sequential weak predictors. It’s used by default when 
working with decision trees, but you can choose other algorithms by changing the 
base_estimator parameter. Weak predictors are usually machine learning 
 predictors that don’t perform well because they have too much variance or bias, 
so they perform slightly better than chance. The classic example of a weak learner 
is the decision stump, which is a decision tree grown to only one level. Usually, 
decision trees are the best-performing option in boosting, so you can safely use 
the default learner and concentrate on two important parameters to obtain good 
predictions: n_estimators and learning_rate.

learning_rate determinates how each weak predictor contributes to the final 
result. A high learning rate requires few n_estimators before converging to an 
optimal solution, but it likely won’t be the best solution possible. A low learning 
rate takes longer to train because it requires more predictors before reaching a 
solution. In addition, it also overfits more slowly.

In contrast to bagging, boosting can overfit if you use too many estimators. A 
cross-validation is always helpful in finding the correct number, keeping in mind 
that lower learning rates take longer to overfit, so picking an almost optimal value 
using a loose grid search is easier.
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from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import cross_val_score, KFold
from sklearn.metrics import roc_auc_score
 
ada = AdaBoostClassifier(
   n_estimators=1000, learning_rate=0.01, random_state=0)
cv = KFold(n_splits=5, shuffle=True, random_state=0)
roc_scores = cross_val_score(
    ada, X, y, scoring='roc_auc', cv=cv)
mean_score = roc_scores.mean()
print(f'ROC-AUC score: {mean_score:.3f}')

After running the code, you get the cross-validated ROC-AUC score:

ROC-AUC score: 0.774

This example uses the default estimator, which is a full-blown decision tree.  
If you’d like to try a stump (which needs more estimators), you should instan-
tiate the AdaBoostClassifier with base_estimator=DecisionTreeClassifier 
(max_depth=1).

Setting a gradient boosting classifier
The Gradient Boosting Machine (GBM) performs much better than the AdaBoost 
boosting technique, the first boosting algorithm ever created. In particular, GBM 
uses an optimization computation for weighting the subsequent estimators. As 
with the example in the preceding section, the following example uses the Ger-
man Credit Data and explores some extra parameters available in GBM:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
 
X, y = load_german_credit_data()
crossvalidation = KFold(
    n_splits=5, shuffle=True, random_state=0)
gbc = GradientBoostingClassifier(
    n_estimators=300, subsample=1.0, max_depth=2,
    learning_rate=0.1, random_state=0)
crossvalidation = KFold(
    n_splits=5, shuffle=True, random_state=0)
score = np.mean(cross_val_score(
    gbc, X, y, scoring='roc_auc', cv=crossvalidation))
print(f'ROC-AUC: {score:.3f}')
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Apart from the learning rate and the number of estimators, which are key para-
meters for optimal learning without overfitting, you must provide values for  
subsample and max_depth. subsample introduces subsampling into the training 
(so that the training is done on a different dataset every time), as is done in  
bagging. max_depth defines the maximum level of the built trees. It’s usually a 
good practice to start with three levels, but more levels may be necessary for 
modeling complex data.

On the very same problem you tested before, the GradientBoostingClassifier 
results in the following accuracy score after running the code:

ROC-AUC: 0.784

Running a gradient boosting regressor
Creating a gradient boosting regressor doesn’t present particular differences from 
creating the classifier. The main difference is the presence of multiple loss func-
tions that you can use (contrast this with GradientBoostingClassifier, which 
has only the deviance loss, analogous to the cost function of a logistic regression). 
The following example tests it on the California Housing dataset:

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import cross_val_score, KFold
 
X, y = load_california_housing_data()
gbr = GradientBoostingRegressor(
    n_estimators=1000, subsample=1.0, max_depth=3,
    learning_rate=0.01, random_state=0)
cv = KFold(n_splits=5, shuffle=True, random_state=0)
mse = np.mean(cross_val_score(
    gbr, X, y, scoring='neg_mean_squared_error', cv=cv))
print(f"Mean squared error: {abs(mse):.3f}")

After running the code, you get the mean squared error for the regression, which 
is worse than the corresponding one by a Random Forest:

Mean squared error: 0.285

The example trains a GradientBoostingRegressor using the default ls value for 
the loss parameter, which is analogous to a linear regression. Here are some 
other choices:

 » quantile: This guesses a particular quantile that you specify using the alpha 
parameter (usually it’s 0.5, which is the median).
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 » lad (least absolute deviation): This choice is highly robust to outliers; it tends 
to ordinally rank the predictions correctly.

 » huber: This creates a combination of ls and lad. It requires that you fix the 
alpha parameter.

Using GBM hyperparameters
GBM models are quite sensitive to overfitting when you have too many sequential 
estimators and the model starts fitting the noise in the data. It’s important to 
check the efficiency of the coupled values of the number of estimators and the 
learning rate. The following example uses the California Housing dataset and tries 
to improve the previous score:

from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV
 
X, y = load_california_housing_data()
crossvalidation = KFold(
    n_splits=5, shuffle=True, random_state=0)
gbr = GradientBoostingRegressor(
    n_estimators=1000, learning_rate=0.01,
    random_state=0)
search_grid = {'subsample': [1.0, 0.9, 0.7], 
               'max_depth': [2, 3, 4, 5, 6]}
search_func = GridSearchCV(
    estimator=gbr, param_grid=search_grid,
    scoring='neg_mean_squared_error',
    cv=crossvalidation)
search_func.fit(X, y)
best_params = search_func.best_params_
best_score = abs(search_func.best_score_)
print(f'Best parameters: {best_params}')
print(f'Best mean squared error: {best_score:.3f}')

Optimization may take some time because of the computational burden required 
by the GBM algorithms, especially if you decide to test high values of max_depth.

A good strategy is to keep the learning rate fixed and try to optimize subsample 
and max_depth with respect to n_estimators (keeping in mind that high values of 
max_depth usually imply a lesser number of estimators). After you find the opti-
mum values for subsample and max_depth, you can start searching for further 
optimization of n_estimators and learning_rate.
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After running the optimization, you can examine the resulting best mean squared 
error (which is much better now than those of Random Forest) and notice how it 
improved running the algorithm by the default parameters. Gradient Boosting 
always requires some parameter tuning in order to return the best results:

Best parameters: {'max_depth': 6, 'subsample': 0.7}
Best mean squared error: 0.220

Using XGBoost
XGBoost is a versatile and scalable machine learning algorithm that was originally 
developed as a command-line tool by Tianqi Chen and has since been enhanced 
with a Python wrapper. XGBoost supports multiple programming languages, 
including Python, R, Java, Scala, Julia, and C++. It can be utilized on a single 
machine with multithreading, as well as on Hadoop and Spark clusters. You can 
find more information about XGBoost on its website: https://xgboost.
readthedocs.io/en/latest/ and also instructions on how to install it on various 
systems at https://xgboost.readthedocs.io/en/latest/install.html. For 
Python usage the fastest ways are using pip or conda:

pip install xgboost
conda install -c conda-forge py-xgboost

The interesting fact about XGBoost is that its name stands for eXtreme Gradient 
Boosting, indicating that the algorithm working under the hood is a bit different, 
and faster performing, than the gradient boosting offered by Scikit-learn. That’s 
also the reason that XGBoost has gained much popularity in data science competi-
tions such as Kaggle (https://www.kaggle.com/) and the KDD Cup. The follow-
ing example shows how it performs on the problems found earlier in this chapter, 
starting with the German Credit Data:

import xgboost as xgb
from sklearn.model_selection import cross_val_score, KFold
 
X, y = load_german_credit_data()
 
cv = KFold(n_splits=5, shuffle=True, random_state=0)
 
params = {'n_estimators': 800, 'subsample': 0.7,
          'max_depth': 2, 'learning_rate': 0.015,
          'random_state': 0,
          'objective': 'binary:logistic',
          'eval_metric': 'auc'}
 

https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/install.html
https://www.kaggle.com/
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gbc = xgb.XGBClassifier(**params)
 
score = np.mean(cross_val_score(
    gbc, X, y, scoring='roc_auc', cv=cv))
 
print(f'ROC-AUC: {score:.3f}')

Here are the results for the ROC-AUC score:

ROC-AUC: 0.801

The following example tests XGBoost on the California Housing Dataset regres-
sion problem:

import xgboost as xgb
from sklearn.model_selection import cross_val_score, KFold
 
X, y = load_california_housing_data()
 
xg_reg = xgb.XGBRegressor(
    n_estimators=900, subsample=0.8, max_depth=5, 
    learning_rate=0.07, random_state=0)
 
cv = KFold(n_splits=5, shuffle=True, random_state=0)
 
mse = np.mean(cross_val_score(
    xg_reg, X, y, scoring='neg_mean_squared_error',
    cv=cv))
 
print(f"Mean squared error: {abs(mse):.3f}")

Also in this case, the results are the best obtained so far:

Mean squared error: 0.200

The impressive results are due to the fact that, if tuned using the right parame-
ters, XGBoost can outpace all the other algorithms seen so far in the book.
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Chapter 21
Ten Essential Data 
Resources

In reading this book, you discover quite a lot about data science and Python. 
Before your head explodes from all the new knowledge you gain, it’s important 
to realize that this book is really just the tip of the iceberg. Yes, there really is 

more information available out there, and that’s what this chapter is all about. 
The following sections introduce you to a wealth of data science resource collec-
tions that you really need to make the best use of your new knowledge.

In this case, a resource collection is simply a listing of really cool links with some 
text to tell you why they’re so great. In some cases, you gain access to articles 
about data science; in other cases, you’re exposed to new tools. In fact, data sci-
ence is such a huge topic that you could easily find more resources than those 
discussed here, but the following sections provide a good place to start.

As with anything else on the internet, links break, sites go out of business, and 
new sites take their place. If you find that a link is broken, please let me know 
about it at John@JohnMuellerBooks.com.

