
Python Decorators: A Comprehensive Guide
The article introduces the amazingly powerful syntactic sugar
of Python: decorators.

Marcin Kozak

·

Published in

Towards Data Science

·
11 min read
·
Oct 19

Spacejoy on Unsplash

Python decorators are one of those concepts that seem simple if you understand them, but very
difficult otherwise. Many Python beginners see them as a magical tool that they must learn and use
in their own code in order to perform true magic. But using built-in decorators or those from site
packages is not enough; it’s like doing magic with a magic box bought in a kid shop. True magic
comes from writing your own decorators.

https://medium.com/@nyggus?source=post_page-----5bde06d2fb27--------------------------------
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://unsplash.com/@spacejoy?utm_source=medium&utm_medium=referral
https://towardsdatascience.com/?source=post_page-----5bde06d2fb27--------------------------------
https://medium.com/@nyggus?source=post_page-----5bde06d2fb27--------------------------------
https://towardsdatascience.com/?source=post_page-----5bde06d2fb27--------------------------------

I remember when I desperately wanted to learn how to write and use my own decorators in a real
project, not just for fun. When that time finally came, the pleasure I felt was immense. This
experience made me eager to find more opportunities to implement my own decorators.

I hope that after reading this article, you will have no problems with Python decorators. Therefore,
this article aims to introduce the concept of Python decorators to those who have not been able to
understand it yet. I hope to reveal the magic behind them in a simple to understand way.

There is much more to decorators than that. We will discuss the basics, but the good news is that
these basics should be enough for you to implement even complex and functional decorators. In
future articles, we will go further into the details by discussing the intricacies of decorators and their
various use cases.

Python programmers at all levels can benefit from this article. Beginners will learn the basics of
decorators, while intermediates will gain a deeper understanding; advanced programmers can use
the article to refresh their memory. In addition, sometimes it’s good to look at a particular concept
from different angles, not only the one we’ve been using for years — here, I am offering my
viewpoint on decorators and their usefulness, which I hope will be helpful to readers of all levels.

Introduction to decorators
Python decorators are a powerful and versatile tool, but they should be used judiciously to avoid
overuse and misuse. A decorator is a function that allows you to modify the behavior of another
function. Decorators can also be written as classes, but this is less common and will not be covered
in this article.

When you have a decorator, say my_decorator(), you use it to decorate another function, say
foo(), in the following way:

@my_decorator
def foo(x, y):
 # do something; in result,
 # you obtain changed_x and changed_y
 return changed_x, changed_y

After decorating the foo() function, we no longer know what it does without also knowing what
the my_decorator decorator does. The decorator may add new behavior, such as logging, or it
may completely change the function’s behavior and return value. For example, the decorated
foo() function may return a dictionary instead of a tuple, or it may return None. To find out what
the foo() function does after being decorated, we must check the definition of the
my_decorator decorator.

I don’t know the etymology of the word “decorator” used in the Python context. In Python, the
word comes from the decorator pattern, but this does not explain the original etymology. If you
know it, please share it with us in the comments.

I personally find Python decorators to be a beautiful form of syntactic sugar. It is no wonder they
are called decorators, as they decorate the function being decorated. I appreciate both the
appearance and power of decorators.

However, I am aware of the difficulty that decorators can introduce. As explained above, we cannot
know how a decorated function behaves without knowing the definition of its decorator.
Additionally, the fact that multiple decorators can be used on a single function can make things
even more complex.

Let me organize the idea behind decorators into three steps:

1. Need. You have a function, but you need to change its behavior. This can result from various
reasons. For instance, you may need to add logging to all functions in an application or
changing the behavior of a function from an external module.

2. Definition. You write a decorator function that is responsible for this updated behavior. It can
take one or more parameters in addition to the original function. The decorator function
typically calls the original function, but it doesn’t have to.

3. Use. You overwrite the original function with the new one. This can be done in two ways:
via decoration or assignment, but decoration is much more common. Calling the decorated
function using its original name means calling the new function, because the original
function no longer exists unless it was copied.

