

Practical Threat Detection
Engineering

A hands-on guide to planning, developing, and validating
detection capabilities

Megan Roddie

Jason Deyalsingh

Gary J. Katz

BIRMINGHAM—MUMBAI

Practical Threat Detection Engineering
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Neha Sharma
Senior Content Development Editor: Adrija Mitra
Technical Editor: Rajat Sharma
Copy Editor: Safis Editing
Project Coordinator: Sean Lobo
Proofreader: Safis Editing
Indexer: Tejal Soni
Production Designer: Ponraj Dhandapani
Marketing Coordinator: Marylou De Mello

First published: July 2023

Production reference: 1230623

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-671-5

www.packtpub.com

First, thank you to my parents, Geraldine and Michael Roddie, who have consistently pushed me
toward success, for supporting me in all aspects of life, no matter how many times I drive them crazy.
To my fiancé, Kelvin Clay Fonseca, who unexpectedly came into my life and constantly reminds me
of my capabilities, giving me the confidence to face challenges head-on. Finally, thank you to all my

present and previous employers and colleagues who gave me amazing opportunities and put me on a
path that led me to write this book.

– Megan Roddie

Thank you first to my dad, Sheldon Katz, who taught me to be an inquiring engineer, never
complicating technical explanations unnecessarily, and by teaching science wherever it was needed,

whether on a food court napkin or late-night studying. To my mom, Ruth Katz, whose positive impact
on students, and me, will continue to be relevant in our lives long after the technology in this book
becomes dated. Most importantly, I want to thank my amazing wife, Heather, who supported me
as I filled each weekend morning at the coffee shop writing this book. To the OneDo coffee shop in

Baltimore, which provides a place for so many people to work on their pet projects, study, and get a
great cup of coffee. To my coffee shop companion and friend, Katie Walsh, whose encouragement while

writing this book was greatly appreciated. To my… okay, I should probably stop.

– Gary Katz

I’d like to express my sincere appreciation to everyone who contributed to this effort. Thanks for the
work, thanks for your help, thanks for your guidance, thanks for listening, thanks for the motivation,

and thanks for the lulz. Finally, thanks to my family and friends for being patient with me...you might
need to continue being patient with me for the foreseeable future! :-/

– Jason Deyalsingh

Contributors

About the authors
Megan Roddie is an experienced information security professional with a diverse background ranging
from incident response to threat intelligence to her current role as a detection engineer. Additionally,
Megan is a course author and instructor with the SANS Institute where she regularly publishes research
on cloud incident response and forensics. Outside of the cyber security industry, Megan trains and
competes as a high-level amateur Muay Thai fighter in Austin, TX.

I would like to thank my parents, Geraldine and Mike, for a lifetime of love and support and for
always pushing me toward greatness. I would also like to thank my fiancé, Kelvin, for being my biggest
cheerleader throughout this process. Finally, thank you to everyone who has played a role in my career
thus far, ultimately leading me to write this book.

Jason Deyalsingh is an experienced consultant with over nine years of experience in the cyber security
space. He has spent the last 5 years focused on digital forensics and incident response (DFIR). His
current hobbies include playing with data and failing to learn Rust.

To the cyber security community and everyone I ever worked with directly or indirectly. Keep crushing it!

Gary J. Katz is still trying to figure out what to do with his life while contemplating what its purpose
really is. While not spiraling into this metaphysical black hole compounded by the plagues and
insanity of this world, he sometimes thinks about cyber security problems and writes them down.
These ruminations are, on occasion, captured in articles and books.

To those who read a technical book from cover to cover, I admire you, even if I could never be one of you.

About the reviewers
Dr. Chelsea Hicks (she/they) has worked in cyber security for more than 10 years, with the last 5 years
being focused on threat hunting and incident response. Dr Hicks also has previous experience with
machine learning, scripting, and infrastructure building. Dr Hicks received their BSc in computer
science, MSc in information technology, and PhD in information technology from the University of
Texas at San Antonio. You can find Dr Hicks as the social media coordinator for BSidesSATX, and
presenting at events such as SANS Blue Team Summit, Blue Team Village, and Texas Cyber Summit.

Obligatory remark: Nothing I reviewed or provided feedback on in this book represents my employers;
it is 100% based on my opinion and thoughts outside of work.

I’d like to thank my family and friends – especially my spouse and mom, who always encourage me
and understand the time and commitment it takes to try to stay sharp in this field. I’d also like to
thank them for keeping me grounded and making sure I maintain my work-life balance. Thank you
to the amazing DFIR and threat-hunting fields for your supportiveness in helping these fields grow –
especially folks like hacks4pancakes and shortxstack!

Terrence Williams has worked in the cyber security space for nearly 10 years, with 4 years focused
on cloud forensics, incident response, and detection engineering. He began his career in the US
Marine Corps, developing skills in hunting advanced persistent threats. Terrence received his BSc in
computer science from Saint Leo University and is currently pursuing an MSc in computer science
from Vanderbilt University. He has honed his cyber security skills through his roles at Amazon Web
Services, Meta Platforms, and Google. Additionally, he serves as a SANS Instructor for the FOR509
course, which focuses on enterprise forensics and incident response.

Rod Soto is a security researcher and co-founder of HackMiami and Pacific Hackers. He was the winner
of the 2012 BlackHat Las Vegas CTF competition and Red Alert ICS CTF at DEFCON 2022 contest.
He is the founder and lead developer of the Kommand && KonTroll/NOQRTR CTF competitive
hacking tournament series.

Preface xiii

Part 1: Introduction to Detection Engineering

1
Fundamentals of Detection Engineering 3

Foundational concepts 4
The Unified Kill Chain 4
The MITRE ATT&CK framework 7
The Pyramid of Pain 9
Types of cyberattacks 10
The motivation for detection engineering 12
Defining detection engineering 14
Important distinctions 15

The value of a detection engineering
program 16
The need for better detection 16
The qualities of good detection 16
The benefits of a detection engineering program 18

A guide to using this book 20
The book's structure 20
Practical exercises 21

Summary 21

2
The Detection Engineering Life Cycle 23

Phase 1 – Requirements Discovery 24
Characteristics of a complete detection
requirement 25
Detection requirement sources 26

Exercise – understanding your
organization’s detection requirement
sources 30

Phase 2 – Triage 31
Threat severity 32
Organizational alignment 32
Detection coverage 32
Active exploits 32

Phase 3 – Investigate 34
Identify the data source 34

Table of Contents

Table of Contentsviii

Determine detection indicator types 35
Research 36
Establish validation criteria 36

Phase 4 – Develop 36

Phase 5 – Test 37
Types of test data 38

Phase 6 – Deploy 38
Summary 40

3
Building a Detection Engineering Test Lab 41

Technical requirements 42
The Elastic Stack 42
Deploying the Elastic Stack with Docker 44
Configuring the Elastic Stack 48

Setting up Fleet Server 53
Installing and configuring Fleet Server 54

Additional configurations for Fleet Server 56
Adding a host to the lab 57
Elastic Agent policies 64

Building your first detection 66
Additional resources 68
Summary 69

Part 2: Detection Creation

4
Detection Data Sources 73

Technical requirements 74
Understanding data sources and
telemetry 74
Raw telemetry 74
Security tooling 81
MITRE ATT&CK data sources 82
Identifying your data sources 83

Looking at data source issues and
challenges 85
Completeness 85
Quality 86

Timeliness 86
Coverage 86
Exercise – understanding your data sources 87

Adding data sources 87
Lab – adding a web server data source 88

Summary 97
Further reading 97

Table of Contents ix

5
Investigating Detection Requirements 99

Revisiting the phases of detection
requirements 99
Discovering detection requirements 100
Tools and processes 101
Exercise – requirements discovery for your
organization 103

Triaging detection requirements 105

Threat severity 105
Organizational alignment 106
Detection coverage 107
Active exploits 107
Calculating priority 109

Investigating detection requirements 111
Summary 113

6
Developing Detections Using Indicators of Compromise 115

Technical requirements 116
Leveraging indicators of compromise
for detection 116
Example scenario – identifying an IcedID
campaign using indicators 118

Scenario 1 lab 128

Installing and configuring Sysmon as a data
source 128
Detecting hashes 130
Detecting network-based indicators 134
Lab summary 138

Summary 139
Further reading 139

7
Developing Detections Using Behavioral Indicators 141

Technical requirements 141
Detecting adversary tools 141
Example scenario – PsExec usage 141

Detecting tactice, techniques, and
procedures (TTPs) 161
Example scenario – mark of the web bypass
technique 161

Summary 168

Table of Contentsx

8
Documentation and Detection Pipelines 169

Documenting a detection 169
Lab – documenting a detection 171

Exploring the detection repository 174
Detection-as-code 177

Challenges creating a detection pipeline 185
Lab – Publishing a rule using Elastic’s
detection-rules project 186

Summary 195

Part 3: Detection Validation

9
Detection Validation 199

Technical requirements 200
Understanding the validation process 200
Understanding purple team exercises 202
Simulating adversary activity 203
Atomic Red Team 203
CALDERA 204

Exercise – validating detections for a single
technique using Atomic Red Team 205
Exercise – validating detections for multiple
techniques via CALDERA 212

Using validation results 219
Measuring detection coverage 220

Summary 226
Further reading 227

10
Leveraging Threat Intelligence 229

Technical requirements 229
Threat intelligence overview 229
Open source intelligence 230
Internal threat intelligence 231
Gathering threat intelligence 232

Threat intelligence in the detection
engineering life cycle 232
Requirements Discovery 232

Triage 233
Investigate 234

Threat intelligence for detection
engineering in practice 234
Example – leveraging threat intel blog posts
for detection engineering 234
Example – leveraging VirusTotal for
detection engineering 238

Table of Contents xi

Threat assessments 240
Example – leveraging threat assessments for
detection engineering 241

Resources and further reading 248

Threat intelligence sources and concepts 248
Online scanners and sandboxes 248
MITRE ATT&CK 248

Summary 248

Part 4: Metrics and Management

11
Performance Management 251

Introduction to performance
management 251
Assessing the maturity of your
detection program 252
Measuring the efficiency of a
detection engineering program 253
Measuring the effectiveness of a
detection engineering program 255

Prioritizing detection efforts 257
Precision, noisiness, and recall 259

Calculating a detection’s efficacy 263
Low-fidelity coverage metrics 263
Automated validation 265
High-fidelity coverage metrics 265

Summary 278
Further reading 278

Part 5: Detection Engineering as a Career

12
Career Guidance for Detection Engineers 283

Getting a job in detection engineering 283
Job postings 284
Developing skills 285

Detection engineering as a job 289
Detection engineering roles and responsibilities 290

The future of detection engineering 291
Attack surfaces 291
Visibility 292

Security device capabilities 292
Machine learning 292
Sharing of attack methodology 293
The adversary 294
The human 294

Summary 294

Table of Contentsxii

Index 295

Other Books You May Enjoy 306

Preface

Over the past several years, the field of detection engineering has become more and more at the forefront
of cyber security defense discussions. While the number of conference talks, blog posts, and webcasts
surrounding detection engineering has increased, a dedicated book on the topic has not yet appeared
on the market. We hope that we can fill the gap with the release of this book. While learning resources
for related fields such as threat hunting, threat intelligence, and red teaming are plentiful, detection
engineering has a long way to go in providing the training necessary to develop detection engineers.

Our goal is to not only provide a discussion on the topic but to provide you with practical skills using
hands-on exercises throughout the book. Furthermore, we hope that these exercises, in combination
with the creation of the detection engineering test lab, lead you to continue your education and training
by practicing the skills you’ve learned for your own use cases.

The authors of this book have worked in various areas of security, with a current focus on detection
engineering, and derived this content from real-life experiences throughout their careers. This, combined
with research taken from some of the top minds in this field, provides you with a comprehensive
overview of the topics necessary to understand detection engineering. With topics including the
detection engineering life cycle, creating and validating detections, careers guidance for detection
engineers, and everything in between, you should walk away feeling confident in your understanding
of what detection engineering is and what it means to the cyber security industry.

We hope this book inspires continued content creation and community contributions in
detection engineering.

Who this book is for
This book provides insights into detection engineering via a hands-on methodology for those with
an interest in the field. It is primarily focused on security engineers who have some experience in
the area. Mid- to senior-level security analysts can also learn from this book. To fully understand the
content and follow the labs, you should understand foundational security concepts. Additionally, you
should have the technical ability to work with technologies such as virtual machines and containers,
which are leveraged in hands-on exercises throughout the book.

Prefacexiv

What this book covers
Chapter 1, Fundamentals of Detection Engineering, provides an introduction to the foundational
concepts that will be referenced throughout the book. It also defines detection engineering to help
you understand what exactly detection engineering is.

Chapter 2, The Detection Engineering Life Cycle, introduces the phases of the detection engineering
life cycle and different types of continuous monitoring. Each phase of the life cycle will be discussed
in depth in later chapters.

Chapter 3, Building a Detection Engineering Test Lab, introduces the technologies that will be used
to build a detection engineering test lab. The subsequent hands-on exercises will teach you how to
deploy the detection engineering lab that will be leveraged for future labs throughout the book, and
how to create a simple detection.

Chapter 4, Detection Data Sources, discusses what detection data sources are, their importance, and
the potential challenges faced when leveraging data sources. It will then provide a hands-on exercise
to connect a new data source to the detection engineering test lab.

Chapter 5, Investigating Detection Requirements, looks at the first two phases of the detection engineering
life cycle. It discusses how to identify and triage detection requirements from a variety of sources and
the related methods and processes to be implemented.

Chapter 6, Developing Detections Using Indicators of Compromise, discusses the use of indicators
of compromise for the purpose of detection engineering. The concept is demonstrated through an
example scenario based on a real-life threat. As part of the exercise, Sysmon will also be introduced
and installed in the detection engineering lab.

Chapter 7, Developing Detections Using Behavioral Indicators, builds on Chapter 6 by moving on to
developing detections at the behavioral indicator level. Two scenarios and associated exercises are
leveraged to introduce the concept: one focused on detecting adversary tools and one focused on
detecting tactics, techniques, and procedures (TTPs).

Chapter 8, Documentation and Detection Pipelines, provides an overview of how detections should be
documented in order to effectively manage a detection engineering program. It then introduces concepts
related to deployment processes and automation, such as CI/CD, along with a lab to demonstrate
creating a detection pipeline.

Chapter 9, Detection Validation, provides an overview of validating detections using various methodologies.
It will introduce two tools, Atomic Red Team and CALDERA, that can be used for performing
validation. An associated hands-on exercise will allow you to work with these tools in your detection
engineering test lab.

Chapter 10, Leveraging Threat Intelligence, provides an introduction to cyber threat intelligence with
a focus on how it relates to detection engineering. A series of examples is used to demonstrate the

Preface xv

use of open source intelligence for detection engineering. Additionally, the chapter will discuss the
use of threat assessments to develop detection requirements.

Chapter 11, Performance Management, provides an overview of how to evaluate a detection engineering
program as a whole. It includes methodologies for calculating the effectiveness and efficiency of the
detections in an organization. Then, it discusses how such data can be used to improve the detection
engineering program.

Chapter 12, Career Guidance for Detection Engineers, closes off the book with a discussion on careers
in detection engineering. This includes finding jobs, improving your skill sets, and associated training.
It then provides insights into the future of detection engineering as a field. Finally, it looks at ways in
which detection engineers can contribute to the community.

To get the most out of this book
The primary software used in this book is Docker and virtualization software. All other software
and operating systems are run within these technologies. Due to the use of virtualization software,
these labs cannot be run on ARM-based systems, such as M1 Macs. For the labs, we provide setup
instructions for both Linux and Windows systems.

Software/hardware covered in the book Operating system requirements

Docker Windows or Linux

VirtualBox Windows or Linux

While the book uses steps and screenshots specific to VirtualBox in the exercises, users who have an
understanding of virtualization software may use VMware or other solutions of their choice.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Practical-Threat-Detection-Engineering. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Prefacexvi

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/qt1nr.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
process described on Elastic’s site involves the use of docker-compose.yaml and a .env file,
which docker-compose then interprets to build the Elastic and Kibana nodes.”

A block of code is set as follows:

ES1_DATA=/path/to/large/disk/elasticdata/es01
ES2_DATA=/path/to/large/disk/elasticdata/es02
KIBANA_DATA=/path/to/large/disk/elasticdata/kibana_data

Any command-line input or output is written as follows:

$ docker --version
Docker version v20.10.12, build 20.10.12-0ubuntu4

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “At this point, you are probably wondering
what type of data is being sent back to the Elasticsearch backend. You can view this data by navigating
to the Discover page, under Analytics in the hamburger menu.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Preface xvii

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Practical Detection Engineering, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

xviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801076715

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

Part 1:
Introduction to Detection

Engineering

In this part, you will learn about some foundational concepts related to detection engineering. After
establishing this baseline knowledge, you’ll be introduced to the detection engineering life cycle,
which will be followed throughout the book. To wrap up this part, we’ll guide you through deploying
a detection engineering lab, which will support the labs throughout the book.