IN THIS CHAPTER

 » Finding a good starting point

 » Obtaining essential learning 
materials

 » Tracking authoritative sources

 » Getting the developer resource 
you need

mailto:John@JohnMuellerBooks.com
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Discovering the News with Reddit
The data science field changes constantly for a number of reasons, including the 
addition of new algorithms and techniques, as well as the use of ever-larger data-
sets from an increasingly diverse set of sources. Consequently, you need a news 
source, such as the data science area of Reddit (https://www.reddit.com/r/ 
datascience/) to obtain the latest information and stay ahead of your competi-
tors. These blog posts often contain the latest techniques as well, ensuring that 
after you get up to speed on data science, you can stay that way. In addition, you 
find topics that are essential for your career, such as finding the range of data sci-
ence salaries. This site also provides Python-specific information at https:// 
www.reddit.com/r/python/ (which is a private community that you have to sign 
up to join) and data science news at https://www.reddit.com/r/ 
datasciencenews/.

Getting a Good Start with KDnuggets
Learning about data mining and data science is a process. KDnuggets breaks down 
the learning process into a series of steps at https://www.kdnuggets.com/faq/ 
learning-data-mining-data-science.html. Each step gives you an overview of 
what you should be doing and why. You also find links to a variety of resources 
online to make the learning process considerably easier. Even though the site 
emphasizes the use of R, Python, and SQL (in that order) to perform data science 
tasks, the steps will actually work for any of a number of approaches that you 
might take.

As with any other learning experience, a procedure like the one shown on the 
KDnuggets site will work for some people and not others. Everyone learns a little 
differently. Don’t be afraid to improvise. The resources on this site might provide 
insights into other things that you can do to make your learning process easier.

Locating Free Learning Resources  
with Quora

Resisting the word free is really hard, especially when it comes to education, which 
normally costs many thousands of dollars. The Quora site at https://www.quora. 
com/What-are-the-best-free-resources-to-learn-data-science provides a 
listing of the best no-cost learning resources for data science.

https://www.reddit.com/r/datascience/
https://www.reddit.com/r/datascience/
https://www.reddit.com/r/
https://www.reddit.com/r/
https://www.reddit.com/r/datasciencenews/
https://www.reddit.com/r/datasciencenews/
https://www.kdnuggets.com/faq/learning-data-mining-data-science.html
https://www.kdnuggets.com/faq/learning-data-mining-data-science.html
https://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
https://www.quora.com/What-are-the-best-free-resources-to-learn-data-science
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Most of the links take on a question format, such as, “What are good ways to get 
started with data science for a complete novice?” The question-and-answer for-
mat is helpful because you might be asking the questions that the site answers. 
The resulting list of sites, courses, and resources are introductory, for the most 
part, but they are a good way to get started working in the data science field.

A few of the links go to prestigious institutions such as Harvard. The link gives 
you access to course materials such as lecture videos and blackboards. However, 
you don’t get the actual course free of charge. If you want the benefits of the 
course, you still need to pay for it. Even so, just by viewing the course materials, 
you can obtain a lot of useful data science knowledge.

Gaining Insights with Oracle’s  
AI & Data Science Blog

Major vendors can offer you significant amounts of useful information. Of course, 
you need to keep the source of this information in mind because it can be quite 
biased; pointing out vendor products (as an example) in favor of a more balanced 
view that includes all available products. The Oracle AI & Data Science Blog 
(https://blogs.oracle.com/ai-and-datascience/) provides you with a 
 considerable amount of information — everything from the latest data analysis 
techniques to the methods you can use to reduce costs. In addition, you find  
category-specific information based on

 » Best practices

 » Data science education

 » Use cases

 » Data science as a platform

Accessing the Huge List of Resources  
on Data Science Central

Many of the resources you find online cover mainstream topics. Data Science Cen-
tral (https://www.datasciencecentral.com/) provides access to a relatively 
large number of data science experts who tell you about the most obscure facts of 

https://blogs.oracle.com/ai-and-datascience/
https://www.datasciencecentral.com/
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data science. One of the more interesting blog posts appears at https://www. 
datasciencecentral.com/how-ai-is-revolutionizing-change-data- 
capture/.

This resource tells you about Change Data Capture (CDC) and methods of enhanc-
ing the capture of changes to databases using AI. The nice thing about this post is 
that it’s succinct and doesn’t bury you in detail that you might not want until you 
know that the techniques will actually work for your organization. Most of the 
posts follow this same format, which means that you can gain an overview of a 
considerable number of topics in a short period of time.

Discovering New Beginner Data Science 
Methodologies at Data Science 101

One of the major problems with becoming a data scientist is that many sites 
assume that you already are one or that you have a significant level of training in 
some related field. The result is a really high wall that exhausts many aspiring 
new data scientists before they even begin learning about the trade. Data Science 
101 (https://ryanswanstrom.com/datascience101/) isn’t like most sites. You 
find all sorts of materials that can help you become a data scientist even if your 
current level of knowledge leaves something to be desired when visiting those 
other sites. The information is also quite varied; you’ll find resources of this type:

 » Blog posts

 » Learning resources

 » Videos

 » Academic papers

Obtaining the Most Authoritative  
Sources at Udacity

Even with the right connections online and a good search engine, trying to find 
just the right resource can be hard. U Climb Higher has published a list of 24 data 
science resources at https://blog.udacity.com/2014/12/24-data-science- 
resources-keep-finger-pulse.html that’s guaranteed to help keep your finger 

https://www.datasciencecentral.com/how-ai-is-revolutionizing-change-data-capture/
https://www.datasciencecentral.com/how-ai-is-revolutionizing-change-data-capture/
https://www.datasciencecentral.com/how-ai-is-revolutionizing-change-data-capture/
https://ryanswanstrom.com/datascience101/
https://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html
https://blog.udacity.com/2014/12/24-data-science-resources-keep-finger-pulse.html
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on the pulse of new strategies and technologies. This resource broaches the fol-
lowing topics: trends and happenings; places to learn more about data science; 
joining a community; data science news; people who really know data science 
well; all the latest research.

Receiving Help with Advanced Topics at 
Conductrics

The Conductrics site (https://conductrics.com/) as a whole is devoted to sell-
ing products that help you perform various data science tasks. However, the site 
includes a blog that contains a couple of useful blog posts answering the sorts of 
advanced questions you might find it difficult to get answered elsewhere. The two 
posts appear at https://blog.conductrics.com/data-science-resources/ 
and https://blog.conductrics.com/data-science-resources-2. (The main 
blog at https://blog.conductrics.com/blog/ also contains a great many newer 
posts that any data scientist will find useful.)

The author of the blog posts, Matt Gershoff, makes it clear that the listings are the 
result of answering people’s questions in the past. The list is huge, which is why 
it appears in two posts rather than one, so Matt must answer many questions. The 
list focuses mostly on machine learning rather than hardware or specific coding 
issues. Therefore, you can expect to see entries for topics such as Latent Semantic 
Indexing (LSI); Single Value Decomposition (SVD); Linear Discriminant Analysis 
(LDA); nonparametric Bayesian approaches; statistical machine translation; 
Reinforcement Learning (RL); Temporal Difference (TD) learning; and context 
bandits.

The list goes on and on. Many of these entries won’t make much sense to you right 
now unless you’re already heavily involved in data science. However, the authors 
write many of the articles in a way that helps you pick up the information even if 
you aren’t completely familiar with it. In most cases, your best course of action is 
to at least scan the article to see whether you can understand it. If the article starts 
to make sense, read it in detail. Otherwise, hold on to the article reference for later 
use. You might be surprised to discover that the article you can’t completely 
understand today becomes something you understand with ease tomorrow.

https://conductrics.com/
https://blog.conductrics.com/data-science-resources/
https://blog.conductrics.com/data-science-resources-2
https://blog.conductrics.com/blog/
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Obtaining the Facts of Open Source  
Data Science from Springboard

Working with Open Source Data Science (OSDS) is essential for most organizations 
that want to keep costs under control. In addition, if you’re just starting in data 
science, you may be leery of spending huge sums on data science tools at the out-
set. With this in mind, the Springboard site at https://www.springboard.com/ 
blog/data-science/open-source-data-science-tools/ provides you with a 
listing of open source data science tools that will help you gain the experience you 
need while keeping costs down. Some of the tools mentioned on the site, such as 
pandas, already appear in this book; others will be completely new. You can also 
use the site to read about other data science students and their stories. The point 
is to keep the cost of becoming a data scientist low so that you can actually gain 
some experience before investing a lot of money.

Zeroing In on Developer Resources  
with Jonathan Bower

More than a few interesting resources appear on GitHub (https://github.com/), 
a site devoted to collaboration, code review, and code management. One of the 
sites you need to check out is Jonathan Bower’s listing of data science resources at 
https://github.com/jonathan-bower/DataScienceResources. The majority of 
these resources will appeal to the developer, but just about anyone can benefit 
from them. You find resources categorized into the following topics:

 » Data science, getting started

 » Data pipeline and tools

 » Product

 » Career resources

 » Open source data science resources

The hierarchical formatting of the various topics makes finding just what you 
need easier. Each major category divides into a list of topics. Within each topic, 
you find a list of resources that apply to that topic. For example, within Data  
Pipeline & Tools, you find Python, which includes a link for Anyone Can Code. This 
is one of the most usable sites in the list.

https://www.springboard.com/blog/data-science/open-source-data-science-tools/
https://www.springboard.com/blog/data-science/open-source-data-science-tools/
https://github.com/
https://github.com/jonathan-bower/DataScienceResources
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Chapter 22
Ten Data Challenges 
You Should Take

Data science is all about working with data. While working through this 
book, you use a number of datasets, including the toy datasets that come 
with the Scikit-learn library. Of course, these datasets are all great for get-

ting you started, but just as a runner wouldn’t stop after conquering the local fun 
run, you need to start training for data science marathons by working with larger 
datasets.

This chapter introduces you to a number of challenging datasets that can help you 
become a world-class data scientist. By combining what you discover in this book 
with these new datasets, you can learn how to do amazing things. In fact, some 
people may view you as a bit of a magician as you pull seemingly impossible data 
patterns out of your hat. Each of the following datasets provides you with specific 
skills and helps you achieve different goals.

You can find a wealth of datasets on the internet. However, not every dataset is 
created equal, and you need to choose your challenges with care. The ten datasets 
described in this chapter provide well-known functionality, often offering tutori-
als and appearing in scientific papers. These three features make these datasets 
stand apart from the competition. Yes, other good datasets are available, but these 
ten datasets provide skills needed to conquer even bigger challenges, such as that 
database lurking on your company server.