Each of these three steps is equally important, so let’s discuss these three steps one by one.

Step 1: Need
Okay, so you need to change the behavior of a function.

Why use a decorator to change the behavior of a function instead of simply rewriting it? There are a
few reasons:

• You may not be able to rewrite the function. For example, it may be a function from an
external module.

• You may not want to rewrite the function. For example, it may be a large or complex
function, or it may be a function that is used in many different places.

• It may be cumbersome to rewrite the function. For example, it may be called by many
different functions.

• You may only need to change the behavior of the function for development, but you want to
use the original function in production.

• You may need to change the behavior of many functions. In this case, it is much more
efficient to write a decorator than to rewrite each function individually.

The most common scenario is when you need to change the behavior of many functions. In this
case, you can write one decorator and apply it to all of the functions that you need to change. This
can save you a lot of time and code.

Here are a few examples of how decorators can be used:

• To add logging to all existing functions in a project.
• To measure and log the execution time of each function in an app.
• To add authentication and authorization to functions called in an app.
• To cache output returned from functions.
• To change a function from writing data to a local file to writing data to a remote database.

• To silence a particular function for testing. For example, you could use a decorator to
prevent a function from writing to a remote database during testing.

Decorators are also heavily used in mocking in Python. Mocking allows you to create fake objects
that simulate the behavior of real objects. This can be useful for testing code that relies on external
resources, such as databases and web services.

Step 2: Definition
Have you noticed that after decorating a function with the @ syntax, the decorated function is called
using the name of the original function? This is what makes a function a decorator. If the original
function, say foo(), is still available as foo(), and there is a new function, say
foo_changed(), whose behavior is the changed behavior of foo(), there is no decoration
involved here. So, decorating a function involves overwriting the original function. You can keep a
copy of the original function under a new name, but the original function itself has been replaced by
the decorated function.

Decorating involves overwriting the original function.

It’s time to leave the world of abstraction and move to practicalities. Let’s create a simple decorator,
called scream(), that makes functions scream:

from typing import Callable
(1) def scream(func: Callable) -> Callable:
(2) def inner(*args, **kwargs):
(3) print("SCREAM!!!")
(4) return func(*args, **kwargs)
(5) return inner

This decorator takes a callable (func) as input and returns a callable (inner). The inner function
prints “SCREAM!!!” to the console before calling the original function (func). I gave up a
docstring to make the code shorter, but in real work, you should definitely add docstrings to your
decorators.

In real work, you should definitely add docstrings to your decorators.

Here is a breakdown of the scream() decorator line by line:

1. def scream(func: Callable) -> Callable: → This is the function signature.
The scream() decorator can be used to decorate any callable (func), and it returns a
callable, too.¹

2. def inner(*args, **kwargs): → This is the inner function. It prints
“SCREAM!!!”; you can use whatever name you want, but I usually make it inner, like
here. When decorating a function, you can use any parameters that the decorated function
takes. For example, the scream() decorator can be used for any function, with any
number of parameters of any types (hence the use of *args, **kwargs).

3. print("SCREAM!!!") → This is the new behavior, added to the original behavior of the
decorated function. Whatever the function does, it will first scream (by printing
"SCREAM!!!"), and then it will do what it was originally supposed to do. Note that in this
decorator, the new behavior is added before, but it can be added after, both before and after,
or even instead of the original behavior.

4. return func(*args, **kwargs) → This is the original behavior of the function.
5. return inner → A standard line of any decorator: returning the inner function. This

means that when the scream() decorator is used, it will replace the original function with
the inner function.

In Appendix 1, you will find two other version of the scream() decorator:

• Screaming two times: before and after the original behavior
• Screaming instead of what the original function was supposed to do.

Step 3: Use
To decorate a function, you can use a decorator in two ways. This subsection describes both of
them.

Method 1: Decorator used as @decorator

First, we need a function to decorate. Let’s use two functions to illustrate that you can use the same
decorator for as many functions as you want or need, and for very different functions at that.