This section has the following chapters:

• Chapter 1, Fundamentals of Detection Engineering

• Chapter 2, The Detection Engineering Life Cycle

• Chapter 3, Building a Detection Engineering Test Lab

1
Fundamentals of Detection

Engineering

Across nearly every industry, a top concern for executives and board members is the security of their
digital assets. It’s an understandable concern, given that companies are now more interconnected and
reliant on technology than ever before. Digital assets and their supporting infrastructure comprise ever-
increasing portions of a typical organization’s inventory. Additionally, more processes are becoming
reliant on robust communication technologies. In most cases, these technologies enable companies
to operate more effectively. The management and defense of this new digital landscape, however, can
be challenging for organizations of any size.

Additionally, where sophisticated attacks used to be limited to nation-state adversaries, the increased
interconnectedness of technology, coupled with the emergence of cryptocurrencies, creates a near-
perfect environment for cyber criminals to operate in. The addition of sophisticated threat actors
motivated by financial gain rather than those limited to nation-state motivations has dramatically
broadened the number of organizations that must be able to identify and respond to such threats.
Stopping these attacks requires increased agility by an organization to combat the adversary. A detection
engineering program provides that agility, improving an organization’s ops tempo to operationalize
intelligence about new threats. The primary goal of detection engineering is to develop the rules or
algorithmic models to automatically identify the presence of threat actors, or malicious activity in
general, promptly so that the relevant teams can take mitigative action.

In this chapter, we will discuss several topics that will provide you with knowledge that will be relevant
throughout this book:

• Foundational concepts, such as attack frameworks, common attack types, and the definition
of detection engineering

• The value of a detection engineering program

• An overview of this book

Fundamentals of Detection Engineering4

Foundational concepts
The foundation of how we can track and categorize an adversary’s actions allows us to prioritize
and understand the scope or coverage of our detections. The following subsection covers common
frameworks and models that will be referenced throughout this book. They provide a starting model
for framing cyberattacks, their granular sub-components, and how to defend against them.

The Unified Kill Chain

Cyberattacks tend to follow a predictable pattern that should be understood by defenders. This pattern
was initially documented as the now famous Lockheed Martin Cyber Kill Chain. This model has
been adapted and modernized over time by multiple vendors. The Unified Kill Chain is a notable
modernization of the model. This model defines 18 broad tactics across three generalized goals, which
provides defenders with a reasonable framework for designing appropriate defenses according to
attackers’ objectives. Let’s look at these goals:

• In: The attacker’s goal at this phase is to research the potential victim, discover possible attack
vectors, and gain and maintain reliable access to a target environment.

• Through: Having gained access to a target environment, the threat actor needs to orient
themselves and gather supplemental resources required for the remainder of the attack, such
as privileged credentials.

• Out: These tactics are focused on completing the objective of the cyberattack. In the case of
double extortion ransomware, this would include staging files for exfiltration, copying those
files to attacker infrastructure, and, finally, the large-scale deployment of ransomware.

Foundational concepts 5

Figure 1.1, based on the Unified Kill Chain whitepaper by Paul Pols, shows the individual tactics in
each phase of the kill chain:

Figure 1.1 – The Unified Kill Chain

To better understand how the Unified Kill Chain applies to cyberattacks, let’s look at how it maps
to a well-known attack. We are specifically going to look at an Emotet attack campaign. Emotet is a
malicious payload often distributed via email and used to deliver additional payloads that will carry
out the attacker’s final objectives. The specific campaign we will analyze is one reported on by The
DFIR Report in November 2022: https://thedfirreport.com/2022/11/28/emotet-
strikes-again-lnk-file-leads-to-domain-wide-ransomware/.

Fundamentals of Detection Engineering6

Table 1.1 lists the stages of the attack, as reported in the article, and how they map to the Unified
Kill Chain:

Attack Event Unified Kill Chain
Phase Group Unified Kill Chain Phase

Emotet executed via LNK
malspam attachment In Delivery

Emotet sends outbound
SMTP spam email Network propagation Pivoting

Domain enumeration via
Cobalt Strike Through Discovery

Lateral movement to
user workstation Through Pivoting

SMB share enumeration Through Discovery

Zerologon exploit attempt In Exploitation

Remote Management
Agent installed In Command

and control/persistence

Exfiltration via Rclone
to Mega Out Exfiltration

Ransomware execution Out Impact

Table 1.1 – Unified Kill Chain mapping for Emotet attack chain

As can be seen from Table 1.1, not all phases will take place in every attack and may not occur in a
linear order.

To read the full Unified Kill Chain whitepaper, visit this link: https://www.unifiedkillchain.
com/assets/The-Unified-Kill-Chain.pdf.

While this follows the progression of a typical cyberattack, as the paper outlines and as our example
shots show, it is not uncommon for the attacker to execute some tactics outside this expected order.
While the Unified Kill Chain provides a model for how threat actors carry out attacks, it does not
dive into the detailed techniques that can be used to achieve the goals of each phase in the kill chain.
The MITRE ATT&CK framework provides more granular insight into the tactics, techniques, and
procedures leveraged by threat actors.

Foundational concepts 7

The MITRE ATT&CK framework

The MITRE ATT&CK framework is a knowledge base developed by the MITRE Corporation. The
framework classifies threat actor objectives and catalogs the granular tools and activities related to
achieving those objectives.

ATT&CK stands for Adversarial Tactics, Techniques, and Common Knowledge. The MITRE
ATT&CK framework groups adversarial techniques into high-level categories called tactics. Each tactic
represents a smaller immediate goal within the overall cyberattack. This framework will be referenced
frequently throughout this book, providing an effective model for designing and validating detections.
The following points detail the high-level tactics included as part of the Enterprise ATT&CK framework:

• Reconnaissance: This tactic falls within the initial foothold phase of the Unified Kill Chain.
Here, the threat actor gathers information about their target. At this stage, the attacker may
use tools to passively collect technical details about the target, such as any publicly accessible
infrastructure, emails, vulnerable associate businesses, and the like. In ideal cases, the threat
actor may identify publicly accessible and vulnerable interfaces, but reconnaissance can also
include gathering information about employees of an organization to identify possible targets
for social engineering and understand how various internal business processes work.

• Resource development: This tactic falls within the initial foothold phase of the Unified Kill
Chain. Having identified a plausible attack vector, threat actors design an appropriate attack and
develop technical resources to facilitate the attack. This phase includes creating, purchasing, or
stealing credentials, infrastructure, or capabilities specifically to support the operation against
the target.

• Initial access: This tactic falls within the initial foothold phase of the Unified Kill Chain. The
threat actor attempts to gain access to an asset in the victim-controlled environment. A variety
of tools can be leveraged in combination at this point, ranging from cleverly designed phishing
campaigns to deploying code that weaponizes yet-undisclosed vulnerabilities in exposed software
interfaces (also known as zero-day attacks).

• Execution: Tactics in this category fall within the initial foothold and network propagation phases
of the Unified Kill Chain. The attacker aims to execute their code on a target asset. Code used in
this phase typically attempts to collect additional details about the target network, understand
the security context the code is executing under, or collect data and return it to infrastructure
controlled by the threat actor.

• Persistence: This tactic falls within the initial foothold category of the Unified Kill Chain. Initial
access to a foreign environment can be volatile. Threat actors prefer robust and survivable access
to target systems. Persistence techniques focus on maintaining access despite system restarts
or modifications to identities and infrastructure.

Fundamentals of Detection Engineering8

• Privilege escalation: This tactic falls within the network propagation category of the Unified
Kill Chain. Having gained access to the victim control environment, the threat actor typically
attempts to attain the highest level of privileges possible. Privileged access provides a means
for executing nearly every option available to the administrators of the victim, removing many
roadblocks that may prevent them from taking action on the attacker’s objectives. Having
privileged access can also make threat actor activities more challenging to detect.

• Defense evasion: This tactic falls within the initial foothold category of the Unified Kill Chain.
Threat actors must understand the victim’s defense systems to design appropriate methods
for avoiding them. Successful evasion of defense increases the likelihood of a successful
operation. These tactics focus specifically on finding ways to subvert or otherwise avoid the
target’s defensive controls.

• Credential access: This tactic falls within the initial foothold and action on objectives categories of
the Unified Kill Chain. Identities control access to systems. Harvesting credentials or credential
material is essential for completely dominating a victim’s environment. Access to multiple
systems and credentials makes navigating environments easier and lets attackers pivot if the
event credentials are modified.

• Discovery: This tactic falls within the network propagation category of the Unified Kill Chain.
These techniques focus on understanding the victim’s internal environment. The internal
network layout, infrastructure configuration, identity information, and defense systems must
be understood to plan for the remaining phases of the attack.

• Lateral movement: This tactic falls within the action on objectives category of the Unified
Kill Chain. Systems that are accessed for the first time often do not have the information or
resources (tools, credential material, direct connectivity, or visibility) required to complete
objectives. Following the discovery of connected systems, and with the proper credentials, the
adversary can, and often needs to, move from the current system to other connected systems.
These techniques are all focused on traversing the victim’s environment.

• Collection: This tactic falls within the action on objectives category of the Unified Kill Chain.
These techniques focus on performing internal reconnaissance. Access to new environments
provides new visibility, and understanding the technical environment is essential for planning
the subsequent phases of the attack.

• Command and control: This tactic falls within the initial access category of the Unified Kill Chain.
It allows us to implement systems so that we can remotely control the victim’s environment.

• Exfiltration: This tactic falls within the action on objectives category of the Unified Kill Chain. Not
all attacks involve exfiltration activities, but tactics in this category have become more popular
with the rise of ransomware double extortion attacks. You can find a more detailed description
of double extortion ransomware attacks at https://www.zscaler.com/resources/
security-terms-glossary/what-is-double-extortion-ransomware. These
tactics aim to copy data out of the victim’s environment to an attacker-controlled infrastructure.

Foundational concepts 9

• Impact: This tactic falls within the action on objectives category of the Unified Kill Chain. At
this point, the threat actor can take steps to complete their attack. For example, in the case of
a ransomware attack, the large-scale encryption of data would fall into this phase.

We encourage you to explore the MITRE ATT&CK framework in full at https://attack.mitre.
org/. In this book, we are specifically going to focus on the Enterprise ATT&CK framework, but
MITRE also provides frameworks for ICS and mobile-based attacks as well. The ATT&CK Navigator,
located at https://mitre-attack.github.io/attack-navigator/, is also extremely
useful for defenders to quickly search for and qualify tactics.

Most publications documenting incident response observations typically provide kill chain and
MITRE ATT&CK tactics, which help defenders understand how to design detections and other
preventative controls.

The Pyramid of Pain

Another helpful model for defenders to understand is the Pyramid of Pain. This model, developed
by David Bianco, visualizes the relationship between the categories of indicators and the impact of
defending each. This impact is expressed as the effort required by the threat actor to modify their
attack once an effective defense is implemented for a given indicator category. Figure 1.2 shows the
concept of the Pyramid of Pain:

Figure 1.2 – David Bianco’s Pyramid of Pain

As we can see, controls designed to operate on static indicators such as domain names, IP addresses,
and hash values are trivial for adversaries to evade. For example, modifying the hash of a binary
simply involves changing a single bit. It is far more difficult for an adversary to modify their tools,
tactics, and procedures (TTPs), which are essentially the foundation of their attack playbook. The
gold standard for defensive controls is those that target TTPs. However, these are usually more difficult

Fundamentals of Detection Engineering10

to implement and require reliable data from protected assets, as well as a deep understanding of the
adversary’s tactics and capabilities. Defensive controls designed for static indicators are effective for
short-term, tactical defense. You can read David Bianco’s full blog post here: https://detect-
respond.blogspot.com/2013/03/the-pyramid-of-pain.html.

Throughout the remainder of this book, we will frequently reference these concepts. In later chapters,
we will illustrate how these models can be used to understand cyberattacks, translate high-level business
objectives for defense into detections, and measure coverage against known attacks.

Now that we have gained an understanding of the model for framing cyberattacks, let’s look into the
most common types of cyberattacks.

Types of cyberattacks

To detect cyberattacks, detection engineers need to have a base understanding of the attacks that they
will face. Some of the most prevalent attacks at the time of writing are summarized here to provide
some introductory insight into the attacks we are trying to defend against.

Business Email Compromise (BEC)

The FBI reported receiving a total of 19,954 complaints related to Business Email Compromise
(BEC) incidents in 2021. They estimate these complaints represent a cumulative loss of 2.4 billion
dollars (USD). The full report can be accessed at https://www.ic3.gov/Media/PDF/
AnnualReport/2021_IC3Report.pdf.

BEC attacks target users of the most popular and accessible user collaboration tool available – email.
The electronic transfer of funds is a normal part of business operations for many organizations. Threat
actors research organizations and identify personnel likely to be involved in correspondence related
to the exchange of funds. Having identified a target, the threat actor leverages several techniques to
gain access to the target’s mailbox (or someone adjacent from a business process perspective). With
this access, the threat actor’s objective pivots to observing email exchanges to understand internal
processes. During this time, the threat actor needs to understand the communication flows and key
players. In ideal cases, they will identify a third-party contractor whom the organization conducts
routine business with, the people who typically send correspondence for payments, and the person
who approves these payments on behalf of the organization. Once the right opportunity arises, the
threat actor can intercept and alter email conversations about payment, changing destination account
numbers. If this goes unnoticed, funds may be deposited into the attacker’s account instead of the
intended recipient.

Denial of service (DoS)

Denial of service (DoS) attacks attempt to make services unavailable to legitimate users by overwhelming
the service or otherwise impairing the infrastructure the service depends on. There are three main
types of DoS attacks: volumetric, protocol, and application attacks.

Foundational concepts 11

Volumetric attacks are executed by sending an inordinate volume of traffic to a target system. If the
attack persists, it can degrade the service or disrupt it entirely. Protocol attacks focus on the network
and transport layer and attempt to deplete the available resources of the networking devices, making
the target service available. Application attacks send large volumes of requests to a target service.
The service attempts to process each request, which consumes processing power on the underlying
systems. Eventually, the available resources are exhausted, and service response times increase to the
point where the service becomes unavailable. These types of attacks can be further categorized by
their degree of automation and the techniques used.

Increasing the number of systems executing the attack can significantly increase the impact. By making
use of compromised systems, threat actors can conduct synchronized DoS attacks against a single
target, known as distributed denial of service (DDoS) attacks.

Malware outbreak

When malicious software, or malware, manages to evade defensive controls, the impact can range
broadly, depending on the specific malware family. In low-impact cases, an end user may be bombarded
with unsolicited pop-up ads, and in more extreme scenarios, malware can give full control of a system
to a remote threat actor. The presence of malware in an enterprise environment usually indicates a
possible deficiency in security controls. Seemingly low-impact malware infections can lead to more
significant incidents, including full-blown ransomware attacks.

Insider threats

Employees of an organization who perform malicious activity against that organization are known as
insider threats. Insider threats can exist at any level of the organization and have various motivations.
Malicious insiders can be difficult to defend against since the organization has granted them a degree
of trust.

Phishing

Phishing attacks fall under the category of social engineering, where threat actors design attacks
around communication and collaboration tools, such as email, instant messaging apps, SMS text
messages, and even regular phone calls. The underlying objective in all cases is to entice users to reveal
sensitive information, such as credentials or banking information. BEC attacks typically leverage
phishing techniques.

Ransomware

While the threat landscape is full of countless actors, with diverse goals ranging from stealthy cyber
espionage to tech-support scams, the most prolific and impactful of these is the modern ransomware attack.

The goal of a ransomware attack is to interrupt critical business operations by taking critical systems
offline and demanding payment, or a ransom, from the organization. In exchange for a successful
payment, the threat actors claim they will return systems to a normal operating state.

Fundamentals of Detection Engineering12

Recently, some ransomware operators have added a separate extortion component to their playbook.
During their ransomware attack, they exfiltrate sensitive data from the organization’s environment
to attacker-controlled systems. Ransomware operators then threaten to publicize this data unless
the ransom is paid. This attack is commonly referred to as the double-extortion ransomware attack.

Successful ransomware operations put businesses in a frightening predicament. Apart from untangling
the deep complexities of determining whether to pay the ransom, recovering from a successful
cyberattack can take months or sometimes years.

These malicious operations have become increasingly sophisticated and successful over time. According
to CrowdStrike, the first instance of modern ransomware was recorded in 2005. Between then and
now, the frequency, scale, and sophistication of ransomware attacks have only increased. CrowdStrike’s
History of Ransomware article provides a summary of the evolution of ransomware. You can read the
full article here: https://www.crowdstrike.com/cybersecurity-101/ransomware/
history-of-ransomware/.

The motivation for detection engineering

Successful breaches can have expensive impacts, requiring thousands of man-hours to remediate. IBM’s
2022 Cost of a Data Breach report found that the average total cost of a data breach amounted to 4.35
million USD. Typically, the earlier a threat is detected, the lower the cost of remediation. For every
phase that an attacker advances through the kill chain, the cost of remediation goes up. While a threat
hunt allows an organization to search for an adversary already inside its environment, the identification
occurs when and if a search is performed. This detection, though, allows an organization to identify
malicious behavior when the activity is performed, reducing the mean time to detect. Given that the
same IBM Cost of a Data Breach report determined that the average time to identify and contain a
breach was 277 days, there is much work to be done in attempting to reduce the time to detection.

To understand how the time to detect an attack greatly determines the impact on the business, let’s
consider a scenario where a threat actor can gain initial access to an internet-connected workstation
via a successful phishing campaign. This unauthorized access was immediately detected by the
organization’s security team. They quickly isolated this workstation and performed a full re-imaging
of its contents to a known-good state. They also performed a full reset of the user’s credentials, along
with any other user who interacted with that workstation. Administrators identified the phishing
email in their enterprise email solution, and all recipients had their workstations re-imaged and their
credentials reset.