IN THIS CHAPTER

 » Locating starting challenges

 » Working with specific kinds of data

 » Performing analysis, pattern 
recognition, and classification

 » Dealing with huge online datasets
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Removing Personally Identifiable 
Information

As people have grown tired of having their personal information exchanged like 
trading cards, the legal system has responded by making the use of Personally 
Identifiable Information (PII) restricted or even illegal in many ways. You can find 
legal requirements for the protection of PII all over the internet, from the 
U.S. Department of Labor (https://www.dol.gov/general/ppii) to the European 
Union’s General Data Protection Regulation (GDPR) (https://gdpr-info.eu/ 
issues/personal-data/). This section appears first in the chapter because it’s 
one that you simply can’t ignore under any circumstance unless you want to end 
up in trouble with the law. So, practicing to remove PII from your datasets and 
getting the process down to a fine art is a required skill for anyone working with 
data — not just data scientists, but financial experts, researchers, and scientists 
as well.

You do have a considerable number of sources available for discovering techniques 
for removing PII. For example, Machine Learning Security Principles, by John Paul 
Mueller, Packt Publishing, contains an entire chapter on the topic. Articles like 
“Remove personal information from a text with Python” (https:// towardsdata 
science.com/remove-personal-information-from-text-with-python- 
232cb69cf074) also tell you what is needed to meet legal requirements. It also 
pays to look at both large organization and government sites, such as The World 
Bank site at https://dimewiki.worldbank.org/Personally_Identifiable_ 
Information_(PII) for tips on just how PII is handled. Getting the process to a 
point where you can automate it is also essential, and articles like “Automate 
Detecting Sensitive Personally Identifiable Information (PII)” (https://gretel. 
ai/blog/automate-detecting-sensitive-personally-identifiable- 
information-pii-with-gretel) can help you. Automation reduces the risk that 
you’ll miss something.

Some datasets you find online, such as Single Family Purchase Loan Data 1999-  
2020 (https://covid19.census.gov/documents/USCensus::single-family- 
purchase-loan-data-1999-2020/about) have already had the PII removed so 
that you can see what such a dataset should look like. One of the most popular 
datasets for experimentation is the bigcode-pii-dataset at https:// huggingface.
co/datasets/bigcode/bigcode-pii-dataset. You can also find datasets on sites 
like Data.Gov (https://catalog.data.gov/dataset/?tags=pii). The point is 
that PII is a big deal, and you really need to spend time learning how to deal with 
it before you build that shiny new application.

https://www.dol.gov/general/ppii
https://gdpr-info.eu/issues/personal-data/
https://gdpr-info.eu/issues/personal-data/
https://towardsdatascience.com/remove-personal-information-from-text-with-python-232cb69cf074
https://towardsdatascience.com/remove-personal-information-from-text-with-python-232cb69cf074
https://towardsdatascience.com/remove-personal-information-from-text-with-python-232cb69cf074
https://dimewiki.worldbank.org/Personally_Identifiable_Information_(PII)
https://dimewiki.worldbank.org/Personally_Identifiable_Information_(PII)
https://gretel.ai/blog/automate-detecting-sensitive-personally-identifiable-information-pii-with-gretel
https://gretel.ai/blog/automate-detecting-sensitive-personally-identifiable-information-pii-with-gretel
https://gretel.ai/blog/automate-detecting-sensitive-personally-identifiable-information-pii-with-gretel
https://covid19.census.gov/documents/USCensus::single-family-purchase-loan-data-1999-2020/about
https://covid19.census.gov/documents/USCensus::single-family-purchase-loan-data-1999-2020/about
https://huggingface.co/datasets/bigcode/bigcode-pii-dataset
https://huggingface.co/datasets/bigcode/bigcode-pii-dataset
https://catalog.data.gov/dataset/?tags=pii
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Creating a Secure Data Environment
Hackers are a creative and innovative lot, often creating attacks that most people 
would never think about; much less know how to implement. These attacks create 
havoc everywhere for everyone. Even the tools you use to create applications 
aren’t safe, as described in “Cyberattackers Torch Python Machine Learning 
 Project” (https://www.darkreading.com/application-security/ cyberattackers- 
torch-python-machine-learning-project) for the PyTorch machine learning 
project. So, creating a safe environment for your data, applications, tools, users, 
network, and anything else you can think of is a priority.

Becoming security aware is an essential step that every data scientist can take to 
reduce the potential for security issues with any project. Security is more than 
protecting the data from unwanted scrutiny. Many attacks don’t actually steal any 
data; some add data or corrupt data so that the output of a machine learning 
model is corrupted in all sorts of ways for all sorts of reasons, such as to give a 
competitor an edge when bidding for a job. Being aware is part of the security 
picture. When you create a model that doesn’t seem to provide the results you 
predicted, it’s important to find out why, rather than simply assume that the 
result is a novelty.

Machine learning is used by hackers to break security as described at “9 ways 
hackers will use machine learning to launch attacks” (https://www.csoonline. 
com/article/3250144/6-ways-hackers-will-use-machine-learning- 
to-launch-attacks.html). In fact, there is no shortage of such articles because 
hackers are quite prolific. However, you can also use machine learning to protect 
your system, as described in “How Machine Learning helps Cyber Security?” at 
(https://www.kaggle.com/code/rockystats/how-machine-learning-helps- 
cyber-security). Only by creating coding solutions and then exposing them to 
simulated attacks can you hope to stay slightly ahead of the security threats 
against your system.

Working with a Multiple-Data- 
Source Problem

You won’t often encounter a situation where you can use just one data source to 
create a machine learning solution. Even though the examples in this book largely 
work with a single data source, they do so to keep the problems simple enough for 
you to discover how machine learning works. Consequently, articles like “How to 
Get Data from Multiple Sources” (https://www.integrate.io/blog/get-data- 
from-multiple-sources/) are an essential next step in your training as a data 

https://www.darkreading.com/application-security/cyberattackers-torch-python-machine-learning-project
https://www.darkreading.com/application-security/cyberattackers-torch-python-machine-learning-project
https://www.csoonline.com/article/3250144/6-ways-hackers-will-use-machine-learning-to-launch-attacks.html
https://www.csoonline.com/article/3250144/6-ways-hackers-will-use-machine-learning-to-launch-attacks.html
https://www.csoonline.com/article/3250144/6-ways-hackers-will-use-machine-learning-to-launch-attacks.html
https://www.kaggle.com/code/rockystats/how-machine-learning-helps-cyber-security
https://www.kaggle.com/code/rockystats/how-machine-learning-helps-cyber-security
https://www.integrate.io/blog/get-data-from-multiple-sources/
https://www.integrate.io/blog/get-data-from-multiple-sources/
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scientist. These articles introduce you to strategies like Extract, Transform, Load 
(ETL) (https://www.ibm.com/topics/etl) that enable you to take data from 
multiple sources and create a single data source from it.

You can find seemingly endless sources of ideas for multiple data source problems 
because that’s how the real world works. However, the best multiple data source 
problems take a unique view of what makes the real world work in a particular 
way. For example, it might not seem likely that you can combine COVID data  
with national park visits, but “Understanding changes in park visitation during 
the COVID-19 pandemic: A spatial application of big data” (https://www. 
sciencedirect.com/science/article/pii/S2666558121000105) does just that. 
Chapter  13 introduces you to the Palmer Penguins dataset. This dataset also 
appears in Chapters 14 and 17. What if you were to combine that and other penguin 
statistical datasets with weather data to see whether there is a correlation between 
the weather and the size of various penguins? The point is that using multiple 
data sources often helps you create unique views of the world that ultimately 
prove useful in all sorts of ways.

Honing Your Overfit Strategies
The Madelon dataset at https://archive.ics.uci.edu/ml/datasets/Madelon 
is an artificial dataset containing a two-class classification problem with continu-
ous input variables. This NIPS 2003 feature selection challenge will seriously test 
your skills in cross-validating models. The main emphasis of this challenge is to 
devise strategies for avoiding overfit — an issue that you first confront in the 
“Finding more things that can go wrong” section of Chapter 16. You find overfit 
issues mentioned in Chapters 18, 19, and 20 as well. To test your models, you can 
create your own synthetic data problem similar to the Madelon Data Set by using 
the make_classification command from Scikit-learn (https://scikit-learn. 
org/stable/modules/generated/sklearn.datasets.make_classification. 
html).

This particular dataset attracted the attention of a number of people who created 
papers about it. The best papers appear in the book Feature Extraction, Foundations 
and Applications at https://www.springer.com/us/book/9783540354871. You 
can also download an associated technical report from https://clopinet.com/ 
isabelle/Projects/ETH/TM-fextract-class.pdf. The Advances in Neural 
Information Processing Systems 17 (NIPS 2004) website at https://mitpress. 
mit.edu/9780262195348/advances-in-neural-information-processing- 
systems-17/ also contains useful links to papers that will help you with this par-
ticular dataset.

https://www.ibm.com/topics/etl
https://www.sciencedirect.com/science/article/pii/S2666558121000105
https://www.sciencedirect.com/science/article/pii/S2666558121000105
https://archive.ics.uci.edu/ml/datasets/Madelon
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://www.springer.com/us/book/9783540354871
https://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
https://clopinet.com/isabelle/Projects/ETH/TM-fextract-class.pdf
https://mitpress.mit.edu/9780262195348/advances-in-neural-information-processing-systems-17/
https://mitpress.mit.edu/9780262195348/advances-in-neural-information-processing-systems-17/
https://mitpress.mit.edu/9780262195348/advances-in-neural-information-processing-systems-17/
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Trudging Through the MovieLens Dataset
The MovieLens site (https://movielens.org/) is all about helping you find a 
movie you might like. After all, with millions of movies out there, finding some-
thing new and interesting could take time that you don’t want to spend. The setup 
works by asking you to input ratings for movies you already know about. The 
MovieLens site then makes recommendations for you based on your ratings. In 
short, your ratings teach an algorithm what to look for, and then the site applies 
this algorithm to the entire dataset.