The first function we want to decorate is foo():

def foo():
 return "foo tells you that life is great"

When we call this function, we will see the following output:

>>> foo()
'foo tells you that life is great'

This is almost the easiest Python function: it takes no parameters and returns a string. This is the
second function we want to decorate, bar():

from typing import List
def bar(
 x: int,
 string: str,
 func: Callable = lambda a, b: a * b,
 **kwargs
) -> List[str]:
 """Applies a callable to each character in the given string.
 It does so, passing in the given integer and any additional
 keyword arguments. Returns a list of the results.
 """
 return [func(x, s_i, **kwargs) for s_i in string]

This function is more complex than foo(). It has three parameters: an integer x, a string string,
and a callable func. It also accepts any additional keyword arguments. The function applies
func() to each character in string and x, passing in the additional keyword arguments, if any.
Finally, it returns a list of the results.

A simple call can look like that:

>>> bar(3, "abc")
['aaa', 'bbb', 'ccc']

Let’s change use a different callable for func:

>>> def concatenate(i: int, s: str, sep: Optional[str] = "-") -> str:
... return f"{str(i)}{sep}{s}"
>>> bar(5, "abc", func=concatenate)
['3-a', '3-b', '3-c']
>>> bar(3, "abc", func=concatenate, sep=":")
['3:a', '3:b', '3:c']

For our purposes, it doesn’t matter what foo() and bar() do. What’s important is that foo() is
a very simple function, while bar() is more complex, despite being concise.

We can decorate both functions using the decorator syntax, which is shown in the two lines starting
with the @ character. For the sake of completeness and clarity, I will show the full code, so I will
repeat the functions’ code:

from typing import Callable, List
@scream
def foo():
 return "foo tells you that life is great"
@scream
def bar(
 x: int,
 string: str,
 func: Callable = lambda a, b: a * b,
 **kwargs
) -> List[str]:
 return [func(x, s_i, **kwargs) for s_i in string]

Let’s run both functions:

>>> foo()
SCREAM!!!
'foo tells you that life is great'
>>> bar(5, "abc", func=concatenate)
SCREAM!!!
['3-a', '3-b', '3-c']
>>> bar(3, "abc", func=concatenate, sep=":")
SCREAM!!!
['3:a', '3:b', '3:c']

Method 2: Using a decorator as a function()

The most common way to use a decorator function is as a decorator. However, there is another way,
which is less common:

def foo():
 return "foo tells you that life is great"
foo = scream(foo)

In this way, you simply call the decorator function with the function to be decorated as an argument.

Irrespective of which method you use to apply the scream() decorator, when you run foo(), the
decorated function will scream and then do what it was originally used to do.

Conclusion
This article explains the basics of Python decorators. I have tried to be comprehensive, but there are
still many intricacies of decorators that we have not discussed. We will explore these in future
articles.

There are several reasons why it is important to learn about Python decorators, not only how to use
them but also how to write new ones. First, decorators are a powerful tool that can help you write
concise and readable code. If you know how to write custom decorators, you will often find that
they can save you a lot of time and effort.

Second, decorators can be used to quickly update legacy code. For example, if you need to change
the behavior of a function or several functions, but revising the functions themselves is not an
option, you can use a decorator instead. While it is always possible to rewrite the functions, if the
changed behavior is the same for all of them, a single decorator may be sufficient.

Third, decorators are one of the most important syntactic sugar items in Python. If you do not
understand them, you will likely be considered a Python beginner. I cannot imagine a Python
developer who does not know how to use decorators, let alone understand them.

Finally, decorators are very common in the Python code base. If you are not familiar with
decorators, you will not be able to understand much of the existing code.

Therefore, all intermediate and advanced Python developers should know the concept of decorators,
understand how to use them, and be able to write them.

Although decorators may seem difficult at first glance, I believe that if you have read this article up
to this point, you will agree that once you understand the basics, they are not such a big puzzle after
all. In fact, they can be a rather simple and handy coding tool.