In this scenario, the steps that were taken by the security team were relatively simple to execute and
would likely be sufficient to remove the threat from the environment. In contrast, if the threat actors
were able to gain privileged access, exfiltrate data, and then deploy ransomware across all systems,
the task becomes significantly more onerous. The security team would be faced with the dual task of
understanding what happened while simultaneously advising on the best way to restore the business’s
ability to operate safely. The following table summarizes how the number of assets impacted, the
investigative requirements, and typical remediation efforts change across the Unified Kill Chain goals:

Foundational concepts 13

Initial Foothold Network Propagation Action on Objectives

Assets
impacted

Low value.

Typically, this involves edge
devices, public-facing servers,
or user workstations. Because
of their position in modern
architectures, these devices are
typically untrusted by default.

Medium value.

Some internal systems. Typically
at this phase, the threat actor has
access to some member servers
within the environment and has
a reliable C2 channel established.

High value.

Critical servers such as
Active Directory domain
controllers, backup servers,
or file servers.

Threat
actor’s degree
of control

Low.

The threat actor has unreliable
access to a system or is
attempting to obtain access
to a system, typically through
phishing or attacking publicly
facing services. Typically, this
phase is the best opportunity
for defenders to remove
a threat.

Medium.

The threat actor has enough
control to traverse the network,
but not enough control to execute
objectives. At this point, threat
actors typically have some
credentials and have a reliable
C2 channel established.

High.

The threat actor is fully
comfortable operating in
the environment. They
found all the resources
needed to execute their
objectives. At this point,
they likely have the highest
level of privileges available
in the environment.

Data
requirement
for investigation

Relatively low.

Typically, impact at this phase
is limited to a small number
of assets. Once identified at
this phase, the data required
for fully scoping the event is
limited to a single host.

Significant.

The capability to traverse the
internal network typically
indicates the presence of a reliable
C2 channel. A higher volume
of historic and real-time data is
required to identify impacted
assets. At this point, incident
responders will need to have
visibility of all connected assets
to fully track lateral movement.

High.

Investigators will require
access to historical and real-
time data from all connected
assets. Additionally, in cases
where data exfiltration is an
objective, telemetry for the
access and movement of data
will also be required. This
data is difficult to collect
and is not typically tracked.

Effort
required
to remediate

Low.

Activities at this phase typically
occur on edge devices or
public-facing assets. The typical
posture is to treat these assets
as untrusted, so it is common
for environments to have
capabilities for rapidly isolating
these assets.

Medium.

Traversing the network requires
more investigative work to
identify the individual assets
that were accessed, the degree
to which they were utilized, and
the requirements for remediating.

High.

In nearly every case, this
requires rebuilding critical
infrastructure. Often,
this needs to occur with
the added pressure of
returning the business to a
minimally operational state,
to minimize losses.

Table 1.2 – Generalized asset impact and effort versus kill chain goals

Fundamentals of Detection Engineering14

It’s plain to see the importance of finding out about cyberattacks in your environment and, more so, the
importance of finding out as early as possible. The right person needs to get the relevant information
about cyberattacks in a timely fashion. This is the primary objective of detection engineering.

Defining detection engineering

Quickly identifying, qualifying, and mitigating potential security incidents is a top priority for security
teams. Identifying potential security incidents quickly is a fairly complicated problem to solve. In
general terms, security personnel need to be able to do the following:

1. Collect events from assets that require protection, as well as assets that can indirectly impact them.

2. Identify events that may indicate a security incident, ideally as soon as they happen.

3. Understand the impact of the potential incident.

4. Communicate the high-value details of the event to all relevant teams for investigation
and mitigation.

5. Receive feedback from investigative teams to determine how the whole process can be improved.

Each of these steps can be difficult to execute within small environments. The complexity increases
radically for any increase in the size of a managed environment.

Detection engineering definition
Detection engineering can be defined as a set of processes that enable potential threats to be
detected within an environment. These processes encompass the end-to-end life cycle, from
collecting detection requirements, aggregating system telemetry, and implementing and
maintaining detection logic to validating program effectiveness.

To accomplish these goals, a good detection engineering program typically needs to implement four
main processes:

• Discovery: This involves collecting detection requirements. Here, you must determine whether
the requirements are met with existing detections. You must also determine the criticality of
the detection, as well as the audiences and timeframes for alerting.

• Design, development, and testing: The detection requirement is interpreted, and a plan for
implementing the detection is formulated. The designed detection is implemented first in a
test environment and tested to ensure it produces the expected results.

• Implementation and post-implementation monitoring: Detection is implemented in the
production detection environment. Here, the performance of the detection and the detection
systems is monitored.

Foundational concepts 15

• Validation: Routine testing to determine the effectiveness of the detection engineering program
as a whole:

Figure 1.3 – The detection engineering processes

Chapter 2, The Detection Engineering Life Cycle, takes a deeper dive into each of these processes.

Important distinctions

Detection engineering can be misunderstood, partly because some processes overlap with other
functions within a security organization. We can clarify detection engineering’s position with the
following distinctions:

• Threat hunting: The threat hunting process proactively develops investigative analyses based on a
hypothesis that assumes a successful, undetected breach. The threat hunting process can identify
active threats in the environment that managed to evade current security controls. This process
provides input to the detection engineering program as it can identify deficiencies in detections.
The data that’s available to detection engineering is typically the same data that threat hunters
utilize. Therefore, threat hunting can also identify deficiencies in the existing data collection
infrastructure that will need to be solved and integrated with the detection infrastructure.

• Security operations center (SOC) operations: SOC teams typically focus on monitoring the
security environment, whereas detection engineering provides inputs to SOC teams. While the
SOC consumes the products of the detection engineering functions, they typically work very
closely with them to provide feedback for detection or collection improvements.

• Data engineering: Data engineers design, implement, and maintain systems to collect, transform,
and distribute data, typically to satisfy data analytics and business intelligence requirements.
This aligns with several goals of detection engineering; however, the detection engineering
program is heavily security-focused and relies on data engineering to produce the data it needs
to build detections.

In this section, we examined some basic cyber security concepts that will be useful throughout this
book as we dive into the detection engineering process. Furthermore, we established a definition for
detection engineering. With this definition in mind, the following section will examine the value that
a detection engineering program brings to an organization.

Fundamentals of Detection Engineering16

The value of a detection engineering program
Before a detection engineering program can be established, it must be justified to stakeholders in the
organization so that funding can be received. This section will discuss the importance of detection
engineering. Specifically, we will look at the increasing need for good detections, how we define the
quality of a detection, and how a detection engineering program fills this need.

The need for better detection

Advancements in software development such as open source, cloud computing, infrastructure
as Code (IaC), and continuous integrations/continuous deployment (CI/CD) pipelines have
reaped benefits for organizations. These advancements allow organizations to easily build upon the
technology of others, frequently deploy new versions of their software, quickly stand up and break
down infrastructure, and adapt quickly to changes in their landscape.

Unfortunately, these same advancements have aided threat actors as well. Open source repositories
provide a plethora of offensive tools. Cloud computing and IaC allow adversaries to quickly deploy
and break down their C2 infrastructure, while advances in software processes and automation have
increased their ops tempo in updating and creating new capabilities. These changes have further
deteriorated the value of static indicators and necessitate the need for better, more sophisticated
detections. As such, the field of detection engineering is beginning to evolve to support efforts for
more sophisticated detections. With an effective detection engineering program, organizations can
go beyond detecting static indicators and instead detect malicious activity at a technique level.

The qualities of good detection

There is no one definition for good detection. Individual cyber security organizations will have varying
thresholds for false positive rates – that is, the rate of detections triggering when they shouldn’t.
Additionally, the adversaries they face will differ in sophistication, and the visibility and tools at their
disposal will vary. As a detection engineer, you must identify metrics and evaluation criteria that align
with your organization’s needs. In Chapter 9, we will review processes and approaches that will help
guide those decisions. These evaluation criteria can be broken into three areas:

• The ability to detect the adversary

• The cost of that ability to the cyber security organization

• The cost to the adversary to evade that detection

The ability to detect the adversary can be broken into a detection’s coverage, or the scope of the activity
that the detection identifies. This can most easily be understood in terms of MITRE ATT&CK. As
mentioned earlier, the framework provides definitions at varying levels of specificity, starting with
tactics as the most general grouping, broken into techniques, and then procedures as the most fine-
grained classification. Most behavioral detections focus on detecting one or more procedures taken

The value of a detection engineering program 17

by an adversary to implement a technique. Increasing a detection’s coverage by detecting multiple
procedures associated with a technique or creating a detection that works across multiple techniques
often increases the complexity of the detection but can also improve a detection’s durability.

Where a detection’s coverage can be thought of as the surface area across the MITRE ATT&CK
TTPs, the durability of the detection identifies how long the detection is expected to be effective.
Understanding the volatility of an adversary’s infrastructure, tools, and procedures and the relative
cost to change them can help predict the durability of a detection.

These two evaluation criteria define what portion of attacks we can detect and for how long we expect
those detections to be effective. Unfortunately, quantifying these evaluation criteria into metrics requires
complete knowledge of an adversary’s capabilities and their ops tempo to change those capabilities.
Despite this, we can use these criteria to rank the effectiveness and quality of our detections as we
strive to improve our ability to detect the adversary.

However, we can calculate an organization’s historical effectiveness by calculating our mean time
to detection as the time from the start of the attack on the organization to the time it took to detect
the adversary.

Our ability to detect the adversary does not come without costs to the cyber security organization.
These costs can be realized in the creation, running, and maintenance of detections, the resources
spent reviewing associated alerts, and the actions taken based on those alerts. Later in this chapter,
we will review the workflow of detection engineering. The creation time to perform that workflow
defines the costs for creating that detection. For example, researching approaches to a technique is
necessary to improve the coverage and durability of a detection but also increase the cost of creation.
As a detection engineer, understanding the complexity of the detection affects future analysts’ abilities
to understand and maintain the detection. It also affects the efficiency of running the detection (both
positively and negatively). Maintaining the detections within an organization is an ongoing process.
Staleness can be used to define the continued effectiveness or value of a detection. Is that technique or
tool still being actively used? Is the detection used to detect something that is fully patched or protect
infrastructure/software that is no longer on your network?

Each alert that an analyst must review comes at a cost. The confidence of a detection measures the
probability that the alert is a true positive – that is, the alert is triggered under the expected conditions.
However, tuning a detection to reduce the false positive rate can decrease the detection’s coverage
and result in not identifying the attack. In contrast, the noisiness of a detection identifies how often a
detection creates an alert that does not result in remediation. The noisiness of a detection might result
from low confidence – that is, a high false positive rate – but it could also be related to the impact of
the detection. Understanding the potential impact allows us to measure the importance or severity
of what has been detected.

For example, a detection might identify reconnaissance scanning of the network. The lack of actionability
on this activity, despite the confidence in the detection, might result in the noisiness of the detection
being unacceptable. Each organization must identify its tolerance for false positives when tuning

Fundamentals of Detection Engineering18

its detections. However, confidence in detection and the associated potential impact can be used to
prioritize an organization’s alerts. In Chapter 5, we will review how low-fidelity detections can be
valuable without significantly affecting analyst productivity.

The actionability of a detection defines how easy it is for a SOC analyst to leverage the detection to
either further analyze the threat or remediate it. This does not mean that every detection must have
an immediate action or response. A detection may have such significantly low confidence that it is
ineffective to immediately investigate or respond to. Instead, the action associated with the alert is
to increase confidence in other related identified activities or support potential root cause analysis.
Unactionable intelligence, however, has limited value. The specificity of a detection supports this
actionability by explaining what was detected. As an example, a machine learning model may provide
increased coverage in detection with a high confidence level but may be unable to explain specifically
why the alert was created. This lack of specificity, such as identifying the malware family, could reduce
the actionability by not identifying the capabilities, persistence mechanisms, or other details about
the malware required to properly triage or remediate the threat.

Lastly, when evaluating a detection, we must look at the cost to the adversary. While we will not, in
most cases, have an inside look at the detailed costs associated with implementing an attack, we can
look at indirect evidence in determining adversary cost. Inherent knowledge of how easily an adversary
can evade detection, such as referencing the Pyramid of Pain, can provide guidance for ranking the
cost to the adversary. As an example, the cost of changing a malware hash is significantly less than
the cost of changing the malware’s C2 protocol. The volatility of an attacker’s infrastructure, tools,
and procedures measures how often the attacker changes their attack in a way that would mitigate
the detection. Identifying parts of an attack with lower volatility allows the defender to increase the
durability of their detection.

The benefits of a detection engineering program

When selling the concept of a detection engineering program to executives, there’s only one justification
that matters: a detection engineering program dramatically reduces the risk that a sophisticated
adversary can penetrate their network and wreak havoc on their company. While this should be true
about every aspect of your cyber security organization, each organization achieves this differently.
A detection engineering program differs from other aspects of a cyber security program by allowing
organizations to respond to new attacks quickly. It can leverage internal intelligence about adversaries
targeting their industry and specifics about their company’s network to customize detections.

While detection solutions from any given vendor are typically bundled with vendor-provided detections,
these detections are created based on a customer-agnostic approach to detection. They are written in
such a way that they can be mass-distributed to client devices without impacting business. As such,
vendor detections focus on rules and signatures that can apply to any environment. However, this does
not catch the edge cases; that is where detection engineering within your organization comes in. By
establishing a detection engineering program, you have control over the focus of your detections and
can plan them in such a way that they cover the use cases specific to your environment. For example,

The value of a detection engineering program 19

the vendors cannot block all logins from foreign countries as that would impact their client base
negatively. However, an internal detection engineering team can determine that there should not be
any foreign logins and write the detection accordingly. We’ll dive deeper into designing detections
tailored to your environment in Chapter 2 and Chapter 5.

In addition to this core benefit, there are additional secondary benefits that cyber security organizations
can expect from a well-established detection engineering program. Specifically, we will dive into the
following key advantages:

• Standardized and version-controlled detection code

• Automated testing

• Cost and time savings

Let’s take a look.

Standardized and version-controlled detection code

As part of building a detection engineering program, you will set the standards for how detections
are written. This allows the code to be easily understood and compatible with detection solutions,
regardless of the author of the detection. Without such standardization, the author will write rules at
their discretion, potentially confusing peers trying to interpret the rule.

Furthermore, a detection repository will be leveraged so that all code is version-controlled and peer-
reviewed and tested before it’s implemented in production. Maintaining a centralized repository of
detection code reduces the chance of untested changes or rules being introduced into production
environments and makes it easier to track any problematic code. We’ll discuss maintaining a repository
of detections in Chapter 5.

Automated testing

By automating detection testing, we reduce the risk of new or modified detection code introducing
errors into production environments. Furthermore, the more automation that is integrated into the
environment, the less time detection engineers must spend manually testing code. The detection
validation process will be thoroughly discussed in Part 3.

Cost and time savings

The cost and time savings of detection engineering are major selling points to stakeholders. For any
funding provided to the program, stakeholders and management will look for a return on investment
(ROI) as soon as possible. This ROI comes in the form of cost and time savings resulting from numerous
factors. For example, automated testing will improve the quality of detections. This will reduce the time
spent on testing detections and it will reduce the time the analysts spend responding to bad detections.

Fundamentals of Detection Engineering20

The largest cost and time savings deduction results from reducing the probability of a network breach.
Reducing the risk of a breach by implementing well-developed detections reduces the risk of the cost
associated with breaches.

In this section, we demonstrated the value of a detection engineering program and the benefits this
has for an organization that implements such a program. The next section will close out this chapter
by outlining the material you can expect to see throughout this book.

A guide to using this book
The previous sections in this chapter provided the foundational knowledge you will need to fully grasp
the contents of this book. In this final section, we’ll provide a brief overview of the rest of this book
and the topics covered in each chapter.

The book's structure

This book aims to provide you with a thorough walk-through of building a detection engineering
program. Along with in-depth knowledge of various aspects of the detection engineering life cycle,
this book provides hands-on labs to allow you to learn the tools and skills discussed throughout this
book practically. This book is broken into four parts, each providing insight into a different aspect of
detection engineering.

Part 1 establishes the foundational knowledge required for the rest of this book. The previous sections
of this chapter provided key concepts and terminology that will be referenced throughout this book.
We also covered the justification for establishing a detection engineering program and the benefits
it brings an organization. In Chapter 2, we will dive into each phase of the detection engineering life
cycle and provide a high-level overview of the actions that occur at each phase. Finally, Chapter 3 will
guide you through building a detection engineering lab. This lab will be used throughout the rest of
this book for hands-on exercises.

Part 2 focuses on the creation side of the detection engineering life cycle. It starts with Chapter 4,
which focuses on identifying and evaluating the data sources available to detection engineers. This
chapter includes a lab that will show you how to add detection sources to the lab you will have built in
Chapter 3. Chapter 5 will help you understand your detection requirements and establish the procedure
and method for storing detection code. Part 2 ends with Chapter 6, where you will be provided with
a hands-on walk-through of turning the detection requirements you established previously into
detection code that can be tested within the lab.