You can obtain the MovieLens dataset at https://grouplens.org/datasets/
movielens/. The interesting thing about this site is that you can download all or 
part of the dataset based on how you want to interact with it. You can find down-
loads in the following sizes:

 » 100,000 ratings from 1,000 users on 1,700 movies

 » 1 million ratings from 6,000 users on 4,000 movies

 » 10 million ratings and 100,000 tag applications applied to 10,000 movies by 
72,000 users

 » 20 million ratings and 465,000 tag applications applied to 27,000 movies by 
138,000 users

 » MovieLens’s latest dataset in small or full sizes (the full size contained 
21,000,000 ratings and 470,000 tag applications applied to 27,000 movies by 
230,000 users as of this writing but will increase in size with time)

This dataset presents you with an opportunity to work with user-generated data 
using both supervised and unsupervised techniques. The large datasets present 
special challenges that only big data can provide. You can find some starter infor-
mation for working with supervised and unsupervised techniques in Chapter 14.

Locating the Correct Data Source
Machine learning isn’t about finding a data source, but rather finding the correct 
data source for a particular need. The data in the wrong data source might be the 
best data on the planet, but it simply may not meet the need you have in mind and 
won’t do the job for you. For example, a dataset about fraud committed online 
may contain the best information available, but it may not help much if you’re 
trying to create a machine learning model to predict fraud in open-air markets. 
The environments are different, so the way fraud is perpetrated may be different, 

https://movielens.org/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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too. Even if the data is perfect, the resulting model may not accurately predict 
fraud in an open-air market environment because the way people interact in the 
two settings is also different. Consequently, your search may begin by under-
standing where to look, as described in articles like “9 Best Places To Find Machine 
Learning Datasets” (https://towardsdatascience.com/9-best-places-to- 
find-machine-learning-datasets-dfdba8af5220).

It helps to look for articles and data sources that relate specifically to your indus-
try. An article like “AI in marketing: How to find the right data sources” (https://
econsultancy.com/ai-in-marketing-how-to-find-the-right-data- 
sources/) can give you a significant boost in locating just the right data source for 
a particular model. Some sites, such as bigml (https://blog.bigml.com/list- 
of-public-data-sources-fit-for-machine-learning/), supply actual lists of 
places to look for the data you need. In looking at this site, you find that govern-
ments are actually a good place to look for data because they’re constantly collect-
ing it in myriad ways (just think about how much data a government collects 
during a census). Government agencies also have mandates to share data with the 
public in some cases.

Where you look for data has a lot to do with the entity performing the collecting. 
Looking at online stores like Amazon is probably a good idea for sales-related 
data, but not really a good idea at all if you’re looking for people-specific data. 
Amazon, despite what you may think, doesn’t actually have a good idea of who 
you are as a person, but your local government likely does. Looking at the reason 
for collecting data is a good indicator of whether the collected data will prove use-
ful for building your model. It pays to build a list of these sources to use when you 
need to create a new model, rather than reinvent the wheel reviewing sources that 
you’ve already decided won’t work.

Working with Handwritten Information
Pattern recognition, especially working with handwritten information, is an 
important data science task. The Mixed National Institute of Standards and Tech-
nology (MNIST) dataset of handwritten digits at https://paperswithcode.com/
dataset/mnist or http://yann.lecun.com/exdb/mnist/ provides a training set 
of 60,000 examples and a test set of 10,000 examples. This is a subset of the origi-
nal National Institute of Standards and Technology (NIST) dataset found at 
https://www.nist.gov/itl/products-and-services/emnist-dataset. It’s a 
good dataset to use to learn how to work with handwritten data without having to 
perform a lot of preprocessing at the outset.

https://towardsdatascience.com/9-best-places-to-find-machine-learning-datasets-dfdba8af5220
https://towardsdatascience.com/9-best-places-to-find-machine-learning-datasets-dfdba8af5220
https://econsultancy.com/ai-in-marketing-how-to-find-the-right-data-sources/
https://econsultancy.com/ai-in-marketing-how-to-find-the-right-data-sources/
https://econsultancy.com/ai-in-marketing-how-to-find-the-right-data-sources/
https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/
https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/
https://paperswithcode.com/dataset/mnist
https://paperswithcode.com/dataset/mnist
http://yann.lecun.com/exdb/mnist/
https://www.nist.gov/itl/products-and-services/emnist-dataset
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The dataset appears in four files. The two training and two test files contain 
images and labels. You need all four files in order to create a complete dataset for 
working with digits. A potential problem in working with the MNIST dataset is 
that the image files aren’t in a particular format. The format used for storing the 
images appears at the bottom of the page. Of course, you could always build your 
own Python application for reading them, but using code that someone else has 
created is a lot easier. The following list provides places where you can get code to 
read the MNIST dataset using Python:

 » https://cs.indstate.edu/~jkinne/cs475-f2011/code/ 
mnistHandwriting.py

 » https://martin-thoma.com/classify-mnist-with-pybrain/

 » https://gist.github.com/akesling/5358964

The host page also contains an important listing of methods used to work with the 
training and test set. The list contains an impressive number of classifiers that 
should give you some ideas for your own experiments. The point is that this par-
ticular dataset is useful for all sorts of different tasks.

You have worked with the digits toy dataset from Scikit-learn in a number of 
chapters in the book. To use this dataset, you import the digits database using 
from sklearn.datasets import load_digits. This particular dataset appears in 
Chapters 12, 15, 17, 19, and 20, so you gain a considerable amount of experience in 
working with a much smaller digits database when you work through the exam-
ples in those chapters.

Working with Pictures
The Canadian Institute for Advanced Research (CIFAR) datasets at https://www. 
cs.toronto.edu/~kriz/cifar.html provide you with graphics content to work 
with in various ways. The CIFAR-10 and CIFAR-100 datasets contain labeled sub-
sets of a dataset with 80 million tiny images (you can read about how the dataset 
works with the original image dataset in the Learning Multiple Layers of Features 
from Tiny Images technical report at https://www.cs.toronto.edu/~kriz/ 
learning-features-2009-TR.pdf). In the CIFAR-10 dataset, you find 60,000 
32-x-32 color images in ten classes (for 6,000 images in each class). Here are the 
classes you find:

 » Airplane

 » Automobile

https://cs.indstate.edu/~jkinne/cs475-f2011/code/mnistHandwriting.py
https://cs.indstate.edu/~jkinne/cs475-f2011/code/mnistHandwriting.py
https://martin-thoma.com/classify-mnist-with-pybrain/
https://gist.github.com/akesling/5358964
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
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 » Bird

 » Cat

 » Deer

 » Dog

 » Frog

 » Horse

 » Ship

 » Truck

The CIFAR-100 dataset contains more classes. Instead of 10 classes, you get  
100 classes containing 600 images each. The size of the dataset is the same, but 
the number of classes is larger. The classification system is hierarchical in this 
case. The 100 classes divide into 20 superclasses. For example, in the aquatic 
mammals superclass, you find the beaver, dolphin, otter, seal, and whale classes.

Both CIFAR datasets come in Python, MATLAB, and binary versions. Make sure 
that you download the correct version and follow the instructions for using them 
on the download page. Yes, you could use the other versions with Python, but 
doing so would require a lot of extra programming, and because you already have 
access to a Python version, you wouldn’t gain anything from the exercise.

This is an excellent challenge to take after you have worked with the digits dataset 
described in the previous section. Taking this challenge helps you to deal with col-
orful, complex images. If you worked through the examples in Chapter 14, you 
already have some experience working with images using the Olivetti faces 
dataset.

Indentifying Data Lineage
Asking the right questions about data you use is important. Knowing who pro-
duced the data, how they produced it, and why they needed it are all essential. As 
explained in “What is data lineage?” (https://www.ibm.com/topics/data- 
lineage), data lineage is the process of tracking data over time and accumulating 
relevant statistics about it. For example, the original authors of a dataset may 
clean the data to meet PII requirements, which would change the data and modify 
any models created using it. Understanding these changes is important because 
they help you better understand the outcome of building a model.

https://www.ibm.com/topics/data-lineage
https://www.ibm.com/topics/data-lineage
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Overall, the goal of the combination of data lineage, data provenance, and data 
governing is to create a reliable data environment that matches a particular orga-
nization’s needs. Using the data has to be within legal guidelines, yet allow you to 
produce predictable results when performing various kinds of analysis. Employ-
ing the data in a manner that doesn’t create copyright or other issues is also 
important. As a data scientist, having the results of models you create and analy-
sis you perform questioned due to data lineage issues could prove to be a career 
breaker.

The Data Lineage site (https://www.imperva.com/learn/data-security/data- 
lineage/) offers some ideas for tracking the history of data within your organiza-
tion. In addition, you may want to review “5 Types of Data Lineage: Understand 
All Ways to View Your Data” (https://atlan.com/types-of-data-lineage/) to 
better understand how data lineage is tracked. You can find data lineage examples 
at “Top 10 Examples of Data Lineage” (https://www.knowledgenile.com/blogs/ 
data-lineage-examples/).

As you work with data to clean it, transform it, and perform other manipulations 
with it, you modify the data in a manner that also needs to be tracked and docu-
mented so that peer review of processes you employed is possible. In short, some 
of what data lineage is all about is making other people feel comfortable, and 
everyone wants to feel that sort of comfort.

Interacting with a Huge Graph
Imagine trying to work through the connections between 3.5 billion web pages. 
You can do just that by downloading the immense dataset at http://webdata 
commons.org/hyperlinkgraph/index.html. The biggest, richest, most complex 
dataset of all is the internet itself. Start with a subsample offered by the Common 
Crawl 2012 web corpus (https://commoncrawl.org/) and learn how to extract 
and elaborate data from websites. The principle uses for this dataset are

 » Search algorithms

 » Spam detection methods

 » Graph analysis algorithms

 » Web science research

https://www.imperva.com/learn/data-security/data-lineage/
https://www.imperva.com/learn/data-security/data-lineage/
https://atlan.com/types-of-data-lineage/
https://www.knowledgenile.com/blogs/data-lineage-examples/
https://www.knowledgenile.com/blogs/data-lineage-examples/
http://webdatacommons.org/hyperlinkgraph/index.html
http://webdatacommons.org/hyperlinkgraph/index.html
https://commoncrawl.org/
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You need the additional information to perform most data science tasks. The link 
at https://commoncrawl.org/the-data/examples/ provides a list of the various 
projects currently using Common Crawl data. You can also find some interesting 
tutorials for using this data at https://commoncrawl.org/the-data/tutorials/.