Footnotes
¹ For simplicity, I will use the term “decorator function” instead of “decorator callable.” However,
please keep in mind that this is just a shorthand for decorators defined in both ways: as a function
and as a class. I simply don’t want to overuse the word “callable,” even though it is frequently used
in Python texts.

Appendices
Appendix 1: Two other versions of the scream() decorator
Version 2: Scream before and after running the function

from typing import Callable
def scream(func: Callable) -> Callable:
 def inner(*args, **kwargs):
 print("SCREAM!!!")
 output = func(*args, **kwargs)
 print("SCREAM AGAIN!!!")
 return output

 return inner

You would see the following output from foo() after decorating it with the above decorator:

>>> foo()
SCREAM!!!
'foo tells you that life is great'
SCREAM AGAIN!!!

Version 3: Scream instead of running the function

from typing import Callable
def scream(func: Callable) -> Callable:
 def inner(*args, **kwargs):
 print("SCREAM, JUST SCREAM!!!")
 return inner

And:

>>> foo()
SCREAM, JUST SCREAM!!!

This version of the scream() decorator completely overwrites the decorated function’s original
behavior. The decorated function now only screams, and its original behavior is completely
removed. This structure can be very useful in many different situations. For example, you could use
it to totally silence a function:

from typing import Callable
def silence(func: Callable) -> Callable:
 def inner(*args, **kwargs):
 pass
 return inner

You can see an example of such a silencer in the code of the easycheck Python package:

easycheck/easycheck/easycheck.py at master ·
nyggus/easycheck

A module offering Python functions for simple and readable assertion-like
checks to be used inside code, but also in…
github.com

Look in this code for a switch function.

You will also see there that you can stack decorators; here’s an example from the above
easycheck library:

@switch
@make_it_true_assertion
def assert_paths(*args: Any, handle_with: type = AssertionError, **kwargs: Any)
-> None:
 return check_if_paths_exist(*args, handle_with=handle_with, **kwargs)

We will discuss such intricacies of decorators in future articles.

https://github.com/nyggus/easycheck/blob/master/easycheck/easycheck.py?source=post_page-----5bde06d2fb27--------------------------------
https://github.com/nyggus/easycheck/blob/master/easycheck/easycheck.py?source=post_page-----5bde06d2fb27--------------------------------
https://github.com/nyggus/easycheck/blob/master/easycheck/easycheck.py?source=post_page-----5bde06d2fb27--------------------------------
https://github.com/nyggus/easycheck/blob/master/easycheck/easycheck.py?source=post_page-----5bde06d2fb27--------------------------------
https://github.com/nyggus/easycheck/blob/master/easycheck/easycheck.py?source=post_page-----5bde06d2fb27--------------------------------
https://pypi.org/project/easycheck/

Thanks for reading. If you enjoyed this article, you may also enjoy other articles I wrote; you will
see them here. And if you want to join Medium, please use my referral link below:

Join Medium with my referral link - Marcin Kozak

Read every story from Marcin Kozak (and thousands of other writers on
Medium). Your membership fee directly supports…
medium.com

https://medium.com/@nyggus/membership?source=post_page-----5bde06d2fb27--------------------------------
https://medium.com/@nyggus/membership?source=post_page-----5bde06d2fb27--------------------------------
https://medium.com/@nyggus/membership?source=post_page-----5bde06d2fb27--------------------------------
https://medium.com/@nyggus/membership?source=post_page-----5bde06d2fb27--------------------------------
https://medium.com/@nyggus

	Python Decorators: A Comprehensive Guide
	The article introduces the amazingly powerful syntactic sugar of Python: decorators.

	Introduction to decorators
	Step 1: Need
	Step 2: Definition
	Step 3: Use

	Conclusion
	Footnotes
	Appendices
	Appendix 1: Two other versions of the scream() decorator
	easycheck/easycheck/easycheck.py at master · nyggus/easycheck
	A module offering Python functions for simple and readable assertion-like checks to be used inside code, but also in…

	Join Medium with my referral link - Marcin Kozak
	Read every story from Marcin Kozak (and thousands of other writers on Medium). Your membership fee directly supports…