Part 3 moves on to the concept of testing and validating detections. First, Chapter 7 provides practical
guidance on validating detection by using existing data and generating simulated data. Additionally, it
provides an introduction to proving TTP coverage via the results of the validation. Chapter 8 introduces
the idea of leveraging threat intelligence in your detection engineering program, as a detection source,

Summary 21

detection requirement, and method of understanding coverage. Chapter 9 closes off Part 3 with a
discussion on performance management. This includes methods of measuring the effectiveness of
your detections, as well as your detection engineering program as a whole. Furthermore, you will learn
how to implement continuous improvement into your detection engineering program.

Part 4 ends this book with Chapter 10. This chapter is for those who want to learn more about detection
engineering as a career. It will dive into the skill sets that will be required for a career in detection
engineering and the day-to-day role of a detection engineer. Here, you will see where the future of
detection engineering is going and how you can get involved in the detection engineering community.

Practical exercises

One of the authors’ goals with this book is to provide not just text-based knowledge but also practical
hands-on exercises that will allow you to experience the detection engineering process. These labs
begin in Chapter 3, where we’ll build out a test environment that will contain all the infrastructure
and tooling required for the rest of the labs in this book.

With this test environment in place, most chapters will include exercises that will allow you to write
and evaluate detections. These labs will include both those that relate to specific detection technologies
and those that look at the environment’s coverage as a whole.

All code related to these labs is hosted publicly on GitHub at https://github.com/
PacktPublishing/Practical-Threat-Detection-Engineering.

The hope is that the practical knowledge provided by this book will enable detection engineers to
take actionable lessons learned and implement such strategies and techniques in their environments.

Summary
In this chapter, we provided a high-level introduction to some of the foundational cyber security
concepts that will be referenced throughout this book. With this knowledge established, we justified
a detection engineering program – specifically, the benefits and value provided to organizations
implementing such a program. Finally, we closed out this chapter by providing an overview of what
you can expect from the rest of this book.

In the next chapter, we’ll begin to look at how organizations can identify and plan out their specific
detection requirements. We’ll also dive further into the detection engineering life cycle steps that
were introduced in this chapter.

2
The Detection Engineering

Life Cycle

In Chapter 1, we introduced the foundational concepts that will be referenced throughout this book.
With this baseline knowledge, we can begin diving further into detection engineering (DE) and its
practical implementation. This chapter will cover the DE life cycle to help you understand the purpose
of each phase. We will also consider the inputs and outputs of each phase to see how the different
phases interact with each other for a holistic approach to DE.

To begin, we’ll introduce the DE life cycle and its subcomponents. Figure 2.1 shows the life cycle as a
flow chart to help you understand the order of operations:

Figure 2.1 – DE life cycle

The top section shows the six primary phases, each of which we will dive into at a high level in the
following sections of this chapter. The phases operate in sequence, aligning with the order shown in
Figure 2.1, with the Test and Investigate phases potentially feeding back into previous phases. We will
review these phases in the order that they occur within the subsections of this chapter:

1. Requirements Discovery

2. Triage

3. Investigate

4. Develop

5. Test

6. Deploy

The Detection Engineering Life Cycle24

Future chapters will go into each phase in more depth but this chapter will give you the insight needed
to know how each phase feeds into the next and the functioning of the life cycle as a whole.

Along with these phases, four key continuous activities are involved in DE that focus on the DE program
as a whole, based on developed content, and can help identify areas of improvement:

• Monitoring

• Maintenance

• Metrics

• Comprehensive validation

Despite laying outside the DE life cycle, these activities may lead to the creation of new detection
requirements. We’ll discuss these activities briefly in this chapter, and then in more depth in Chapter 10.

The majority of this chapter will focus on introducing each phase at a high level so that when future
chapters begin to reference these phases, you are prepared with the baseline knowledge. Where
information is expanded on in future chapters, we will provide a reference, but we recommend that you
continue progressing through this book in order rather than skipping ahead as many of the chapters
build on the previous ones. Knowledge of the DE life cycle will help you understand how the various
topics discussed in future chapters fit into the DE process as a whole.

Phase 1 – Requirements Discovery
The first task in the DE life cycle is to collect detection requirements. The Requirements Discovery
phase can be initiated from multiple sources, as described here, and results in detection requirements,
which will be passed onto the Triage phase for further evaluation. At a high level, we can analyze
inputs and outputs for each phase. In this case, we have the following:

• Input: Findings from detection requirement sources

• Output: Detection requirement(s) with the details specified in the Characteristics of a complete
detection requirement section

This section will outline various aspects of the Requirements Discovery phase, such as what a detection
requirement should include and where those requirements come from. To start, we’ll examine the
characteristics of a complete detection and provide a template so that you can gather such information
in your organization. Then, we’ll dive into the sources that detection requirements can come from
and how to identify which are most relevant to your organization.

Phase 1 – Requirements Discovery 25

Characteristics of a complete detection requirement

The result of the Requirements Discovery process should be well-defined detection requirements. The
detection engineers need to work with the stakeholders who will be submitting detection requirements,
to ensure these requirements are written clearly. At a minimum, the following details should be collected:

• Requesting organization: The organization that requested the requirement. This should also
include the individual, if applicable, that issued the request, allowing the detection engineer to
reach out for additional details if necessary. It is also important to inform the requester once
the detection has been created. This provides feedback to the requestor and assures them that
their inputs are being acted upon.

• Description: What needs to be detected? Descriptions can be phrased in technical terms, such
as detect when new files are written to a web server code directory, or in broader, less technical
terms, such as notify line managers and the security team if an end user uses unauthorized
remote administration software. Any links to open source material, analysis performed by the
requesting team, or other information would be provided by the requestor.

• Reason: In many cases, the reason may be self-evident from the description. As an example,
the detection requirement was based on a forensic analysis of an attempted attack against
the company network. In other cases, the reason can be used to help triage the importance
of implementing the detection. Was the ticket placed by an analyst reading a blog about a
new attack or was it created based on the tactics, techniques, and procedures (TTPs) of the
adversaries targeting other companies within your industry?

• Exceptions: Under what conditions should an alert not be triggered? An example of this is if
the event is an authorized developer modification.

• Scope: The scope describes where the detection should be applied. Similar to exceptions, the
scope can be used to limit the false-positive rate of the detection. The scope can also inform the
detection engineer of the purpose of the detection, types of telemetry available, or limitations
of the detection.

• Evidence: Links to malware, logs, PCAP, or other data collected that can be used to create or
test the detection. Any detection request created by the security operations center (SOC), IR,
or hunt team should contain the associated network or endpoint artifacts that were acquired
during their investigation.

Next, we will take a look at where these detection requirements can be sourced from within
your organization.

The Detection Engineering Life Cycle26

Detection requirement sources

Detection requirement sources refer to where the information used to create the requirement originated.
These sources can be internal to the DE team or external teams. Furthermore, the detection requirement
sources may involve ad hoc requests or can result from findings during the DE process.

In this subsection, we are going to look at the most common requirement sources, including examples
of how these sources can be leveraged. Future chapters will go into more depth on some of the most
significant sources. The following sources will be covered in this subsection:

• Threat intelligence:

 � Internal threat intelligence

 � Open source threat intelligence

• Business security requirements

• Red Team exercises

• SOC requests

• Continuous activities

Each of these sources plays a unique role in guiding the DE team’s work and providing complete
detection coverage.

Threat intelligence

Threat intelligence plays a major role in detection development. When developing detections, it is
important to prioritize your efforts toward threats that you are likely to face in your environment.
Otherwise, your efforts may be wasted on irrelevant detections.

For example, Transparent Tribe is a threat group that targets diplomatic, defense, and research
organizations in India and Afghanistan. If your organization is a retail organization in the US, writing
detections for Transparent Tribe is likely not to have a major impact on your defenses. However,
writing detections for FIN7, a threat actor that targets organizations in the US retail, restaurant, and
hospitality industries, typically through point-of-sale malware, would provide much more value as
they are more likely to target your organization.

The following are some questions you can ask to start identifying specific threats of importance to
your organization:

• What are the most common threats against your organization’s technologies?

• What types of attacks does your organization most often observe (based on historical
incident tracking)?

Phase 1 – Requirements Discovery 27

• Which active threat groups are targeting your industry?

• What types of attacks are most impactful to your organization (ransomware, DoS, IP loss, and
so on)?

With the context gained from asking these questions, organizations can begin to identify which
detections will have the biggest impact on their defenses. Threat intelligence reporting will help you
identify the TTPs used by the threat actors likely to target your organization. These TTPs, in turn,
can be used to design and develop detections.

As another brief note on threat intelligence: we can further distinguish threat intelligence into two
categories: open source and internal. Open source intelligence (OSINT), as the name implies, is
publicly available. This can be in the form of blog posts, tweets, whitepapers, or online security tools,
such as VirusTotal. Internal threat intelligence is sourced from previous incidents targeting your
organization. This knowledge can be used to identify common attacks and trends. For example,
based on an analysis of previous incidents reported by the SOC, phishing is the most common attack
vector seen by organizations. In this case, we would want to discuss how we could better detect such
attacks. Bigger organizations may have a dedicated threat intelligence team producing reports for
the rest of their security teams, sourced from both OSINT and internal data. Smaller organizations,
however, may not have dedicated analysts to provide this information and the detection engineers
will be responsible for identifying relevant intelligence.

In Chapter 8, we’ll dive further into the role threat intelligence plays in a DE program and provide
further guidance on evaluating which threat intelligence sources will provide the most value to
your organization.

Business security requirements

Organizations often have acceptable use policies that define how their devices should be used. This often
reduces the risk of users visiting illegitimate websites that could present a security risk. For example,
an organization may choose to prohibit the use of BitTorrent. An alternative to blocking traffic using a
firewall would be to leverage detection systems instead and alert others to such a policy violation. This
assists in detecting both malicious actors using such services and users attempting to violate corporate
policy without causing any disruptions for potentially legitimate but unknown use cases. Questions
to ask yourself that will assist you in identifying these business security requirements are as follows:

• What software is prohibited by company security policies?

• What system administrative tools may be used legitimately and by who?

• What network technologies are not common to the organization (RDP, SSH, and so on)?

The Detection Engineering Life Cycle28

Security operations center requests

SOC analysts are on the front lines when it comes to observing malicious activity. They may start
observing new threats before the DE team has identified the need for new detection. Alternatively, if
a detection is performing poorly and needs to be fine-tuned, it is going to be the SOC that is flooded
with false positive alerts. As such, it is important to have a constant feedback loop between SOC
analysts and detection engineers. If there is an issue with an existing detection or if a detection gap
is identified, the SOC should ensure the DE team is aware. The DE team should, in turn, leverage the
observability the SOC has and use its feedback as a source for detection requirements.

For this detection requirement source, it is especially important to define the process by which this
feedback loop occurs. The methods of communication between the SOC and DE teams, as well as the
information required by the DE team from the SOC, are both key procedures to document. Assuming
a ticketing system is in place for tracking work when the SOC or any other requirement stakeholder
identifies a detection requirement, it should be submitted to the DE team via the ticketing system.
The templates for any requests that are to be submitted should include all the information discussed
in the previous section, Characteristics of a complete detection requirement.

Red Team exercises

Red Team exercises are designed to help identify an organization’s security weaknesses. One of the
security controls that is tested is the ability to detect the Red Team’s activity in the environment. If
their activity is not successfully detected, it indicates the need for improvements to detection systems.
Like with the SOC requests requirement source, a process must be in place for communicating the
requirements between the Red Team and the DE team.

One unique differentiation from SOC requests is that since SOC observations are based on real, corporate
activity, it is not as easy to simulate the exact circumstances that led to the need for that detection.
Forensic analysis can help identify related samples or logs but is limited to the organization’s visibility
and data retention policies. Red Teams, however, can replay the attack under the same conditions to
identify whether the detection is successful.

Continuous activities

As part of continuous activities, such as monitoring and validation, the DE program will identify
where their existing detections fall short as it pertains to their validation criteria. This information
can then be used to direct the design of new detections.

In the introduction to this chapter, we covered the different continuous activities involved in a DE
program. Specifically, this includes the following:

• Monitoring

• Maintenance

• Metrics

• Comprehensive validation

Phase 1 – Requirements Discovery 29

This subsection will briefly describe each of these activities and how they act as detection
requirement sources.

Monitoring

Monitoring is the process of continuously assessing detections that have been implemented in
production. Regardless of how much testing is performed during the DE life cycles, there will always
be unexpected results when implemented in production. During development, you will test for certain
expected false positives and make sure that the detection fires under specially crafted circumstances.
So, here, monitoring allows you to capture how the rule performs in “real-world” deployments.

These unexpected results are the output from the monitoring phase and act as input for the detection
requirements. For example, let’s say you deploy a rule that checks for the presence of nc in a command
line (to detect Netcat activity). During testing, you ensure executing an nc command results in the
detection firing. You also use a sample set of random data to check for false positives but nothing
triggers, so you deploy it to production.

Given the limited nature of your sample dataset, you can’t guarantee there won’t be false positives
on a more wide-scale deployment. That’s where the monitoring phase comes in. As per our previous
example, let’s say there’s a command line with the sync string present. Since the rule is triggering in
the presence of “nc,” this command line will result in a detection for Netcat, despite it being unrelated.
This information should be used to create a detection requirement to tune the existing detection and
reduce false positives. This process may continue multiple times for some detections if edge cases
that aren’t expected during testing arise. Monitoring will be discussed in more detail in Chapter 9.

Maintenance

The idea of maintaining detections results from the fact that the cyber security landscape is constantly
evolving. As threats evolve, so must our detections; otherwise, we won’t be able to keep up with threat
actors. Some detections will remain relevant and consistent throughout their lifetime, while others
will need updating as part of the maintenance phase.

An example of this would be if you write a detection for a specific campaign you’ve observed targeting
your organization. Let’s say that this campaign involves a threat actor sending a malicious executable
in a ZIP archive via email. With this knowledge, the DE team develops a rule for ZIP attachments
that spawns an executable. But what if the threat actor changes their tactics and decides to put the
executable in a TAR archive instead? If this occurs, the original detection will no longer work. Therefore,
the detection logic for this campaign needs to be updated to now look for TARs. The output of the
maintenance phase is a detection requirement for updating an existing detection. Maintenance will
be discussed further in Chapter 10.

Metrics

Metrics are essentially a statistical analysis of the performance of your rules. They can be used from a
variety of perspectives to increase the effectiveness of your ruleset by identifying unexpected results.

The Detection Engineering Life Cycle30

First, we can look at metrics that simply indicate how many times a detection has been triggered. This
allows us to identify rules that need to be tuned. For example, if metrics highlight a detection that is
triggering an excessive number of alerts compared to other detections, it may indicate the detection
is causing a high number of false positives. From the other perspective, if there is a detection that has
never resulted in an alert, we should review whether the rule is functioning as expected. Some rules
may be looking for such niche activity that we don’t expect them to trigger, but that should be verified.

Next, we can look at metrics regarding the final determination of triggered detection. This requires
your organization to have some method of tracking the outcomes of incident response – for example,
a case management system that analysts provide a reason for closing after completion. From there,
you’d be able to retrieve statistics regarding which detections result in false positives based on a
manual analyst review.

The final metric to be discussed here is performance metrics. Due to the technical limitations of
detection technologies, it is important to ensure that your rule is not only resulting in accurate
detections but also efficient detections. If detections are not built for efficient performance, you risk
impacting production systems. During detection development, you will implement best practices
to avoid deploying resource-intensive resources. As your detection repository grows, however,
performance may be affected in the scope of the entire detection deployment. We’ll discuss metrics
further in Chapter 10 as part of performance management.

Comprehensive validation

Validation uses simulated attacks or other techniques to identify whether your detection systems or
individual detections are identifying the associated malicious activity. Validation is commonly used
as part of the Test phase of the detection life cycle but can also be used in a continuous comprehensive
fashion to perform a larger gap analysis. When beginning a validation process, you will likely set
some goal for the validation – that is, what coverage you want to validate. This could be validation of
detections against certain frameworks, such as MITRE ATT&CK, or specific threat actors or campaigns.
After performing a validation, the results can become a detection requirement source based on where
existing detections did not provide coverage.

For example, if validation is performed against the MITRE ATT&CK matrix as a gap analysis and it
is revealed that we are unable to detect T1053 (Scheduled Task/Job), that technique may become a
requirement for a new detection. The Phase 2 – Triage section will briefly introduce the concept of
detection coverage. Additionally, Chapter 10 will cover performance management and assessing your
detection coverage in more depth. Before closing out this chapter, let’s perform a quick exercise to test
your understanding of the Requirements Discovery phase.

Exercise – understanding your organization’s detection
requirement sources
The following questions will assist you in identifying how each of the concepts applies to your
organization. If you do not work in a role or company that provides you with the information to

Phase 2 – Triage 31

answer these questions, choose a fictional company to use with this book. As this book progress,
questions like these will help reinforce the concept that certain aspects of your DE program will be
heavily influenced by organization-specific characteristics. Being able to take information about an
organization and understand how it affects detection development is an important DE skill:

1. Review the detection requirement sources listed in the chapter. Which of these apply to
your organization?

2. Do your current processes enable these stakeholders to easily submit new requirements? How
can your processes be improved to increase participation?