Don’t let the idea of performing an analysis on such a large dataset scare you. If 
you worked through the examples in Chapter  7, you have worked with simple 
graph data. This dataset is a similar task but on a significantly larger scale. Yes, 
size does matter to some extent, but you already know some of the required tech-
niques for getting the job done.

https://commoncrawl.org/the-data/examples/
https://commoncrawl.org/the-data/tutorials/


Index      431

Index
A
absolute errors, 332
academic papers, 148
accessing data. See data access
accuracy metric, 321,  
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memory streams, 83, 86
relational databases, 83, 97–98
sampling data, 88–89
unstructured files, 94–97
uploading small amounts of 

data, 84–85
web-based data, 83, 100–103

data analysis. See also 
Exploratory Data Analysis

as core competency, 13
discretization, 210
EDA, 15, 223–249

boxplots, 234–236
categorical data, 231–234
confirmatory approach, 224
correlation, 241–245
Cramér’s V, 246
defined, 223
distribution modification, 

246–249
goal of, 223
graphing distributions, 

238–239
Initial Data Analysis vs., 

224–225
nonlinear 

transformations, 352
numeric data, 225–231
parallel coordinates, 238
scatterplots, 240–241
t-tests, 236–237
visualization, 234–241

effect of algorithm on 
performance, 26

feature creation, 149
pandas library, 29
prototyping and 

experimentation 
process, 25

Scikit-learn library, 30
XGBoost, 31

data capture, 13, 418
data density clustering 

approaches, 274
data lineage, 428–429
data maps, 110–111
data munging. See data 

wrangling
data partitioning, 335–336
data plans, 111–112
data preparation, 15, 107, 149
data presentation. See also 

visualization
as core competency, 13
display frameworks, 23
prototyping and 

experimentation 
process, 25

data science, 1, 9, 12, 143–155
arrays, 153–155

matrix multiplication, 155
matrix vector multiplication, 

154–155
simple arithmetic on vectors 

and matrices, 154
vectorization, 153

challenging datasets, 421–430
contextualization, 144–149

data preparation, 149
evaluating problems, 145
formulating hypotheses, 

148–149
importance of, 144–145
researching solutions, 

147–148
core competencies of data 

scientists, 13–14
emergence of, 12–13

feature creation (engineering), 
149–152

binning, 151
combining variables, 150–151
defining, 149–150
discretization, 151
indicator variables, 151–152
transforming 

distributions, 152
libraries, 23
linking with big data and AI, 14
pipeline for, 15
Python libraries and 

ecosystem, 28–32
Python setup, 33–48
Python’s role in, 16–17, 22–23

data access, 23
data display, 23
library support, 23
multipurpose, simple, and 

efficient language, 17
parallel processing, 23
shifting profile of data 

scientists, 16
resource collections, 415–420

Conductrics, 419
Data Science 101, 418
Data Science Central, 

417–418
Jonathan Bower, 420
KDnuggets, 416
Oracle AI & Data Science 

Blog, 417
Quora, 416–417
Reddit, 416
Springboard, 420
Udacity, 418–419

Data Science 101, 418
Data Science Central, 417–418
data scientists

core competencies of, 13–14
preparing data, 107
shifting profile of, 16
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data validation, 108–112
data maps, 110–111
data plans, 111–112
finding duplicates, 108–109
purpose of, 108
removing duplicates, 110

data wrangling (data munging), 
201–222

clustering, 273–289
defined, 201
dimensionality reduction, 

251–271
Exploratory Data Analysis, 

223–249
outlier detection, 291–304
performance and speed 

issues, 212–219
Scikit-learn, 201–212

applications for data science, 
203–206

classes, 202–203
documentation, 201
multicore parallelism, 

220–222
transformative functions, 

207–212
Database Management Systems 

(DBMSes), 97–99
Data.gov, 422
datasets. See also names of 

specific datasets
challenging, 421–430
downloading, 42, 44
functions for importing, 47–48
high-dimensional sparse, 134
NoSQL Databases, 99
providing access to in local 

environment, 28
size of and effect on 

performance, 26
toy datasets, 84

date- and time-related data, 
117–119

formatting date and time 
values, 118

issues with, 117–118
time transformations, 118–119

DBMSes (Database 
Management Systems), 
97–99

DBScan algorithm, 287–289, 302
decision trees, 392–398

branches, 394
classification trees, 395–397
leaves, 394
overfitting, 395
reading nodes of, 394
regression trees, 397–398
visualization, 393–394, 397

DecisionTreeClassifier class, 
394, 396

DecisionTreeRegressor class, 
394, 397

dendrograms, 283, 286
describe() method, 111–112, 226
desired solutions, 145
diabetes dataset, 296
dicing data, 124–125
DiGraph() constructor, 198
dimensionality (complexity) 

reduction, 251–271
curse of dimensionality, 321
factor analysis, 256–258
principal component analysis, 

256–265
components, 258
facial recognition, 262–265
reducing dimensionality, 259
SVD vs., 258
topic extraction, 266–268
t-SNE, 259–261
unique vs. shared 

variance, 256
Singular Value Decomposition, 

252–256
entertainment preferences 

and recommendations, 256
formula of, 252

measuring the invisible, 
255–256

movie recommendations, 
268–271

reducing dimensionality, 
253–255

text hinting at ideas and 
meaningful categories, 255

dir() function, 27, 78
directed graphs, 195, 197–198
discretization, 151

defined, 210
heterogeneous data,  

210–211
distributions

boxplots, 234–236
defined, 152
graphing, 238–239
histograms, 179–181
modifying, 246–249
transforming, 152

Domingos, Pedro, 150
dot() function, 254
draw_networkx() function, 198
drop() method, 127
dropna() method, 121
dtreeviz package, 393, 397
dummy variables (indicator 

variables), 151–152
duplicate data

finding duplicates, 108–109
removing duplicates, 110

duplicated() method, 109
duplicates() method, 110
DurusWorks, 23

E
EDA. See Exploratory Data 

Analysis
edges, defined, 138, 195
ElasticNet class, 361–362
ELT (Extract, Load, 

Transform), 14
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Encyclopedia Titanica, 392
ensembles, 221, 391–411

boosting, 406–411
AdaBoost, 406–407
Gradient Boosting Machine 

classifier, 407–408
Gradient Boosting Machine 

hyperparameters, 409–410
Gradient Boosting Machine 

regressor, 408–409
XGBoost, 410–411

decision trees, 392–398
branches, 394
classification trees,  

395–397
leaves, 394
overfitting, 395
reading nodes of, 394
regression trees, 397–398
visualization, 393–394

defined, 391
ensembles of models, 399
Random Forest, 399–405

classifier, 402–403
machine learning, 399–402
optimizing, 404–405
regressor, 404
steps for, 399

entertainment preferences and 
recommendations, 256, 
268–271

enumerate() method, 88
enumerations. See categorical 

variables
error functions, 294, 331, 362
ETL (Extract, Transform, Load), 

14, 424
Euclidean distance, 275–277, 

284, 324
evaluation metrics, 331
Excel files. See Microsoft  

Excel files

Exploratory Data Analysis (EDA), 
15, 223–249

boxplots, 234–236
categorical data, 231–234
confirmatory approach, 224
correlation, 241–245

chi-square for tables, 245
covariance and, 242–244
nonparametric, 244–245

Cramér’s V, 246
defined, 223
distribution modification, 

246–249
converting into uniform 

or normal distributions, 
248–249

using different statistical 
distributions, 247

Z-score standardization, 
247–248

goal of, 223
graphing distributions, 

238–239
Initial Data Analysis vs., 

224–225
nonlinear transformations, 352
numeric data, 225–231

central tendency, 227
percentiles, 228–229
skewness and kurtosis, 

229–231
standard deviation, 228

parallel coordinates, 238
scatterplots, 240–241
t-tests, 236–237
visualization, 234–241

boxplots, 234–236
graphing distributions, 

238–239
parallel coordinates, 238
scatterplots, 240–241
t-tests, 236–237

Extract, Load, Transform 
(ELT), 14

Extract, Transform, Load (ETL), 
14, 424

eXtreme Gradient Boosting 
(XGBoost) library, 31, 
410–411

F
facial recognition, 262–265
factor analysis, 256–258

hidden factors, 257–258
psychometric model, 257
unique vs. shared 

variance, 256
FactorAnalysis class, 258
feature creation (engineering), 

149–152
binning, 151
combining variables, 150–151
defining, 149–150
discretization, 151
indicator variables, 151–152
nonlinear transformations, 

352–354
transforming distributions, 152

FeatureUnion() function, 
209–210

fillna() method, 121
Firefox browser, 51, 53
fit() method, 122, 203–206, 278, 

346, 363, 373–374
fit_transform() method, 134
fitting data to models (model 

training), 205, 208–209, 
309–310, 328–336

bias, 329–330
boosting, 406
decision trees, 395
defined, 328
evaluation metrics, 331
optimization process, 331



Index      437

overfitting, 311, 348–349, 
364–365, 370, 376, 388,  
390, 392, 395–396, 401,  
406, 409, 424

Python workflow, 18–19
strategy for picking models, 

330–333
training vs. test sets, 334–336
underfitting, 370
variance, 329–330

flat files, 83, 89–94
reading CSV files, 90–93
reading from text files, 90
reading Microsoft Excel and 

Office files, 93–94
ForecastWatch, 22–23
forward and backward 

approach, 341, 343–344
frame-of-reference 

mistruths, 147
functional coding, 17
fuzzy clustering, 274

G
Gaussian distribution, 230, 

297–298
GaussianNB class, 319
GBMs. See gradient boosting
General Data Protection 

Regulation (GDPR), 422
Generalized Linear Models 

(GLMs), 313
geographical data, 190–195

Basemap, 194–195
Cartopy, 191–194

German Credit Data dataset, 47, 
400–402, 405–407, 410

Gershoff, Matt, 419
getroot() method, 102
GitHub, 50, 52, 420

opening notebooks from, 
55–56

saving notebooks to, 57–58

saving notebooks with GitHub 
gists, 58–59

GLMs (Generalized Linear 
Models), 313

Google Chrome browser, 18, 
50–52

Google Colab, 2, 24, 33, 
49–69, 386

Android devices, 50
browsers, 51
Cartopy, 190
cells, 59–64

clearing output, 62
code execution within, 51, 54
comments, 61
copying, 62
copying links to, 61
creating code cells, 60–62
creating special cells, 63
creating text cells, 62–63
cutting, 62
deleting, 61
editing, 64
forms, 62
mirroring, 61
moving, 60, 64
running, 65
selecting, 62

code execution
within cells, 51, 54
checking, 67
overview, 65

defined, 49
functions of, 50
GitHub repository, 50
hardware acceleration, 64–65
help resources, 68–69
Jupyter Notebook vs., 50–52
local runtime support, 53
notebooks, 53–59

creating, 54
displaying table of 

contents, 66

downloading, 59
getting notebook 

information, 66–67
opening, 54–55
saving, 56–59
sharing, 67–68
storage locations, 55–59
viewing, 66

Google Drive
opening notebooks from, 55
saving notebooks to, 56–57

Google Scholar, 148
Gorman, Kristen, 225
gradient boosting

Gradient Boosting 
Machines, 293

classifier, 407–408
hyperparameters, 409–410
regressor, 408–409

XGBoost, 31, 410–411
gradient descent, 309, 362–365
GradientBoostingClassifier class, 

407–408
GradientBoostingRegressor 

class, 408–409
graphics. See graphs and charts; 

multimedia and graphics
graphs and charts, 138–141, 

159–175
adjacency matrices, 138–139
annotations, 172–174
axes, 163–165
bar charts, 178–179
boxplots, 181–182
directed graphs, 197–198
distributions, 238–239
geographical data, 190–195
graphs, defined, 195
grids, 165–166
hairballs, 139
histograms, 179–181
labels, 171–173
legends, 172, 174–175
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graphs and charts (continued)
lines

colors, 168–169
drawing multiple, 161–162
line styles, 167–168
markers, 169–171

links (edges), 138
NetworkX, 31–32, 139–141
nodes, 138
plots, 160–162
saving work to disk, 162–163
scatterplots, 182–186
time series, 186–190
undirected graphs, 195–197

grid() function, 166
grid search, 220, 345–348
gridlines() method, 194
GridSearch class, 346
GridSearchCV() function, 

350, 375
ground truth, 278–279, 285, 289
groupby() function, 111, 130
Grover, Prince, 393

H
hairballs, 139
HalvingGridSearchCV() function, 

348–349
handwriting recognition, 221, 

260–261, 277–289, 366, 
371–372, 376, 387, 426–428

handwritten number dataset, 
221, 260, 277–278, 280, 282, 
288, 371–372, 387, 426–427

heterogeneous data, 210–212
hierarchical clustering. See 

agglomerative clustering
high-dimensional sparse 

datasets, 134
histograms, 179–181, 238–

239, 241
Hofmann, Hans, 400
hurdle values, 299

hyperlinkgraph dataset, 
429–430

hyperparameters, 204, 220, 
344–350, 358

defined, 344
Gradient Boosting Machine, 

409–410
grid search, 345–348
randomized search, 348–350

hypotheses, 148–149, 205

I
IDA (Initial Data Analysis), 

224–225
IDEs (Integrated Development 

Environments), 24, 39. See 
also Google Colab; Jupyter 
Notebook

imperative coding, 17
imshow() function, 87, 95, 371
indentation, 24
indicator variables (dummy 

variables), 151–152
inductive learning, 327–350

cross-validation, 336–341
fitting models, 328

bias, 329–330
strategy for picking models, 

330–333
training vs. test sets, 334–336
variance, 329–330

hyperparameters, 344–350
selecting variables, 338–341

forward and backward 
approach, 341, 343–344

univariate approach, 341–343
inertia

defined, 280
rate of change in, 280–282

information redundancy, 
149, 242

Information Retrieval (IR), 133
Initial Data Analysis (IDA), 

224–225

insights, 15, 27
Integrated Development 

Environments (IDEs), 24, 
39. See also Google Colab; 
Jupyter Notebook

International Council for 
Science, 12

Internet World Stats, 1
interpreted mode, 10–12
interquartile range (IQR), 229, 

235, 297, 299
IPython Notebook files, 46, 50
IR (Information Retrieval), 133
isin() method, 117
isnull() method, 115, 120
Isolation Forests, 303–304

J
JavaScript Object Notation 

(JSON), 103
join() method, 126
jQuery, 100
Jupyter Notebook, 2, 10, 18, 

23–24, 33, 42–43, 73–82.  
See also Google Colab

Cartopy, 190–191
cells

creating, 74
deleting, 74
Markdown cells, 44–45, 

74–75
running, 48
styles, 74–75

defining new folders, 43
GitHub repository, 50
Google Colab vs., 50–52
help resources, 75–76
identifying version of, 34–35
literate programming, 34
magic functions

axes, 163
backend list, 163
benchmarking, 213–216
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displaying status 
information, 77

embedding graphics, 80, 161
graph display, 163, 165
loading examples from 

online sites, 80
multiprocessing, 221
obtaining list of, 76–77
percent signs, 77
using with objects, 78

multimedia and graphics, 
79–82

notebooks
adding content to, 44–45
creating, 44
exporting, 45–46
importing, 46–47
removing, 46

objects, 77–78
package installation, 190–191
restarting kernel, 79
restoring checkpoints, 79
starting, 42
stopping server, 42–43
styles, 74–75

K
k folds cross-validation, 337–338
Kaggle, 31, 150, 392, 410, 423
KDnuggets, 416
Kelvin, Lord, 145
Keras API, 30–31, 385–388
kernel trick, 368
keys, 27–28
keys() function, 28
KMeans class, 278
K-means clustering, 275–283

big data, 281–283
centroid-based algorithms, 

275–277
cross-tabulation, 279

defined, 275
image data, 277–281
inertia, 280–281
memory leak warning, 283
outlier detection, 303

k-nearest neighbors (KNN), 
322–325, 334

choosing k parameter, 
324–325

hyperparameters, 345
predicting after observing 

neighbors, 323–324
Knuth, Donald, 34
kurtosis, 229–231

L
labels, 171–173
Lasso (L1) regularization, 

358–361
last_valid_index() method, 126
Latent Semantic Indexing 

(LSI), 256
learning from data, 15, 307–411

algorithms, 307–325
big data, 361–365
ensembles, 391–411
inductive learning, 327–350
neural networks, 385–390
nonlinear transformations, 

352–357
regularization, 357–361
support vector machines, 

365–384
legend() function, 174–175
legends, 172, 174–175
libraries. See names of specific 

libraries
linear regression, 307–312, 

331–332
family of linear models, 

308–309
formula type, 308, 329

heterogeneous data, 211
instantiation, 204–206
L2 (Ridge) regularization, 358
limitations and problems, 312
model training, 18–19
multiple variables, 309–312
univariate approach to 

variable selection, 341
LinearRegression class, 205–

206, 355
LinearSVC class, 369, 380–384
lines, in graphs and charts

colors, 168–169
drawing multiple, 161–162
line styles, 167–168
markers, 169–171

links (edges), defined, 138
Linux, installing Anaconda on, 

39–40
listwise deletion, 298
literate programming, 11, 34
loading data, effect on 

performance, 26
local storage, opening 

notebooks from, 56
logistic regression, 313–317

applying, 313–315
multiclass problems, 315–317

logspace() function, 375
LSI (Latent Semantic 

Indexing), 256

M
Mac OS X, installing Anaconda 

on, 40–41
machine capability, effect on 

performance, 26
machine code, 21
Machine Learning Security 

Principles (Mueller), 422
Macready, William, 308
Madelon dataset, 424
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magic functions, 76–78
axes, 163
backend list, 163
benchmarking, 213–216
displaying status 

information, 77
embedding graphics,  

80, 161
graph display, 163, 165
loading examples from online 

sites, 80
multiprocessing, 221
obtaining list of, 76–77
percent signs, 77
using with objects, 78

main effects models, 354
make_classification() function, 

381–383, 424
make_regression() function,  

378
Manhattan distance, 284, 324
manifold learning (nonlinear 

dimensionality reduction), 
259–261

Manuscript on Deciphering 
Cryptographic Messages 
(Al-Kindi), 13

markers, adding to graphs, 
169–171

MATLAB, 25, 159–160
Matplotlib library, 2, 25, 87, 

159–175
agglomerative clustering, 286
annotations, 172–174
axes, 163–165
bar charts, 178–179
boxplots, 181–182
geographical data,  

190–195
graphs, 195–198
grids, 165–166
histograms, 179–181
labels, 171–173
legends, 172, 174–175
lines

colors, 168–169
drawing multiple, 161–162
line styles, 167–168
markers, 169–171

MATLAB vs., 159–160
overview, 31
plots, 160–162
saving work to disk, 162–163
scatterplots, 182–186
time series, 186–190

matrices
adjacency matrices, 138–139
matrix multiplication, 155
matrix vector multiplication, 

154–155
simple arithmetic on, 154
Singular Value Decomposition, 

252–256
maximum likelihood estimation 

(MLE) method, 259
mebibytes (MiBs), 217
memory_profiler package, 

217–218
microservices, 100
Microsoft Academic, 148
Microsoft Excel files

CSV files, 91–92
dates, 117
flat files, 89
reading from, 93–94

Microsoft Office files, reading 
from, 93–94

Microsoft Windows
Anaconda Prompt and 

Windows 10, 36
installing Anaconda, 36–38
memory leak warning, 283

MiniBatchKMeans class, 
281–282

MinMaxScaler() function, 
207, 362

mistruths, 146–147
of bias, 147
of commission, 146

of frame of reference, 147
of omission, 146
of perspective, 146–147

Mixed National Institute of 
Standards and Technology 
(MNIST), 426–427

MLE (maximum likelihood 
estimation) method, 259

model training. See fitting data 
to models

MongoClient class, 99
MongoDB, 99
MovieLens dataset, 47,  

268–269, 425
multicore parallelism,  

220–222
demonstrating, 221–222
performing, 220–221

MultiDiGraph() constructor, 198
MultiGraph() constructor, 198
multilabel prediction, 220–221
multimedia and graphics. See 

also graphs and charts
facial recognition, 262–265
image data, 86–87, 94–97
Jupyter Notebook, 79–82

embedding plots and 
images, 80

loading examples from 
online sites, 80

obtaining online graphics 
and multimedia, 80–82

MultinomialNB class, 319–321
multiple-data-source problems, 

423–424
multivariate approach

data analysis, 234
outlier detection, 300–304

multivariate correlation, 149
Mushroom dataset, 393, 

395–398
MXNet, 385
mysqlclient, 23
MySQLdb library, 23
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N
Naïve Bayes algorithm, 317–