By answering these questions regarding your organization, you can establish a foundation that will give
you a personalized approach to the rest of the content in this book. This context will guide priorities,
limitations, and processes specific to your situation. An example of what this context might look like
for an organization is as follows:

1. We have a SOC team as well as various business requirements that could be leveraged for
detection requirements. We do not have a Red Team or threat intel team, however, so currently,
those are irrelevant sources.

2. At this time, there are no processes for submitting detection requirements. The organization
leverages Jira as a ticketing system. We should create templates and procedures for submitting
detection requirements with all the required information. We need to identify and notify
stakeholders and ensure they understand the process.

With the detection requirements output from this stage, we can now move on to the Triage phase,
which will help us identify which of the detection requirements should be prioritized.

Phase 2 – Triage
As the backlog for requirements increases, a Triage phase is required to identify what detection should
be focused on next. The following are the inputs and outputs associated with this phase:

• Input: Detection requirement created during the previous phase

• Output: Triaged and prioritized detection requirement

In most circumstances, dependencies do not exist between detection requirements, allowing the DE
team to choose the next appropriate task from the backlog. Using a first-in first-out queue or predefined
priority is not preferable as these methods will not consider the changing external threat landscape
and internal attack surface. In Chapter 10, we will review performance management techniques that
influence the Triage phase. The Triage phase can depend upon several factors, including the following:

• The severity of the threat

• Your organizational alignment with the threat

The Detection Engineering Life Cycle32

• Your detection coverage

• Active exploits

Threat severity

Threat severity relates to the impact of the threat if it is not detected. The greater this impact, the higher
the severity. A simple example of this would be the severity difference between detecting reconnaissance
versus detecting malware on your network. Most commonly, the further in the kill chain or how far
right in the MITRE tactics, the greater the impact. However, the operational environment can affect this
rating of severity. Consider the ability to detect a remote access Trojan (RAT) in your environment.
Traditionally, a RAT would be high severity but if found within a closed network, the RAT’s inability
to contact its C2 would reduce its severity and the detection team may triage to identify malicious
users or ransomware as higher severity.

Organizational alignment

In the Detection requirement sources section, we discussed the value of threat intelligence in supporting
your DE efforts. In Chapter 9, we will focus on creating and leveraging threat intelligence to support
DE. Threat intelligence is only half of understanding organizational alignment. At a high level,
organizational alignment describes how a detection relates to the company or network it is protecting.
We start by leveraging threat intelligence to identify external threats’ motivations, targets, capabilities,
and infrastructure. This external view of the threats can then be overlaid upon the internal view – that
is, the industry, organization, infrastructure users, and data that is being protected. If the requested
detection falls within the overlap of the external threats and what is being internally protected, it has
organizational alignment.

Detection coverage

Understanding your current detection capabilities, both those created by your internal organization
and those provided by commercial or open source entities, can inform the triage process. Is this
requirement already met by existing detections or is the requestor identifying a gap or fault in the
existing detections that were supposed to serve this requirement? This analysis may not be a binary
question of whether existing detections identify the malicious activity identified within the request.
In addition, you may wish to analyze whether the request is an improvement on existing detections,
such as reducing the false positive rate, improving the specificity of the detection, or identifying the
activity through additional sources or visibility compared to the current detections.

Active exploits

Quickly protecting against newly identified active exploits may be one of the most visible ways to
show the value of the DE team. Rapidly implementing detection in these scenarios helps protect your
organization against an active threat and provides value when leadership’s attention is squarely on

Phase 2 – Triage 33

the cyber security team. Consider the Log4j exploit in 2021. Figure 2.2 shows the increase in attacks
over the hours following the exploit’s announcement. The ops tempo of adversaries leveraging this
vulnerability was hours, not days. Having the ability to match the velocity of the adversary, as well
as implementing and deploying detections that identify and block this activity, is a core added value
of the DE team:

Figure 2.2 – Log4j exploit statistics. Data source: https://blog.checkpoint.com/

security/the-numbers-behind-a-cyber-pandemic-detailed-dive/

While it may be tempting to continuously respond to the latest exploits, especially if a request was
created to detect it, understanding the exploit and its impact is important. Here are some questions
you should consider:

• Is my organization affected by this exploit?

• What is the impact of this exploit?

• Does enough information exist for adversaries to implement the exploit or for a detection to
be created against it?

• How easy is it for an adversary to implement the exploit?

• Is the exploit being currently used in the wild, or by adversaries that target your organization?

• How quickly will the affected applications provide an update to patch this exploit?

The Detection Engineering Life Cycle34

After using the Triage phase to prioritize detection requirements, the Investigate phase can begin,
with the triaged requirements acting as the input.

Phase 3 – Investigate
The Investigate phase has multiple goals, but fundamentally, it needs to prepare a detection requirement
for development by converting the detection requirements into more technical ones. Executing this
process can identify deficiencies in intelligence or data collection, which will need to be resolved
before development can start. The following are the inputs and outputs associated with this phase:

• Input: Triaged detection requirement

• Output: Detection of technical specifications and data engineering requirements (if applicable)

The Investigate phase can be broken into four steps:

1. Identify the data source

2. Determine detection indicator types

3. Research

4. Establish validation criteria

Let’s take a look.

Identify the data source

During this step, you must identify the relevant data sources needed to satisfy the detection requirement.
Analysts will need to understand the intent and scope of the detection, to identify the assets in scope.
For example, a detection may only be relevant for an organization’s operational technology (OT)
environment, but not their corporate environment. Furthermore, the detection may only be relevant
to a specific type of network traffic. This informs you of the specific type of data that will need to
be operated on to produce the relevant detection, and therefore the teams that need to be engaged,
such as network engineers and operations personnel who understand the specific domain the assets
operate in. During this step, any data source deficiencies will also be identified, and where necessary,
additional requests will be sent to the appropriate team for resolution (the data engineering requirements
mentioned as output). For example, a frequently encountered issue with web server logs is the absence
of the X-Forwarded-For request header. If the web infrastructure is not configured to capture
this field, detection cannot be written to test for values in that field. Configuration changes need to
be made before any dependent detections can be implemented.

Phase 3 – Investigate 35

Determine detection indicator types

Detection indicator types can be static, behavioral, statistical, or hybrid. Static detections operate on
an atomic attribute of a signal. For example, antivirus data may collect MD5 hashes for binaries saved
to disk. A detection designed to identify static indicators may have a definition that looks for an MD5
of a specific value. Detections for static indicators tend to be the easiest to implement, but they are
also the easiest to evade. They tend to have low long-term value but high short-term tactical value,
specifically when scoping an active cyberattack. Behavioral indicators are more complex and can
operate on multiple data entity types, with multiple conditions specified. These detections attempt to
identify a general definition for a specific tactic being executed. Statistical indicators typically detect
aggregate value exceeding some threshold for a given period, or a deviation from an established
baseline. Table 2.1 outlines the indicator types, an example of those indicators, and the requirements
that detection systems must satisfy to develop detections of that type:

Indicator
Type Example Requirement Detection System Requirements

Static

Detect communication
with a recently identified
phishing site, hosted at
SiteA.com/login.
php, with the IP
address IPAddr1

The ability to identify a specific IP address, URL,
and domain name in any outbound traffic, and the
host where the traffic originated

Behavioral
Detect a web server
process executing
reconnaissance commands

A maintainable list of web server processes, a
maintainable list of reconnaissance commands,
and the ability to identify processes, child
processes, and security contexts for processes

Statistical

The volume of traffic from
a single specified host to
the internet that rises over
a specified threshold within
a specified timeframe

The ability to monitor a moving aggregate
of bytes sent from a single host, holding a
configurable value for a data threshold, and the
ability to compare aggregate values against the
specified threshold

Hybrid

Communication with a
recently identified phishing
site, hosted at SiteA.
com/login.php,
followed by an anomalous
login activity

The ability to identify a specific IP address, URL,
and domain name in any outbound traffic, as well
as the host where the traffic originated.

The ability to identify login behavior varying from
a normal baseline to determine suspicious outliers

Table 2.1 – Detection indicator types

The Detection Engineering Life Cycle36

As you can see, detection requirements can become quite complex and require different development
strategies. Ideally, these details should be understood and mapped before advancing to the Develop phase.

Research

During this step, analysts need to understand the detection and classify it based on attacker goals and
the associated tactics and techniques (often using the MITRE ATT&CK framework). In reviewing
the tactics and techniques, this step will reveal whether similar tactic coverage already exists within
the detection environment, and how the new detection requirement can be integrated. This might
include the following:

• Identifying examples of attacks performed in the past.

• Identifying any similar rules, partial matches, or detections for the same TTPs that should be
updated rather than a new detection being created.

• Identifying variations of the attack that could be performed by the adversary. Here, you can
deconstruct the attack to identify the underlying capabilities used and determine which of
these capabilities are least likely to vary.

Establish validation criteria

The Investigate phase must also identify how detection can be tested. In ideal circumstances, realistic
data will always be available to determine whether a detection query runs as expected. However, this is
not always the case, for a variety of reasons. Emerging or novel attack techniques may not have many
details available, and in these cases, detections are usually theoretical, with no concrete validation. In
other cases, assets may not or cannot collect the resolution of data required to build a specific detection,
due to a business constraint outside of the control of the security function. Part of the Investigate
phase involves sourcing or generating test data that can be used to validate the effectiveness of the
detection being reviewed.

Detection requirements can sometimes be expressed in non-technical terms, which require interpretation
before they can be translated into specific technical requirements. This process produces a package of
relevant technical details that developers need to write detection code, as discussed in the next section.

Phase 4 – Develop
The goal of this phase is to take technical specifications from the Investigate phase, then design,
develop, and test a technical implementation for the relevant detection. The following are the inputs
and outputs associated with this phase:

• Input: Detection of technical specifications

• Output: Detection code

Phase 5 – Test 37

As with most development work, this step requires rigorous planning. New detections need to not only
satisfy the requirements but must also integrate with the rest of the detections within the environment.
Detections are often implemented in the form of a query that is run against a data source or multiple
data sources. Depending on your environment and its capabilities, different languages may need to
interact with different data sources, and data pipelines and intermediary data stores may need to be
built. The development process develops and implements a suitable solution for each new detection
requirement, keeping both short- and long-term objectives in mind. This phase can be divided into
three sub-processes – design, development, and unit testing:

• Design: The design process plans the approach for implementing a new detection. In some
cases, the detection requirement can be satisfied by simply writing a single query in a system
built for managing detections. These can be implemented quickly. However, for more complex
requirements, developers often need to devise strategies for collecting, transforming, and
processing data from multiple data stores, and writing integrations for different applications
and alerting systems. Complex requirements can generate requests for infrastructure changes.
These can take significant time to implement, and often, in practice, temporary solutions are
implemented until more robust solutions are built.

• Development: This development process converts the designed solution into a rule or capability
that can be run by the detection appliance. In simple terms, this process focuses on writing the
code that matches the design outlined in the previous step.

• Unit testing: During the unit testing process, the detection is executed against a test dataset
to ensure the expected results are returned. This step uses the data and criteria outlined by the
validation criteria that were produced during the Investigate phase.

With the detection code developed, we are ready to begin testing the code to determine whether it
functions as per the requirements.

Phase 5 – Test
Testing is a way to validate the efficacy of your detection and reduce its noisiness before deploying it
within a production environment. While we show testing as occurring after development, in reality,
it is a continuous process that occurs throughout the detection development process. It should not be
relegated to occurring only after development is complete. A best practice within DE is to use testing
to guide the development process.

Test-driven development is a software development technique that adapts well to this purpose. Tests
are designed before development and are first added to the automated acceptance testing infrastructure.
The development process starts with running the tests against your existing detection capabilities. This
may result in you identifying already existing detection capabilities or confirming the failure of these
tests, which identifies the need to create or update a detection. During the development process, these
tests are continuously applied and used to influence the improvement of the detection. Once these
tests pass, the detection is refactored (changes are made to the code to improve its implementation

The Detection Engineering Life Cycle38

and ensure it adheres to best practices without changing its functionality) and retested. Additional
tests may also be created throughout the process as the implementer identifies new ways the adversary
may try to circumvent the detection.

Types of test data

There are two types of test data: known bad and known good.

Known bad

Known bad data refers to any telemetry that represents the adversary’s activity. This could be anything
that’s captured while simulating the attack in a sandbox, captured from actual adversary attacks
against an environment, or mock data created by altering existing telemetry to represent expected
data from an attack.

Known good

Known good data refers to telemetry captured from benign activity within a clean environment. It can
typically be curated outside of the DE life cycle and reused to test each detection. In addition to general
known good datasets, you may wish to add specific datasets that test the boundary conditions of the
detection. This dataset should, if possible, be curated from your operational environment, reducing
the risk that the tests are not representative of production.

During this phase, multiple ad hoc tests will be written to ensure the detection performs optimally.
In general, these ad hoc tests should keep the following goals in mind:

• Identify possible scenarios for false positives. Each detection can be triggered for scenarios
that do not accurately represent the event the detection was designed to capture. One goal of
testing is to minimize the false positive rate.

• Identify potential for evading detection. While this step arguably falls under the responsibility
of Red Team operators, testers can and should identify more obvious ways to execute techniques
that can carry out the action that the detection should identify, while not being detected.

• Identify possibly incomplete detections. These should highlight detection definitions that are
too loosely defined and do not correctly identify all permutations of the event to be detected.

After testing and repeating the development phase as required, the detection can move on to the
Deploy phase of the life cycle.

Phase 6 – Deploy
The goal of this phase is to take the developed detection from the test environment and migrate it to
the production environment. This detection is also monitored to ensure it runs as expected and does

Phase 6 – Deploy 39

not negatively impact the performance of the production system. The following are the inputs and
outputs associated with this phase:

• Input: Tested detection code

• Output: Deployed detection code

Deployment tags are a useful method for representing the maturity stages of a detection, enabling the
rapid release of new capabilities while limiting the impact of a malfunctioning detection on analysts
reviewing alerts. Here are the criteria for the experimental, test, and stable maturity stages:

• Experimental: At this stage, the detection has been designed and converted into code but
extensive testing on its performance in a real environment has not been tested. Tweaking will
likely need to be done for it to be ready before a peer review. The detection engineer should
closely monitor the results to ensure that the rule works as expected. Other analysts, beyond
the author, should not review alerts associated with experimental detections. The questions
the author should answer at this stage are as follows:

 � Does the detection code execute without errors?

 � Does the detection successfully trigger for the sample(s) provided as part of the
detection requirement?

 � Given unrelated samples, do any false positives occur?

 � Is there any negative impact on system performance as a result of the rule?

• Test: Once the experimental stage has led to a rule that is believed to be ready for a broader
audience, the test stage can occur. The test deployment tag signals that all analysts should
review the alerts from the detection, but these alerts are lower fidelity and thereby may be of
lower priority than alerts resulting from stable detections. Here are some questions that will
assist in this stage:

 � Does the rule trigger under expected conditions?

 � Does the rule conflict with or duplicate existing rules?

 � Is the false positive rate tolerable?

 � Has the broader team identified any ways to improve the detection?

 � Is the broader team comfortable with the quality of the detection?

• Stable: Once a rule has been determined to be stable, it is fully deployed to the production
environment. Analysts should have high confidence in the accuracy of detections tagged as
stable. The rule must have undergone thorough testing in the previous stages; otherwise, you
risk affecting business operations. Once operating in production, if changes are needed based on
false positives or negatives identified alongside the additional sources of events, a ticket should be
submitted to the DE team, who will repeat the life cycle with the existing rule as a starting point.

The Detection Engineering Life Cycle40

The Deploy phase is the last phase of the life cycle and at this point, the detection is in production.
Updates may need to be made to the rules as further data is collected, which will result in a new
detection requirement and a repeat of the life cycle.

Summary
In this chapter, we introduced the DE life cycle and dove into its different phases. To break things
down even further, we analyzed the inputs, outputs, and processes of that given stage in the life cycle.
These phases will be the basis for the remainder of this book, and in subsequent chapters, we will
dive into each of them.

The next chapter will take you through creating your own DE laboratory and the components found
within the lab. We will also provide the technical details for investigating, developing, and testing
new detections.

3
Building a Detection
Engineering Test Lab

In Chapter 2, we introduced the detection engineering (DE) life cycle and provided a high-level
overview of each of its phases. In this chapter, we will walk through the process of building a DE lab
so that we can practice the concepts that will be introduced throughout the rest of this book.

Before we get started, we need to cover the technical components of a typical detection environment.
As mentioned in Chapter 1, DE exists to help the cyber security function protect assets. To protect
assets at scale, these assets first need to forward event telemetry to a central log store. In more complex
configurations, multiple data stores are involved and separate processes are used to compute relevant
statistics and aggregate values for detections. Once stored, these events then need to be routinely
reviewed to identify those that might be indicative of malicious activity. Furthermore, once a possible
malicious activity has been identified, the system must notify the appropriate audiences.

We can break this high-level objective into the following feature sets:

• Event forwarding: Forward events from assets

• Collection: Collect events in the centralized data store

• Detection development: Allow users to define what might be indicative of malicious activity
since the definition of malicious activity is constantly evolving

• Monitoring: Use those definitions to scan for matching events

• Alerting: Notify appropriate audiences if events matching definitions of malicious activity
have occurred

Fortunately, multiple solutions exist to address each of these requirements. In this book, we will
use Elastic Stack. Its feature set and license make it suitable for building a test lab that we can use to
develop and test detections.