322, 355
text classification prediction, 

320–322
uses for, 318–319

National Institute of Standards 
and Technology (NIST), 
152, 426

Natural Language Processing 
(NLP), 133

ndarray structure, 96–97, 153, 
267, 296

n-dimensional array 
manipulation, 29

neighborhoods
defined, 288
k-nearest neighbors, 322–325

NetworkX library
directed graphs, 198
graph data, 139–141
overview, 31–32
undirected graphs, 196

neural networks, 329, 351, 
385–390

classification problems, 
386–390

deep learning, 385
neurons, 385–386
numeric values, 386
overview, 385–386
regression problems, 386–387

n-grams, 134–135, 138, 320
NIST (National Institute of 

Standards and Technology), 
152, 426

NLP (Natural Language 
Processing), 133

NMF (Non-Negative Matrix 
Factorization), 266–268

“no free lunch” theorem, 
308, 330

nodes
adding to graphs, 196
adjacency matrices, 138–139
defined, 138, 195

nonlinear dimensionality 
reduction (manifold 
learning), 259–261

nonlinear transformations, 
352–357

interactions between variables, 
354–357

variable transformations, 
353–354

Non-Negative Matrix 
Factorization (NMF), 
266–268

nonparametric correlation, 
244–246, 248

NoSQL databases, 99
notebooks

Google Colab, 53–59
creating, 54
displaying table of 

contents, 66
downloading, 59
getting notebook 

information, 66–67
opening, 54–55
saving, 56–59
sharing, 67–68
storage locations, 55–59
viewing, 66

Jupyter Notebook, 44–47
adding content to, 44–45
creating, 44
exporting, 45–46
importing, 46–47
removing, 46

novelty detection, 294–295
np.max() method, 153
np.min() method, 153
NumPy library

aggregating data, 128
arrays, 153–155, 219
covariance and 

correlation, 243
dimensionality reduction, 

253–254
documentation, 148
identifying version of, 226

installing, 216
label count, 372
ndarray structure, 96–97, 153, 

267, 296
overview, 29
pandas vs., 106–107
performance and speed 

issues, 219
random generator, 292
transformers returning 

features as, 210
trendlines, 185

O
objectify.parse() method, 101
object-oriented 

programming, 17
objects, 76–78

help resources, 77–78
properties and methods 

associated with, 78
using magic functions with, 

76–78
Olivetti faces dataset,  

262, 428
omission, mistruths of, 146
one-hot encoding, 212, 388
OneHotEncoder() function, 207
OneVsOneClassifier class, 

316–317
OneVsRestClassifier class, 

316–317
online resources

Advances in Neural 
Information Processing 
Systems, 424

Anaconda, 36, 39–40
AskSam, 97
author’s website, 411
bagging technique, 399
Basemap, 194
bigml, 426
Cartopy, 190, 193–194
Chainer, 385
ChatGPT, 385
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online resources (continued)
cheat sheet (companion to 

book), 5
Common Crawl, 429–430
Conductrics, 419
COVID data, 424
Cross Validated, 148
data lineage, 428–429
Data Science 101, 418
Data Science Central, 417–418
Data.gov, 422
datasets

bigcode-pii-dataset, 422
California Housing, 18, 47
CIFAR, 427
finding, 426
German Credit Data, 47, 400
handwritten numbers, 

426–427
Madelon, 424
MovieLens, 47, 425
mushrooms, 395
Olivetti faces, 262
Palmer Penguins, 47
Single Family Purchase Loan 

Data, 422
Titanic tragedy, 392, 394
20 Newsgroups, 132

date- and time-related 
data, 118

distributions, 152
dtreeviz package, 393, 397
DurusWorks, 23
example code (companion to 

book), 5
Extract, Transform, Load, 424
feature engineering and 

ML, 150
Feature Extraction, 

Foundations and 
Applications, 424

flat files, 90, 92, 94
frame-of-reference 

mistruths, 147

GDPR, 422
GitHub, 57, 420
Google Colab, 49–50, 53, 64, 68
Google Drive, 56
Google Scholar, 148
Imputer parameters, 121
Jonathan Bower, 420
jQuery, 100
JSON, 103
Jupyter Notebook, 82, 191, 216
Kaggle, 150, 392, 410
KDnuggets, 416
Keras API, 30, 385–386
kernel trick, 368
literate programming 

techniques, 11, 34
MATLAB, 25
Matplotlib library, 31, 159, 160, 

175, 179
measurement and 

improvement, 145
mebibytes, 217
Microsoft Academic, 148
Microsoft Excel and dates, 117
MNIST, 426–427
MongoDB, 99
multiple-data-source 

resources, 423–424
MXNet, 385
mysqlclient, 23
MySQLdb library, 23
NetworkX library, 32, 139–140
NIST, 152
“no free lunch” theorem, 308
NumPy library, 29
one-hot encoding, 388
Oracle AI & Data Science 

Blog, 417
overfit strategies, 424
pandas library, 29, 106, 112
Personally Identifiable 

Information resources, 422
PyMongo library, 99

Python, 3, 10–12, 22, 135, 148
PyTorch, 385, 423
Quixote, 23
Quora, 148, 416
Reddit, 416
relational databases, 98
Scikit-image library, 94
Scikit-learn library, 30, 148, 

201, 207–208, 235, 287, 313
SciPy library, 29
security resources, 423
Singular Value 

Decomposition, 252
skewness and kurtosis, 231
Spearman correlation, 245
Springboard, 420
Stack Overflow, 148
TensorFlow ML platform, 

30, 386
TF-IDF transformations, 136
Tiny Images, 427
t-SNE, 261
Udacity, 418–419
updates to book, 5
U.S. Department of Labor, 422
World Bank, 422
XGBoost library, 31, 410
XML and JSON 

alternatives, 103
YAML, 103

open() method, 85
Open Source Data Science 

(OSDS), 420
OpenML, 47, 395
Oracle AI & Data Science 

Blog, 417
OrdinalEncoder() function, 207
ordinary least squares, 309
outliers

binning and, 151
defined, 292
detecting, 291–304

concept drift vs., 295
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DBScan, 302–303
Gaussian distribution, 

297–298
Isolation Forests, 303–304
multivariate approach, 

300–304
novelty detection vs., 

294–295
principal component 

analysis, 300–302
univariate approach, 295–299

effects of, 292–294
remediating, 294, 298–299

overfitting
bagging technique, 401
boosting, 406, 409
decision trees, 392, 395–396
defined, 311
grid search, 348–349
neural networks, 388, 390
nonlinear kernels, 376
Stochastic Gradient 

Descent, 364
strategies for, 424
support vector machines, 

365, 370

P
Palmer Penguins dataset, 47, 

225–248, 257–259, 313–
316, 424

pandas library, 89–94, 102, 
106–117

categorical variables, 113–117
documentation, 148
finding duplicates, 108–109
identifying version of, 113
NumPy vs., 106–107
outlier detection, 295
overview, 29
performance and speed 

issues, 219
removing duplicates, 110
unstacked data, 112

parallel coordinates, 238
parallel processing, 17, 23, 31, 

220–222
Parr, Terence, 393
parse() method, 94, 101
partial_fit() method, 363
partition-clustering 

techniques, 274
partitioning data, 335–336
PCA. See principal component 

analysis
pd.concat() function, 103
Pearson’s correlation, 241, 

243–244, 246–248
percentiles, 228–229, 342
Personally Identifiable 

Information (PII), 422
perspective, mistruths of, 

146–147
pip (preferred installer 

program), 113, 216
Pipeline() function, 208
plot() function, 161, 167, 

169–171, 186, 188–189
plots

defining, 160–161
drawing multiple, 161–162
embedding, 80

plt.figure() function, 164
plt.plot() function, 161, 167, 

169–171
plt.savefig() function, 161
plt.show() function, 87, 95, 

161, 188
poly1d() function, 186
polyfit() function, 185–186
PolynomialFeatures() function, 

207, 356
precision metric, 332–333
predict() method, 206
predict_proba() method, 206
preferred installer program 

(pip), 113, 216
principal component analysis 

(PCA), 256–265

components, 258
facial recognition, 262–265
outlier detection, 300–302
reducing dimensionality, 259
SVD vs., 258
topic extraction, 266–268
t-SNE, 259–261
unique vs. shared 

variance, 256
print() function, 27, 96, 117, 262
probability

Bayes’ theorem, 317–318
defined, 317
Generalized Linear 

Models, 313
procedural language, 17
prototyping and 

experimentation process, 
24–25

psychometric model, 257
PyMongo library, 99
Python, 11, 21–32

capabilities and features of, 
10–12, 23–28

compiling, 10, 12
factors affecting 

performance, 26–27
functional coding, 17
general-purpose language, 

10–11
imperative coding, 17
indentation, 24
interpreted mode, 10–12
object-oriented 

programming, 17
procedural language, 17
prototyping and 

experimentation process, 
24–25

simplicity, 23–24
visualization, 27–28

common uses for, 10–11
companies using, 11
documentation, 148
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libraries and ecosystem, 17, 