Building a Detection Engineering Test Lab42

In this chapter, we will cover the following main topics:

• Deploying and configuring Elastic Stack

• Setting up Fleet Server

• Adding data sources to the detection lab

• Implementing a simple detection

By the end of the chapter, you will have a fully functioning DE lab to use for the rest of the labs in
this book.

Technical requirements
To set up the detection lab, you will need access to a system that can perform virtualization. The
supported operating systems for this book’s walk-throughs are Linux and Windows.

For a Windows virtual machine (VM) deployed in a lab, you will require the following resources:

• At least 2 GB of RAM, though 4 GB or more is recommended

• At least 60 GB of disk space

The Elastic Stack
The Elastic Stack is a set of tightly integrated products that are well suited to address the requirements
of a DE lab. The Elastic Stack includes the following components:

• Beats: A data shipper that is used to collect data from an endpoint and forward it to Elasticsearch
or Logstash for pre-processing. Different packages exist for collecting different types of data
from endpoints. While Beats is a core component of the Elastic Stack, in this book, we will use
Elastic Agent to forward data from endpoints to Elasticsearch.

• Logstash: A powerful tool for transforming data and forwarding it to different destination
systems. It offers a high degree of control over re-shaping data and has plugins that support
forwarding data to a significant variety of destinations.

• Elasticsearch: This is the data storage component. While primarily designed for searching, it
has evolved to become a capable data analysis engine.

• Kibana: This is the Elasticsearch frontend. Kibana allows users to explore and visualize data
stored in Elasticsearch using a web browser. To read more about Kibana’s vast feature set, visit
Elastic’s website: https://www.elastic.co/kibana/features.

• Integrations: This refers to the large collection of data ingestion components that are enabled by
Elastic Agent and managed by Fleet Server. Once an endpoint has Elastic Agent installed on it,
administrators can configure the collection of data from a variety of known data sources. Elastic

The Elastic Stack 43

Agent receives configuration details from Fleet Server about what data should be collected,
and which server the data should be output to. These configuration details are defined as agent
policies and are stored in Elasticsearch.

Figure 3.1 shows some of the Elastic Stack components and how they can interact with each other to
solve many data management problems:

Figure 3.1 – Example Elasticsearch deployment

In this section, we will walk through setting up Elasticsearch and Kibana, specifically for working
with detections. Your configurations may vary, depending on the infrastructure you have available.
To simplify deployments, we will be making use of Docker and docker-compose.

Important note on security
This book describes a way to deploy a minimal environment for independently developing and
testing DE concepts. Many configurations have been simplified and are far too insecure for use
in production environments. Thankfully, Elastic Co has provided detailed instructions for setting
up the Elastic Stack in production environments on their website. We strongly recommend
reviewing this documentation for guidance on planning, deploying, and maintaining the Elastic
Stack in a production environment. All of Elastic’s documentation, including its installation
guide, can be found here: https://www.elastic.co/guide/index.html.

Building a Detection Engineering Test Lab44

In the rest of this section, we will walk through the process of standing up an Elastic Stack, which we
will then use for the labs covered in this book. We’ll describe one way to provision a simple Elastic
Stack environment using Docker. We recommend that you use a Linux-based operating system to
act as your Docker host, though the Elastic website (https://www.elastic.co/guide/en/
elasticsearch/reference/current/install-elasticsearch.html) provides
detailed instructions for installing and running the Elastic Stack with and without Docker on Linux,
Windows, and macOS systems. As these tools receive updates, their UIs may change slightly, so there
may be some differences from the screenshots we have provided.

Deploying the Elastic Stack with Docker

Perhaps the simplest way to get started with the Elastic Stack is by using Docker and the docker-compose
plugin. Docker simplifies the deployment of applications by using operating system-level virtualization.
This reduces the impact on the configuration of the underlying operating system. While installing the
Elastic Stack on the base operating system is a valid and well-documented approach (documented
here: https://www.elastic.co/guide/en/elasticsearch/reference/current/
install-elasticsearch.html), it can sometimes make management and cleanup more
difficult. If something goes wrong, you often have to make changes to software and sub-components
that might affect other software running on the same system. With containers, we can worry less about
managing Elastic sub-components and dependencies. If something breaks, we can simply delete and
re-create a container, rather than making changes to components that might impact other software
running on the same system. Deep coverage of Docker and container technologies, in general, is
beyond the scope of this book, but more information can be found here: https://docs.docker.
com/engine/faq/.

docker-compose is a powerful utility for orchestrating the creation and configuration of multi-container
applications. As input, docker-compose requires a single docker-compose.yaml file, which
specifies the types of containers to use, their connectivity, volumes, and other configurations. You
can read more about using docker-compose on Docker’s website here: https://docs.docker.
com/get-started/08_using_compose/.

We will use docker-compose to orchestrate the deployment of Elasticsearch nodes and a Kibana
node. This process is thoroughly documented on Elastic’s official website, located here: https://
www.elastic.co/guide/en/elasticsearch/reference/current/docker.html.

The Elastic Stack 45

The process described on Elastic’s site involves using docker-compose.yaml and a .env file,
which docker-compose then interprets to build the Elastic and Kibana nodes. We will use a slightly
modified version of these files to provision two Elasticsearch nodes and a single Kibana node, with
some default parameters predefined in the .env file.

Installing Docker

Docker provides support for a variety of platforms, including Microsoft Windows, Linux, and macOS.
The labs in this book support Windows and Linux. If you are doing these labs on a macOS computer,
we recommend using VirtualBox and provisioning a virtual Ubuntu Server to act as your Docker
host. You can find instructions for installing Docker on Docker’s documentation site (https://
docs.docker.com/):

• Instructions for installing Docker Desktop on Windows: https://docs.docker.com/
desktop/install/windows-install/

• Instructions for installing Docker on Linux: https://docs.docker.com/desktop/
install/linux-install/

More detailed instructions for installing Docker on Windows and Linux are provided in the next section.

Installing Docker on Windows

Follow these steps to install Docker on Windows:

1. Install Windows Subsystem for Linux version 2 (WSL2). This requires Windows 10, version
2004 or later. To start the installation process, open an administrative Command Prompt and type
wsl --install -d ubuntu. The -d parameter specifies the Linux distribution to use for
wsl. For our lab, we will use the ubuntu distribution. If you already have WSL installed, you
can check the version that’s being used by executing the wsl -l –v command. If you already
have a wsl version 1 distribution, you can upgrade it by issuing the wsl --set-version
<distribution name> 2 command. Once you’ve done this, you need to restart your
computer. Full instructions for installing and upgrading WSL can be found on Microsoft’s
website: https://learn.microsoft.com/en-us/windows/wsl/install.

2. Download and install Docker Desktop from https://www.docker.com/products/
docker-desktop/.

Building a Detection Engineering Test Lab46

Installing Docker Desktop on Windows requires minimal user interaction. Once the installation
is complete, you should see a window similar to the one shown in Figure 3.2:

Figure 3.2 – Docker Desktop on Windows

3. Once the icon in the lower-left corner is green, Docker Engine is running.

4. To check that docker-compose is available, run docker compose version from a
command-line prompt. You should get an output similar to the following:

c:\>docker compose version
Docker Compose version v2.10.2

Installing Docker on Linux

If you are running a Debian-based Linux distribution, such as Ubuntu Server, you can find the
instructions for installing Docker here: https://docs.docker.com/engine/install/
ubuntu/. This process will walk you through the process of installing Docker with the docker-
compose plugin. Install the following list of packages using the apt package manager via the sudo
apt-get install command:

• docker-ce

• docker-ce-cli

• containerd.io

• docker-compose-plugin

The Elastic Stack 47

Once those packages have been installed, you can start the Docker daemon using the following command:

$ sudo service docker start

To test your installation, run docker --version from a terminal. You should see an output
similar to the following:

$ docker --version
Docker version v20.10.12, build 20.10.12-0ubuntu4

Running docker --help should show the compose plugin under the Management Commands
section, as shown in Figure 3.3:

Figure 3.3 – Docker help

With Docker installed, next, we will modify some configuration settings, as required for our
Elastic deployment.

Virtual memory configuration

Due to the increased memory requirements of Elastic, the default Docker settings must be modified
to handle this.

If you installed Docker on a Linux-based system, as outlined in the Elastic system configuration
documentation at https://www.elastic.co/guide/en/elasticsearch/
reference/7.17/vm-max-map-count.html, then you need to modify the vm.max_map_
count setting of the Docker hosts via the sysctl command. The steps for making this change are
different for Windows and Linux systems and are detailed separately in this section.

Building a Detection Engineering Test Lab48

Windows

If you are running Docker Desktop on Windows, the process is a little different. Since Docker Desktop
on WSL2 is a lightweight VM, we need to access that VM or distribution to make those configuration
changes. As outlined in Elastic’s documentation, we can connect to this distribution using the wsl
command with the -d argument. From a new terminal, run the wsl -l command to list the available
distributions, as shown in Figure 3.4:

Figure 3.4 – Listing wsl distributions

Intuitively, Docker Desktop uses the docker-desktop distribution. You can access this VM directly
by issuing the wsl -d docker-desktop command. From there, you can issue the sysctl
command to make the required vm.max_map_count value change, as shown in Figure 3.5:

Figure 3.5 – Configuring Docker Desktop’s virtual memory

To exit WSL2 at any point, type exit.

Linux

On Linux, this can be achieved by issuing the following command:

sudo sysctl -w vm.max_map_count=262144

You can make this change survive reboots by modifying /etc/sysctl.conf.

At this point, we have configured Docker as needed to begin installing the Elastic Stack.

Configuring the Elastic Stack

Now that we have Docker installed with docker-compose, we need to download the stack configuration
files, specifically docker-compose.yaml and .env. These files are available in this book’s GitHub
repository, which is located here: https://github.com/PacktPublishing/Practical-
Threat-Detection-Engineering/tree/main/Chapter%203/Lab%20build/esk.

The Elastic Stack 49

In terms of our directory structure, for the rest of this chapter and book, you should create a project
folder starting with the structure in Figure 3.6 for the docker-compose.yaml file and .env files
you downloaded previously, as well as certificates that will be required for configuration:

Figure 3.6 – Project folder structure with the Elastic Stack

The docker-compose.yaml file describes the containers, networks, and volumes necessary to
run the Elastic Stack. The version used for this book is slightly different from the version available on
Elastic’s site. The docker-compose.yaml file will create a three-container application comprising
two Elasticsearch containers and a single Kibana container, as shown in Figure 3.7:

Figure 3.7 – Docker deployment

The docker-compose.yaml file uses a companion file, .env, which specifies default environment
variable values used by the stack. You will need to make changes to the highlighted portions of the

Building a Detection Engineering Test Lab50

.env file shown here. Replace the first two values with secure passwords of your choice. Replace the
last three values with randomly generated 32-character strings:

ELASTIC_PASSWORD=<<a new password>>
KIBANA_PASSWORD=<<a new password>>
STACK_VERSION=8.4.3
CLUSTER_NAME=docker-cluster
LICENSE=basic
ES_PORT=9200
KIBANA_PORT=5601
MEM_LIMIT=1073741824
XPACK_ENCRYPTEDSAVEDOBJECTS_ENCRYPTIONKEY=<<random 32 character
string>>
XPACK_SECURITY_ENCRYPTIONKEY=<<random 32 character string>>
XPACK_REPORTING_ENCRYPTIONKEY=<<random 32 character string>>

Optional storage configuration

Elasticsearch can be quite data-intensive, depending on the volume of data being ingested. If you
have a faster or a higher-capacity disk that you prefer to use for Elasticsearch data, you can make
changes that instruct Docker to map the Elasticsearch data paths to a path on the high-capacity or
high-performance disk:

1. First, create a directory on the disk to hold all your data. Ideally, this disk should be reliably
connected to the Docker host – that is, it shouldn’t be a removable disk that could potentially
be disconnected. Since we will be using it to store our data, if it is ever disconnected while the
containers are running, this will cause the containers to terminate ungracefully.

2. Once the data directory has been created, we can make the relevant modifications to the .env
file. We will add three additional default environment variables that will hold the paths for
the Elasticsearch and Kibana data. For example, if the directory we created was /path/to/
large/disk/elasticdata/, we would add the following three lines to the .env file
we edited previously:

ES1_DATA=/path/to/large/disk/elasticdata/es01
ES2_DATA=/path/to/large/disk/elasticdata/es02
KIBANA_DATA=/path/to/large/disk/elasticdata/kibana_data

This will create three environmental variables that we will reference in the docker-compose.
yaml file.

3. In the docker-compose.yaml file, we need to modify the volumes section of our
Elasticsearch and Kibana containers so that we can configure the container for it to leverage
these disks. For es01 and es02, you can add the following lines under volumes:

- ${ES1_DATA}:/usr/share/elasticsearch/data

The Elastic Stack 51

- ${ES2_DATA}:/usr/share/elasticsearch/data

This should create a docker-compose.yaml file that looks like this:
es01:
 depends_on:
 setup:
 condition: service_healthy
 image: docker.elastic.co/elasticsearch/
elasticsearch:${STACK_VERSION}
 volumes:
 - ../certs:/usr/share/elasticsearch/config/certs
 - ${ES1_DATA}:/usr/share/elasticsearch/data
...
es02:
 depends_on:
 - es01
 image: docker.elastic.co/elasticsearch/
elasticsearch:${STACK_VERSION}
 volumes:
 - ../certs:/usr/share/elasticsearch/config/certs
 - ${ES2_DATA}:/usr/share/elasticsearch/data

4. Similarly, for the Kibana container, you can make the following addition:

kibana:
 depends_on:
 es01:
 condition: service_healthy
 es02:
 condition: service_healthy
 image:
docker.elastic.co/kibana/kibana:${STACK_VERSION}
 volumes:
 - ../certs:/usr/share/kibana/config/certs
 - ${KIBANA_DATA}:/usr/share/kibana/data

With these changes in place, Docker will use your specified path in place of the relevant data
directories for the Elasticsearch and Kibana containers. Ensure these files are saved to the
correct hierarchy in the directory structure that was described at the beginning of this section.

5. Using a new terminal or administrative command-line prompt, change your working directory
to the esk supdirectory of the project root folder and issue the sudo docker compose
up -d (for Linux) or docker-compose up -d (for Windows) command.

Building a Detection Engineering Test Lab52

Debugging tip
Running this command without the -d parameter will allow you to see the terminal output
from each container. This is extremely helpful when troubleshooting stack setup issues and
other errors.

6. You can check the status of your stack by running the sudo docker compose ps command:

Figure 3.8 – Container status via the terminal

7. Once the es01, es02, and Kibana containers have a status of Running (as shown in Figure 3.8),
this means your setup has been successful so far. Once no runtime issues arise, you can attempt
to access the services.

8. On Docker Desktop for Windows, you can monitor the startup progress of your stack by using
the Docker Desktop app. The Containers window should look like what’s shown in Figure 3.9:

Figure 3.9 – Container status via Docker Desktop

9. If everything has gone well, you will be able to access your Elastic Stack by going to http://
[ip address of your docker host]:5601, or http://localhost:5601
if you are running Docker on the same machine. You will see a login page similar to the one
shown in Figure 3.10:

Setting up Fleet Server 53

Figure 3.10 – Elastic login page

You can log in by using elastic as the username and the password specified in the .env
file for the ELASTIC_PASSWORD value. After logging in, you’ll be greeted with a welcome
message. At this point, we’ve successfully set up the Elastic Stack for our detection lab.

The next step in the lab setup process is to set up Fleet Server.

Setting up Fleet Server
In our lab, we will be collecting telemetry from multiple endpoints. To enable this, we will install
Elastic Agent on any system we want to collect data from. In larger deployments, agents can get
deployed to hundreds or even thousands of endpoints and each of these endpoints can have different
data collection requirements. Managing these agents can become complicated as the number and
diversity of installed agents increase. Fleet Server is a component of the Elastic Stack that attempts to
simplify agent management.

From Kibana, we can create different agent policies, which define what data should be collected, apply
those policies to different endpoints, and even uninstall Elastic from these endpoints if we need to.
This capability is extremely powerful, especially in larger environments with many endpoints.

We will use Fleet to manage the endpoints that we’ll connect to our detection lab. The following section
details how to install Fleet Server.

Building a Detection Engineering Test Lab54

Installing and configuring Fleet Server

For our lab, we will add an additional container to act as our Fleet Server. Figure 3.11 shows the
previous Docker deployment but includes the additional container for Fleet:

Figure 3.11 – Docker deployment with Fleet

Let’s get started with installing Fleet:

1. In our main project folder, add a new directory named fleet. In that directory, copy
the .env and docker-compose.yaml files hosted here: https://github.com/
PacktPublishing/Practical-Threat-Detection-Engineering/tree/
main/Chapter%203/Lab%20build/fleet.

Our project’s directory structure should now match the one shown in Figure 3.12:

Figure 3.12 – Project folder structure with Fleet

Setting up Fleet Server 55

2. Before we use docker-compose to launch this stack, we need to modify the .env file. Specifically,
we need to add the service token that Fleet will use to connect to the rest of the stack.

To get that service token, we can navigate to the Fleet administration page from the Kibana frontend.

3. Start by logging in to your Elastic Stack (via https://[ip address of your docker
host]:5601). Then, click the hamburger menu in the top-left corner of the page. Under the
Management section (near the bottom), click Fleet. After navigating there, you will be presented
with the screen shown in Figure 3.13, which walks us through setting up Fleet Server. For the
Fleet Server host field, use https://[ip address of your docker host]:8220:

 Figure 3.13 – Fleet Server configuration screen (step 1)

4. Select Generate Fleet Server policy. As shown in Figure 3.14, a sequence of commands for
installing Fleet on a centralized host will be provided:

Figure 3.14 – Fleet Server configuration screen (step 2)

Building a Detection Engineering Test Lab56

5. In our case, we only need the value of fleet-server-service-token. Copy this value
from that web page and paste it into the .env file in the fleet subdirectory.

6. You can now start the Fleet container using the sudo docker compose up –d command.
Shortly after, you should see confirmation that this Fleet Server was successfully connected,
as seen in Figure 3.15:

Figure 3.15 – Fleet Server configuration screen (step 3)

With that, Fleet has been configured. Next, we’ll perform some additional configurations that are
required for full functionality.

Additional configurations for Fleet Server

By default, the Fleet Server policy is configured to send output to the Elastic host (http://
localhost:9200). Hosts that we later connect to our Fleet Server may not be able to reach the
Elasticsearch backend using that address. Therefore, we need to change the default output so that
telemetry from additional hosts gets stored in Elasticsearch.

From the Settings tab, select the pencil icon next to the default output. An edit window similar to the
one shown in Figure 3.16 will be displayed. For the Hosts section, enter https://[ip address
of docker host]:9200. For Advanced YAML configuration, enter ssl.verification_
mode: none:

Setting up Fleet Server 57

Figure 3.16 – Fleet output configuration

Finally, click Save and apply settings. With that, your Elastic Stack has been configured with Fleet so
that you can manage Elastic Agent simply.

Adding a host to the lab

For our detection lab, we will deploy a single Microsoft Windows client workstation and install Elastic
Agent, which will allow us to monitor security events in Kibana.

Requirements

To get started, we will need the following:

• Virtualization software: There are many options available, but the most popular desktop
systems are VirtualBox and VMware. If you have access to and prefer using other software,
such as ESXi or Hyper-V, these are also reasonable options. Regardless of the software you
choose, ensure it is deployed on a host that has connectivity to your Elastic Stack. We will show
detailed instructions for setting up the Windows 10 VM on VirtualBox, but the process will be
similar to other virtualization packages. VirtualBox is available for multiple operating systems
as a single installer file, which simplifies the installation process. You can download VirtualBox
here: https://www.virtualbox.org/wiki/Downloads.

Building a Detection Engineering Test Lab58

• Windows installation media: This is distributed as a .iso file, which we can use with
our virtualization software. You can download the Windows 10 installation .iso file from
here: https://www.microsoft.com/en-us/evalcenter/evaluate-windows-
10-enterprise.

VM setup

Let’s look at the VM setup:

1. To start, install VirtualBox. Obtain the installation package from the VirtualBox site
here: https://www.virtualbox.org/wiki/Downloads.

2. Execute the installer and follow the on-screen instructions to complete the installation.

3. Our Windows 10 VM will be configured with the following resources:

 � At least 2 GB of RAM, though 4 GB or more is recommended

 � At least 60 GB of disk space

4. Open Oracle VirtualBox. Then, from the main VirtualBox interface, click the New icon. You
will be prompted to enter some details for the VM. Figure 3.17 and Figure 3.18 show the settings
to be used in the first two VM creation steps:

Figure 3.17 – The Create Virtual Machine area in VirtualBox

Setting up Fleet Server 59

Figure 3.18 – The Create Virtual Hard Disk area in VirtualBox

5. After clicking Create, you will see your newly created VM in the listing on the left-hand side
of the VirtualBox window. We need to configure this VM to use the Windows 10 installation
ISO file. Select the newly created VM and click Settings above the VM information.

6. From the Settings window (shown in Figure 3.19), select Storage, then click on the virtualized
optical drive. Under the Attributes section, click on the CD icon and select Choose a disk file…:

Figure 3.19 – VM settings in VirtualBox

Building a Detection Engineering Test Lab60

7. A file navigation window will appear. From that window, browse to your downloaded Windows
10 ISO file, then click Open.

8. Click OK to accept the changes and return to the VirtualBox main window.

9. With that, the VirtualBox VM has been configured and is ready to be launched for the first
time. Click Start from the main VirtualBox window.

10. Once the VM starts, follow the on-screen instructions to install Windows 10. To get started,
click Install now.

11. Read and accept the license terms.

12. Then, click Custom: Install Windows only (advanced).

13. Select the disk we created.

14. The installation process will reboot the VM. Once it restarts, you will be prompted for some
basic information to complete the installation.

15. You will then be prompted to create a user account. Ensure you use a username and password
that you can remember.

Congratulations! You now have a Windows 10 client installed for use in our detection lab. The next
step is to install Elastic Agent so that our Windows 10 client can forward events.

Installing Elastic Agent

We can set up Elastic Agent via the Elastic Stack UI by performing the following steps:

1. Log in to our Elastic Stack.

2. Navigate to Fleet from the Management section of the navigation menu.

3. We can connect this host to our Elastic Stack by clicking Add agent from the Agents screen,
shown in Figure 3.20. For the first prompt, enter Windows policy. This will create a policy
that the new agent will be assigned to:

Setting up Fleet Server 61

Figure 3.20 – Add agent

4. For Step 2, leave the default option, Enroll in Fleet (recommended), selected.

5. Step 3, shown in Figure 3.21, provides the installation script for multiple environments. Since we
are enrolling a Windows workstation, we will click on the Windows tab and click the clipboard
icon at the top right to copy the inner text:

Figure 3.21 – Elastic Agent install script

Building a Detection Engineering Test Lab62

This script is used to silently download the agent installer ZIP, unzip the archive, and execute
it with the appropriate command-line flags. For the agents to work in our environment, we
need to make one modification to this installation script. First, let’s take a look at the individual
commands issued in this installation script. The following table explains these commands:

Command Description

$ProgressPreference =
'SilentlyContinue'

Suppresses the PowerShell progress bar.

Invoke-WebRequest -Uri
https://artifacts.elastic.co/
downloads/beats/elastic-agent/
elastic-agent-<<VERSION>>-
windows-x86_64.zip -OutFile
elastic-agent-8.4.3-
windows-x86_64.zip

Downloads the Elastic Agent installation
files from elastic.co to the current
working directory.

Expand-Archive .\elastic-agent-
<<VERSION>>-windows-x86_64.zip
-DestinationPath .

Extracts the contents of the Elastic Agent
installation files to the current directory,
indicated by the . shorthand. This command
will create a new directory that contains the
Elastic Agent installation files.

cd elastic-agent-<<VERSION>>-
windows-x86_64

Changes the working directory to the newly
created Elastic Agent directory to where the
installation files were extracted.

.\elastic-agent.exe install
--url=https://10.30.23.160:8220
--enrollment-token=<<ENROLLMENT
TOKEN>>

The Elastic Agent installation command is
automatically generated using the URL that
was configured for your Fleet Server, as well as
your enrollment token for the selected policy.
For our lab, since our configurations are not
to production standards, we need to append
--insecure to the end of this command for
our agents to connect.

Table 3.1 – Elastic Agent installation commands

6. After updating the script to include the insecure flag, switch to the Windows VM where you
want to install the agent. Since this script downloads files, we suggest changing your working
directory to the current user’s Downloads directory before execution. To get started, launch
a new administrative PowerShell window. You can do this by clicking the Windows icon in

Setting up Fleet Server 63

the lower left-hand corner of the screen, then searching for PowerShell. Hover over the
Windows PowerShell result, then select Run as administrator.

7. Once the PowerShell window opens, change the working directory to your user’s Downloads
directory by issuing the cd $env:USERPROFILE\Downloads command.

8. From there, issue the Elastic Agent installation commands you obtained from your Elastic
Stack. For the last command, ensure the --insecure parameter is appended.

A message stating Elastic Agent has been successfully installed will be displayed once there
are no installation errors.

Following its successful installation, you should see a confirmation message similar to the one
shown in Figure 3.22. You should be able to see your host in the list of Fleet agents:

Figure 3.22 – Agent enrollment confirmed

9. Your newly enrolled host will appear in the list of agents. Elastic Agent can be installed on many
different operating systems, and this installation process can be repeated for any additional
hosts you want to enroll in the Elastic Stack. We encourage adding additional hosts if you have
resources available.

10. At this point, you are probably wondering what type of data is being sent back to the Elasticsearch
backend. You can view this data by navigating to the Discover page, under Analytics in the
hamburger menu. This should bring you to a page similar to the one shown in Figure 3.23:

Building a Detection Engineering Test Lab64

Figure 3.23 – The Discover view in the Elastic Stack

Elastic is now configured to receive logs from our Windows host. Next, we will look at how we can
adjust the configuration of a connected agent to provide better logs.

Elastic Agent policies

Fleet and Elastic Agent allow us to centrally control the type of data being sent from our connected
agents using agent policies. To view these, click on Agent policies via the Fleet management page.
You should see two policies listed, one auto-generated Fleet policy and the one that was created earlier
while we were enrolling our first Windows host, as shown in Figure 3.24:

Figure 3.24 – Elastic Agent policies

Setting up Fleet Server 65

Each policy can have several integrations added to it, which control the type of data being collected.
Click on Windows policy; you will see that a single System integration has been added. To view the
configurable details of this integration, click on the name of the integration; you should see a window
that looks similar to the one shown in Figure 3.25:

Figure 3.25 – Edit System integration

If this integration hasn’t been configured to collect Windows event logs, click Collect events from
the Windows event log. Clicking on Change defaults shows us some more configurable options for
each type of data being collected. We can see that this integration is currently configured to collect
data from the Application, Security, and System event logs, as shown in Figure 3.26:

Building a Detection Engineering Test Lab66

Figure 3.26 – Windows event log collection settings

With that, we have a DE lab deployed that includes the Elastic Stack, Fleet Server, and a single Windows
host. Next, we will test the data flow and detection capabilities of the Elastic Stack by building our
first detection.

Building your first detection
Detections monitor data stores for specified patterns and then take some action when a pattern
match occurs. These actions can be anything from adding data to a queue to triggering an alert that
sends a message to a defined audience. To see some of this in action, in this section, we will walk
through the process of creating a very simple detection, or rule, for failed login attempts that rise over
a specified threshold.

It’s important to emphasize that this is not a very good detection for reasons we will elaborate on in
later chapters, but it will give you an understanding of the general mechanics of detections:

1. First, log in to your Elastic Stack and click the hamburger icon from the top-left corner. Then,
navigate to Manage under the Security section. From there, click on Rules. This will take us
to the Create new rule page.

2. Click Threshold, leave the default sources as is, then enter event.code: 4625 AND
winlog.channel: "Security" in the Custom query section.

Building your first detection 67

3. For Threshold, enter a value of 4. Click Continue once these values have been filled in and
match what’s shown in Figure 3.27:

Figure 3.27 – New rule configuration

4. For the About rule section, enter failed logon threshold met under Name and add
a description. Leave the Default severity and Default risk score values as is. Click Continue
once these values have been filled in and match what’s shown in Figure 3.28:

Figure 3.28 – New rule details

Building a Detection Engineering Test Lab68

5. For the Schedule rule section, enter 10 for Runs every and 5 for Additional look-back time.
This means the rule will check the data store every 10 minutes, and at those times, the scope
of events for review will be everything recorded 15 minutes before. This is because the time
range for search is the rule interval plus the additional look-back time.

6. For Rule actions, leave the default value of Perform no actions as is, then click Create and
Enable Rule.

7. With our newly created rule in place, we can run a simple test to ensure the rule operates as
expected. In this case, our rule checks for events that have the event.code attribute set to
4625 and the winlog.channel attribute set to security, both of which were recorded
in the last 15 minutes. If the number of events rises to 4 or higher, an alert will be recorded.
Windows events with event.code = 4625 and winlog.channel= security refer to
Windows Security event logs indicating a logon failure. To test this, we can go to our Windows
virtual host and log off if we’re already logged in, or lock the session.

8. At that point, we can try logging in with an incorrect password four times. This will generate
the data necessary to trigger our detection. If successful, we will see a generated alert, similar
to what’s shown in Figure 3.29:

Figure 3.29 – Successful detection result

And with that, we have a fully functioning detection lab!

Additional resources
In this chapter, we demonstrated how to build a detection lab from scratch using the Elastic Stack, Fleet,
and Windows hosts, which will allow you to customize it to your needs as well as better understand
the underlying technology concepts. However, many open source projects have attempted to provide
simplified deployments of entire lab infrastructure, as well as other log aggregation technologies outside

Summary 69

of the Elastic Stack. The following list provides some projects to look into if you want to explore other
options. The rest of this book’s labs will add to this chapter’s lab, though:

• DetectionLab (https://detectionlab.network/, no longer maintained)

• The Hunting ELK (https://thehelk.com/intro.html)

• Matano (https://github.com/matanolabs/matano)

• Wazuh (https://wazuh.com/)

You can use these projects if you want to automate parts of deploying a DE environment.

Summary
In this chapter, we built out the lab infrastructure that will be leveraged in the rest of the lab exercises
within this book. We did this by leveraging Docker to deploy containers. Our lab includes the Elastic
Stack, Fleet Server, and a single Windows host.

In Chapter 4, we will dive into the data sources we can use to build detection, such as application or
endpoint logs. We’ll discuss how to identify valuable data sources and add those data sources to the lab.

Part 2:
Detection Creation

Part 2 dives into more technical aspects of detection engineering, focusing on the creation of detections.
First, we’ll understand the importance of data sources, how to identify relevant data sources, and
the challenges you may face. We’ll then discuss how we can create, investigate, and triage detection
requirements. With an understanding of the early steps of the detection engineering life cycle, we can
move on to learning how to develop detections for both static and behavior indicators. To wrap up
this part, you’ll learn more about the procedural side of things, including how to document detections
and automate the development and deployment process.

This section has the following chapters:

• Chapter 4, Detection Data Sources

• Chapter 5, Investigating Detection Requirements

• Chapter 6, Developing Detections Using Indicators of Compromise

• Chapter 7, Developing Detections Using Behavioral Indicators

• Chapter 8, Documentation and Detection Pipelines

4
Detection Data Sources

In the previous chapter, we built out a detection engineering test lab that will be leveraged for the
labs throughout the rest of this book, as well as any testing you want to perform yourself. This lab
environment included the Elastic Stack, Fleet Server, and a single Windows host. In this chapter, we will
discuss the different data sources that can be leveraged as part of detection engineering. Furthermore,
we will provide optional labs that will allow you to expand your lab environment so that you can
include some of these additional sources if you want to test them and have the resources available.

The data sources we consume for detection engineering help determine our ability to provide widespread
detection coverage for an organization. Without network data, we can’t develop network-based
signatures, potentially missing web-based threats or C2 communication. Without application data,
we might not be able to identify malicious activity taking place within a specific application. Simply
put, an increase in the quantity and quality of the data sources we have available to us will provide us
with more detection opportunities.

We will cover the following main topics in this chapter:

• Understanding data sources and telemetry

• Looking at data source issues and challenges

• Adding data sources

The first section will help us understand, at a high level, what data sources are and the type of data
sources available. At this point, you should be able to identify the data sources relevant to your use
cases. We’ll then discuss certain issues and challenges to consider when defining and configuring
your data sources, allowing you to look at your data sources and identify the impact of such issues.
Finally, we’ll wrap up by adding a new data source to our lab and creating a detection that would not
have been possible without that additional telemetry.

Detection Data Sources74

Technical requirements
The labs in this chapter assume you have completed the lab setup in Chapter 3; these labs will expand
on the existing Elastic Stack deployment. If you have not set up the detection lab, we recommend
returning to Chapter 3 and completing the exercises provided there first.

In this chapter, we will deploy a web server running on a Linux VM. The VM will require the
following specs:

• 10 GB of hard disk space

• 2 GB of RAM

The labs in this chapter will not use the existing Windows host, so it can be powered off to save
resources during this chapter’s labs.

Understanding data sources and telemetry
Covering all potential data sources in a corporate environment or even going into depth on each of the
major ones is not feasible given the number of data sources present in an organization’s infrastructure.
As such, this section will highlight the major data sources and provide a brief explanation of their
relevance to detection engineering.

We are going to look at two different types of sources of data for detection engineering. The first is
going to be raw telemetry. These are unprocessed logs that simply state an event occurred, without a
determination on whether it is malicious or not. This is going to be our focus with detection engineering
as we can use these raw events to identify malicious activity without relying on an existing security
solution’s detection capabilities. The second type of data source that we’ll briefly discuss is security
tooling. Data from security tooling primarily focuses on processed events but can also include its
own raw telemetry data.

Raw telemetry

As mentioned previously, we are using the term raw telemetry to describe unprocessed logs produced
by systems and applications. The data source will generate logs containing events with no context
regarding whether they may be malicious.

This section will look at the various data sources that fall under the category of raw telemetry, the type
of data they provide, and examples of detection designs that leverage those sources.

Endpoints and servers

Endpoints and servers are likely the first resources that come to mind when you think about the
components of an organization’s infrastructure – rightly so as they typically make up a large majority
of the organization’s assets and are vulnerable to users’ risky behaviors.