28–32
Keras and TensorFlow, 30–31
Matplotlib, 31
NetworkX, 31–32
NumPy, 29
pandas, 29
Scikit-learn, 30
SciPy, 29
XGBoost, 31

multicore parallelism, 220–222
online tutorials, 3
performance and speed 

issues, 26–27, 212–219
benchmarking, 213–216
memory_profiler package, 

217–218
NumPy and pandas, 219

preferred installer 
program, 216

role of in data science, 16–17, 
22–23

setting up, 33–48
versions of, 33
workflow, 17–19

loading data, 18–19
model training, 18–19
viewing results, 19

PyTorch, 385, 423

Q
qcut() function, 231
QuantileTransformer() 

function, 248
quartiles, defined, 181
Quixote, 23
Quora, 148, 416–417

R
R2 score, 206, 212, 310–311, 

331–332
radial basis function (rbf) kernel, 

376–380

Random Forest, 399–405
classifier, 402–403
machine learning, 399–402
optimizing, 404–405
regressor, 404
steps for, 399

random() method, 88
RandomForestClassifier class, 

402–405
RandomForestRegressor 

class, 404
randomized data

boxplots, 181–182
histograms, 179–181
scatterplots, 182–183

randomized search, 348–350
random.shuffle() method, 129
range() function, 178, 196
rbf (radial basis function) kernel, 

376–380
read() method, 85
read_csv() method, 92
read_sql() method, 98
read_sql_query() method, 98
read_sql_table() method, 98
read_table() method, 90
recall metric, 332–333
Receiver Operating 

Characteristic Area Under 
Curve (ROC AUC), 332–333, 
401–403, 407, 411

Reddit, 416
regression, 203

gradient boosting, 408–409
linear regression, 307–312, 

331–332
logistic regression, 313–317
neural networks, 386–387
Random Forest, 404
regression trees, 397–398
SGDRegressor, 362–365, 383
support vector machines, 369
Support Vector Regression, 

378–380
RegressorMixin class, 202

regularization, 357–361
ElasticNet class, 361
L1 (Lasso) regularization, 

358–360
L2 (Ridge) regularization, 

358–359
leveraging, 360

relational databases, 83, 97–98
reset_index() method, 126, 

128–129
residuals, 309, 311
Ridge (L2) regularization, 

358–361
RobustScaler() function, 299
ROC AUC (Receiver Operating 

Characteristic Area Under 
Curve), 332–333, 401–403, 
407, 411

S
scaling transformations, 374
scatterplots, 177, 182–186

correlations, 184–186
EDA, 240–241
groups, 184
outlier detection through 

PCA, 301
randomized data, 182–183

Schlimmer, Jeff, 395
Scikit-image library, 94
Scikit-learn library, 2, 132, 201. 

See also names of specific 
datasets

applications for data science, 
203–206

bagging classes, 399
bunches, 27
classes, 202–203
classification problems, 203, 

332, 369, 388
clustering datasets, 287
cross-validation, 337
decision tree classes, 394
documentation, 148, 201
feature selection, 207
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hyperparameters, 344, 
348–349

linear models, 313
multiprocessing, 220–221
Naïve Bayes classes, 319
object-based interfaces, 203
outlier remediation, 299
overview, 30
regression problems, 203, 331, 

369, 378
support vector machines, 369
text processing tools, 207
transformative functions, 

207–212
variable selection helper 

functions, 342–343
SciPy library stack

chi-square statistic, 246
documentation, 148
overview, 29

score() method, 206, 310
secure data environment, 423
select_dtypes() method, 235, 244
SelectKBest class, 342
SelectPercentile class, 342
SequentialFeatureSelector 

class, 343
set_extent() method, 193
set_xlim() function, 164
set_xticks() function, 164
set_ylim() function, 164
set_yticks() function, 164
SGD. See Stochastic Gradient 

Descent optimization
shaping data, 105–130, 131–141

aggregation, 129–130
binning, 107
categorical variables, 113–117
dataframes, 107
date- and time-related data, 

117–119
defined, 105–106
graph data, 138–141

missing data, 119–122
NumPy vs. pandas, 106–107
prototyping and 

experimentation 
process, 25

slicing data, 123–125
tokenizing, 132–138
transforming data, 125–129
validation, 108–112
workflow, 107

shared variance, 256–257
psychometric model, 257
unique variance vs., 256

SimpleImputer() function, 207
Single Family Purchase Loan 

Data dataset, 422
Singular Value Decomposition 

(SVD), 252–256
entertainment preferences 

and recommendations, 256
formula of, 252
measuring the invisible, 

255–256
movie recommendations, 

268–271
reducing dimensionality, 

253–255
topic extraction, 255

skewness
defined, 229
EDA, 229–231

slicing data, 123–125
columns, 124
dicing data, 124–125
rows, 123–124

sort_values() method, 128
Spearman correlation, 244–

245, 248
Springboard, 420
SQL (Structured Query 

Language), 97–98
sqlalchemy library, 98
stack() method, 112

Stack Overflow, 148
standard deviation, 228–229, 

298, 337
StandardScaler() function, 205, 

207, 235, 278, 355, 359, 363
statistics, 12–13
StatLib repository, 18
stemming, 133
Stochastic Gradient Descent 

(SGD) optimization, 
362–365

classifier (SGDClassifier), 
362–365, 383–384

regressor (SGDRegressor), 
362–365, 383

stop words
defined, 133
removing data, 213
text classification 

prediction, 321
TF-IDF transformations, 

136, 266
str() function, 118
StratifiedKFold class, 340
strftime() function, 118
Structured Query Language 

(SQL), 97–98
supervised learning, 

defined, 273
Support Vector Classifier (SVC)

classification, 371–376
multicore parallelism, 221–222

support vector machines (SVMs), 
365–384

benefits and drawbacks of, 
365–366

classification problems, 
366–368

creating stochastic solutions, 
380–384

hyperplanes, 368
nonlinear kernels, 376–378
regression problems, 378–380
setting up predictive models, 

368–370
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Support Vector Classifier, 
371–376

Support Vector Regression, 
378–380

support vectors, defined, 367
SVC. See Support Vector 

Classifier
SVD. See Singular Value 

Decomposition
SVMs. See support vector 

machines

T
TensorFlow ML platform, 30, 

385–387
term frequency-inverse 

document frequency 
(TF-IDF), 136–138, 267

text files, reading from, 90
TfidfTransformer() method, 137
TfidfVectorizer() function, 207
TfidVectorizer class, 266
Thucydides, 12–13
time series, 186–190

axes, 186–188
trends, 188–190

timedelta() function, 119
timeit() function, 215
Tiny Images, 427
Titanic tragedy datasets, 

392–393
to_frame() function, 103
to_sql() method, 98
tokenizing, 132–138

bag of words model, 132–138
CountVectorizer() function, 213
n-grams, 134
TF-IDF transformations, 

136–138

train_test_split() function, 
335, 373

transform() method, 122, 130, 
137, 206

transformative functions, 
206–212

chaining estimators into 
pipelines, 208

composing features, 209–210
heterogeneous data, 210–212
transforming targets, 209

TransformedTargetRegressor() 
method, 209

TransformerMixin class, 202
transforming data, 125–129

concatenating data, 126–127
distributions, 152
numeric features, 152
removing data, 127–128
shuffling data, 127–128
sorting data, 127

trendlines, 184–186, 188–190
TruncatedSVD class, 270
t-SNE algorithm, 259–261
t-tests, 236–237
Tukey, John, 224
20 Newsgroups dataset, 132–

134, 136–137, 266, 320–322

U
U Climb Higher, 418
Udacity, 418–419
underfitting, 370
undirected graphs, 195–197
unique variance, 256
univariate approach

EDA, 234
outlier detection, 295–299
variable selection, 341–343

unsupervised learning

clustering, 273–274
defined, 273

U.S. Department of Labor, 422

V
validating data. See data 

validation
validation_curve() method, 347
value_counts() function, 233
values, defined, 27
Vanderbilt University School of 

Medicine, 392
VanderPlas, Jake, 216–217
vanilla models, 346
Vapnik, Vladimir, 365–366
variables, 18

categorical, 113–117
combining, 150–151
composing, 210
defined, 84, 155, 205
frequencies, 225, 232–233
indicator, 151–152
linear regression with multiple, 

309–312
selecting, 338–341
variable distribution, 225

variance
EDA, 228
fitting data to models, 329–330
Random Forest, 399

vectorization
arrays, 153–154
count vectorization, 207, 

213–215, 321
n-grams, 135
TF-IDF transformations, 

207, 266
visualization, 15, 159–175, 

177–198
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agglomerative clustering, 
285–287

bar charts, 178–180
boxplots

cross-validation, 339–340
EDA, 234–236
groups, 181–182
outlier detection, 296–297
percentiles, 229
performing t-tests after, 

236–237
decision trees, 392–398
EDA, 234–241

boxplots, 234–236
graphing distributions, 

238–239
parallel coordinates, 238
scatterplots, 240–241
t-tests, 236–237

geographical data, 190–195
Basemap, 194–195
Cartopy, 191–194

graphs and charts, 138–141, 
159–175, 195–198

adjacency matrices, 138–139
annotations, 172–174
axes, 163–165
directed graphs, 197–198
distributions, 238–239
graphs, defined, 195
grids, 165–166
hairballs, 139

labels, 171–173
legends, 172, 174–175
lines, 161–162, 167–171
links (edges), 138
NetworkX, 31–32, 139–141
nodes, 138
saving work to disk, 162–163
undirected graphs, 195–197

histograms, 179–181, 238–
239, 241

playing with data, 27–28
plots

defining, 160–161
drawing multiple, 161–162
embedding, 80

saving work to disk, 162–163
scatterplots, 177, 182–186

correlations, 184–186
EDA, 240–241
groups, 184
outlier detection through 

PCA, 301
randomized data, 182–183

time series, 186–190
axes, 186–188
trends, 188–190

W
ward linkage, 283–284
web services, defined, 100
whiskers, defined, 181

Windows
Anaconda Prompt and 

Windows 10, 36
installing Anaconda, 36–38
memory leak warning, 283

winsorizing, 299
Wolpert, David, 308, 330
World Bank, 422

X
XGBoost (eXtreme Gradient 

Boosting) library, 31, 
410–411

xlabel() function, 172
XML, 100–101, 103

Y
YAML, 103
ylabel() function, 172

Z
Z-score standardization, 

247–248
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