Understanding data sources and telemetry 75

Endpoints and servers generate logs detailing activities occurring on the host. This includes important
events such as user logins and administrative activities (such as configuration changes or user creations).
In this section, we won’t differentiate servers from endpoints in terms of the logging details as they
both provide similar or the same types of logs. Where the difference comes into place is determining
detection requirements. For example, you might want to prioritize detections for suspicious activity
on a domain controller over an individual’s workstation as the risk to the organization is higher if the
domain controller is compromised.

Unfortunately, every operating system has its methods of logging, so we have to consider what OS
our endpoints and servers are running. The log locations and types of logs available will vary between
the different operating systems. For example, Windows provides its logs via Windows Event Logs.
Logs are divided into several different categories and custom logs can even be created. In Chapter 3,
we added a Windows host and enabled log forwarding via Fleet to bring in application, system, and
security logs. These are by far the most relevant logs to ingest. If you have enabled PowerShell Script
Block Logging in your environment, we recommend you also turn on log forwarding for those events.
Similarly, if you have deployed Sysmon in your environment, those logs should also be forwarded.

The following tables provide the potential log sources by operating system type. It is worth noting
that these are not comprehensive lists and that there may be additional logs that will provide value to
your use case, but these provide the highest value across all organizations.

Windows

Windows has robust logging features, some enabled by default, others requiring enabling. These events
are stored as Windows Event Logs, which are divided into a few sub-categories. Table 4.1 provides
descriptions and examples of the events that are stored in each of these logs:

Event Log Type Description Example

Application log

Events generated at the
application level. Logs may
vary as they depend on
developer configurations.

The application crashed due
to memory exhaustion

An error occurred while
starting an application

System log
Events generated at the
operating system level related
to system operations.

A service was started

Security log
Events generated at the
operating system level related
to potential security risks.

User account creation

Detection Data Sources76

PowerShell log

Any events related to the
PowerShell engine (the
program), providers,
and commands.

PowerShell application started

Sysmon log Any events generated by the
Sysmon service. Process creation

Table 4.1 – Windows event log types

Note that PowerShell event logs only include full command lines if PowerShell Script Block Logging
is enabled. It is disabled by default and must be enabled via a Group Policy Object or the Registry.
Without these command lines, we lack the most important context surrounding PowerShell execution.
Knowing an attacker executed PowerShell provides little value if we don’t know what they used it to do.

It is also important to note that Sysmon is not installed on Windows by default but provides highly
valuable data. Sysmon logs include those for process creation (including hashes and command-line
details), network connections, and filesystem changes, all of which are either not logged or logged
with a minimal context in the default Windows Event Logs. This context can be the difference between
knowing that an attacker used a known malware payload to exfiltrate data to a remote server versus
knowing an attacker executed an unknown file with an unknown purpose. We recommend that you
consider deploying Sysmon in your environment and collect the logs, if possible. To learn more about
Sysmon, see https://learn.microsoft.com/en-us/sysinternals/downloads/
sysmon. Sysmon is also available for Linux but as it is not as widely used on Linux systems, it will
be left out of the next section about Linux sources.

Linux

Linux logs are stored in system files under the /var/log directory. A few logs of relevance exist,
as outlined in Table 4.2. In some cases, the name of the file differs depending on the specific Linux
distribution being used or if the defaults have been changed:

Log Type Description Example

/var/log/syslog or /
var/log/messages

All global system activity data Startup messages

/var/log/auth.log or /
var/log/secure

All security-related events Account logins, root
account actions

/var/log/cron
Information about
scheduled tasks

Command execution
resulting from a cron job

Understanding data sources and telemetry 77

/var/log/faillog
Information about failed
login attempts Account login failure

/var/log/audit/
audit.log

File modification and syscall
activity based on auditd rules

A modification was
made to a monitored file
or a file was added to a
monitored directory

Table 4.2 – Linux log types

It is worth noting that auditd’s rule file must be configured by the user to specify the files and syscalls
to be monitored, so you will not see those logs unless they’ve been configured on the system.

macOS

macOS provides a type of single, centralized log storage called macOS Unified Logs. As such, all
log entries related to the system being monitored should be accessible via this source. The example
detection design in the following note box, along with the others shown throughout this chapter, will
show you how to take a particular detection requirement and associated data source and gather the
information needed to create detection logic in plain English. This first one is going to look at using
both Windows event logs and Linux logs to identify a MITRE ATT&CK technique.

Example detection design using an endpoint data source
Let’s assume we are receiving application, system, and security logs from a Windows endpoint.
As a detection requirement, we want to know if any non-admin users are creating additional
user accounts. This could be a sign of a threat actor establishing persistence via user account
creation (MITRE ATT&CK Technique T1136). Researching what evidence exists for Windows
account creation reveals that Windows Security Event ID 4720 is used to log account creation
events for both local and domain users. So, in plain English, our detection design is “If there
is a Windows Security event with event ID 4720, and the subject username associated with the
event is not an administrator, trigger a detection.”

Let’s assume you also have a Linux host in the same environment. In that case, you want
to monitor the /var/log/auth.log or /var/log/secure logs (depending on the
distribution). In plain English, the detection design is “If there is a /var/log/auth.log
event containing the new user: string, trigger a detection.”

Unfortunately, the auth.log file does not record which user initiated the event, so we will
have to rely on an analyst review to determine whether it was legitimate account creation
activity or not.

Detection Data Sources78

Network data

Network telemetry can be gathered from numerous data sources and provides highly valuable context.
It is going to be unlikely that an incident is 100% isolated to a single local host. There are multiple
points in the kill chain during which we are likely to see network activity. For example, a drive-by
download will result in web traffic during the initial access stage, the C2 communication will leverage
the attacker’s chosen C2 protocol, and lateral movement can be seen between devices on the network. As
such, solely relying on endpoint logs instead of covering both planes will result in a huge coverage gap.

In terms of how and from where we can gather network data, we have a few options. The first is that
we can leverage packet captures from the endpoints themselves. All network traffic is captured and
forwarded to the data storage system. These packet captures will provide full details and the content
of any network connections. For this, we need to configure endpoints to capture traffic and export
the packet captures with a packet capture solution. One such option is Packetbeat, which we will test
in an upcoming lab using our lab’s Windows host. It is worth noting that packet captures take up
a significant amount of storage space, and thus most organizations do not perform network-wide,
constant full-packet captures.

The second method of gathering network data is from the network devices themselves. There are a few
different device types that can be mined for network data. Networking infrastructure devices, such as
routers and switches, can provide some relevant network data in an unprocessed, raw form. It would
not be our first recommendation for a network data source but in the absence of more advanced and
comprehensive data (such as from a perimeter firewall), it can provide some coverage. Most routers
and similar devices have a web portal you can access to administer the device and set up shipping
logs via Syslog to a server. Many of these devices may collect flow data, which is essentially metadata
about network connections providing details of the source and destination IPs and ports, as well as
the traffic size. If the devices support flow data, a flow collector can be used to obtain this data. It
may be useful in identifying C2 traffic (abnormal or known-abused ports, for example) or exfiltration
attempts (abnormally large amounts of data leaving the network).

As a related data source, firewalls and other network security solutions will have some subset of logs that
are events rather than alerts and may provide context worth including in your detection engineering
lab. This data source, however, also falls under the security tooling type of data source rather than raw
telemetry since these devices often implement some sort of processing to enrich or morph the events.
For example, a firewall may have traffic logs that are essentially raw telemetry, detailing the source
and destination properties of a connection. That same firewall might also have NGFW capabilities
and have a log for URL filtering that provides context as to which websites were blocked and why. In
the latter case, we are looking more at security tooling data rather than raw telemetry as the NGFW’s
detections are what generate events.

Understanding data sources and telemetry 79

Example detection design using a network data source
Let’s assume we are receiving traffic logs from a firewall device on the network perimeter. As
a detection requirement, we want to know if a single source IP is exhibiting repeated failed
connections to various destination ports. This could be a sign of a port scan against a host
(MITRE ATT&CK Technique T1046). The firewall logs should tell us the source and destination
port and IP address, as well as if the connection failed or was successful. So, in plain English,
our detection design is “If the firewall is logging a significant number of failed connections
with a shared source IP but unique destination ports, trigger a detection.”

Cloud assets

The reason we decided to highlight cloud assets as a data source category in this book is due to the
growing nature of the cloud. It’s highly likely that, as a detection engineer, at some point in your
career, you will identify a detection requirement relating to a cloud asset or environment. The cloud
is extremely complex in terms of the number of services and resources you’ll find available, as well
as the variation that occurs between different cloud vendors (that is, AWS versus Azure versus GCP,
and so on).

Attackers are more frequently targeting the cloud as its use is widespread but not well understood, so
it is often trivial to find misconfigured, vulnerable cloud resources that are publicly accessible. MITRE
has even mapped their Enterprise ATT&CK matrix to the cloud: https://attack.mitre.org/
matrices/enterprise/cloud/. The matrix includes many techniques that overlap with those
seen in traditional, on-premises environments. This is because a lot of cloud resources are simply
cloud-hosted versions of existing technologies. There are, however, some cloud-specific techniques
that have been added to the ATT&CK framework. Regardless of how your organization leverages the
cloud, it is important that the detection engineering team is aware of the existence of any cloud assets
and understands how they can be used as a data source.

Example detection design using a cloud asset data source
Let’s assume we are receiving CloudTrail logs from an AWS account that hosts several VMs
used by the organization. CloudTrail records all API and user activities for all services in your
AWS account. As a detection requirement, we want to know if an unauthorized user accesses
an S3 storage bucket called sensitive-data. This could be an indicator of MITRE Technique
T1619, Cloud Storage Object Discovery. Research shows that when users are inspecting the
contents of a bucket, a ListBuckets API call is recorded in the CloudTrail logs. So, in plain
English, our detection design is “If there is a CloudTrail event for a ListBuckets API call to the
sensitive-data S3 bucket, and the user associated with the event is not authorized to view that
bucket, trigger a detection.”

Detection Data Sources80

Applications

Application logs can vary greatly as they are defined by the developer of the application rather than the
operating system itself. Some of the common sources of application logs are mail, web, and database
servers. While they may be running on a Linux or Windows server and have the associated OS logs,
they’ll also have logs specific to the application running on the server. The types of logs will depend
on the specific application, but the following is a list of log and event types you may observe:

• Access, authentication, and authorization logs (who logged in/out and when, whether it was
a successful login attempt, and what operations were performed)

• Change logs (what configuration changes were made, what users or permissions were added,
when the software was last updated)

• Error logs (any errors that occurred during application execution, such as disk space limits,
memory exhaustion, and licensing issues)

• Availability logs (system shutdowns and reboots, failover occurrences, backups complete)

From this list, the most valuable to detection engineers are the access, authentication, and authorization
logs and the change logs. Error and availability logs may provide some insight for incident investigations
but in terms of developing detections, they will provide less value.

Example detection design using an application data source
Let’s assume we are receiving logs from an Apache web server. As a detection requirement,
we want to know if any SQL injections are being performed against our server. One of the
many methods for performing SQL injections involves inserting SQL statements into the URL
parameters followed. The results of submitting this request may allow the attacker to reveal
information from the backend database. An example of a known string placed in URLs for
attempting SQL injection is or 1=1#. This might be indicative of an attacker trying to gain
access to the environment via SQL injection (T1190), so we need to detect such strings present
in web traffic. In plain English, our detection design is “If there is an Apache HTTP access log
with a GET event that has a URL containing the or 1=1# string, trigger a detection.”

Under the category of applications, there are also Software-as-a-Service (SaaS) data sources. These
are going to provide similar data as other application sources but are not hosted on your infrastructure
and, as such, may require further exploration to understand what data is available and how it can be
retrieved. SaaS can refer to any cloud-hosted application or software leveraged by the organization;
however, the most prevalent use of SaaS in organizations is application suites such as Google Workspace
and Office365, which provide email and productivity tools.

Understanding data sources and telemetry 81

Example detection design using a SaaS data source
Let’s assume we use Google Workspace as our SaaS provider for email and productivity tools
and are receiving audit logs from the account. As a detection requirement, we want to know
if admin privileges are granted to any additional users. While this could be legitimate admin
activity, it could also be a sign that the attacker is trying to get an account they need to perform
additional actions or maintain persistence (T1098). Research shows that such activity is recorded
as a GRANT_DELEGATED_ADMIN_PRIVILEGES or GRANT_ADMIN_PRIVILEGE event
for the admin.googleapis.com service within the Google Workspace admin audit logs.

So, in plain English, our detection design is “If there is a Google Workspace admin audit log event
for the admin.googleapis.com service with an event name of GRANT_DELEGATED_
ADMIN_PRIVILEGES or GRANT_ADMIN_PRIVILEGE, and it was initiated by a user who
should not be creating accounts, trigger a detection.”

Raw telemetry provides the most valuable data for detection engineers, but there are uses for logs that
are directly generated by security tooling, as we will discuss next.

Security tooling

While we will not heavily discuss the use of security tooling data for detection engineering in this
book, it is important to understand what data could be available to you via these sources as they
might prove useful for your specific detection requirements. Security tools leverage their proprietary
detections within their tool, which is why they may not be as relevant for creating new detections. The
alerts from security tooling are often based on the same raw telemetry we discussed in the previous
sections, resulting in potential overlap in information. Furthermore, we have to be aware of how
multiple security tools may alert on the same behavior, just in different ways. For this reason, you
need to be aware of the effect that writing a detection based on this data source may have in terms of
generating duplicates. Security tool alerts, however, should not be completely ignored by detection
engineers as they can prove useful in gap analysis and identifying attack chains.

The key data sources we are going to touch on in this section are endpoint protection and network
protection, with a brief mention of security information and event management (SIEM) technologies.

Endpoint protection

Endpoint protection, as the name implies, involves detecting and/or preventing malware on user
endpoints. The most common types of endpoint protection are antivirus (AV) and endpoint detection
and response (EDR). These solutions use a variety of tactics to detect suspicious and malicious activity.
While we don’t know the exact code running on the backend to perform detections, the most common
methods include indicator-based (a known bad IP address) and behavior-based (abnormal activity).
Furthermore, more and more companies are adopting solutions that have some component of machine
learning (ML) that will assist in computationally determining what is potentially malicious. One way
you might use an endpoint protection data source for detection engineering is by generating alerts
on a series of techniques being used or an increase in activity of a certain kind. For example, if an

Detection Data Sources82

alert for an attachment on an email is followed by malware execution on an endpoint, that might be
worth providing a detection for as it implies the kill chain of an attack is continuing instead of being
blocked by the endpoint protection.

Network protection

Next, we have network protection. We’ve already discussed raw telemetry from endpoint and network
devices; similarly, tools for endpoint and network security contain vastly different but equally important
data sources. In terms of the types of devices we might see in our network, email security appliances
and firewalls are probably the most common. Email security appliances provide some level of alerting
to malicious email activity, such as detecting known malicious files or URLs observed in emails
traversing the network. Firewalls, depending on their capabilities, might provide security alerts such as
communication with known bad domains/IPs, abnormal traffic, and malicious files being downloaded.

Along with the vendor-provided devices that you might deploy in your network, there are popular
open source options worth mentioning. Zeek and Suricata are open source network security tools that
act as network security monitors and/or intrusion detection and prevention systems. Like commercial
solutions, they provide alerts based on traffic analysis and threat signatures. Along with built-in rules,
users can create their own rules, making it particularly interesting to detection engineers. While using
these tools is outside the scope of this book, there are plenty of resources online that can help you
learn to leverage them.

Security information and event management (SIEM)

Lastly, we have SIEM systems. These themselves are log aggregators that provide additional enrichment
and context, ultimately providing security analysts with a single pane of glass related to what is happening
in their environment. Less value will be provided from this concerning detection engineering since
it, in theory, is ingesting the same data sources as us. Where it does provide value is if you cannot get
access to specific data sources the SIEM already ingests. We can simply forward those events from the
SIEM instead of the originating device. Secondarily, if the SIEM is providing any sort of enrichment
or correlation that could be leveraged for detection development, it might be worth including as a
data source.

Given this high-level overview of possible data sources, we can look further into the approach MITRE
ATT&CK has taken to document this information.

MITRE ATT&CK data sources

In Chapter 1, we introduced the MITRE ATT&CK framework, specifically the tactics, techniques,
and procedures (TTPs) that they document. There are, however, a couple of other knowledge bases
provided by MITRE that tie additional security information and intel to the TTPs. One of these
knowledge bases documents data sources that can be leveraged to identify these TTPs. Data sources,
from MITRE’s perspective, are the categories of information that can be gathered from sensors or
logs. MITRE has also mapped its data sources to the ATT&CK techniques they can be used to detect.

Understanding data sources and telemetry 83

Our first example of a detection design in the previous section was for creating new user accounts,
which could indicate persistence being established. We associated that technique with MITRE ATT&CK
Technique T1136. Looking at the MITRE ATT&CK data sources, we can see that a data source exists for
User Account Creation (https://attack.mitre.org/datasources/DS0002/#User%20
Account%20Creation). It says that account creation can be detected via event ID 4720 on
Windows or /etc/passwd logs on Linux. This is the guidance we needed to create the detection
design, provided right alongside the technique we used to develop the detection requirement.

We are not going to look at the data sources provided by MITRE in depth; the full knowledge base
can be accessed here: https://attack.mitre.org/datasources/. It is worth mentioning
this framework briefly as it can be used to map detection requirements for data sources, especially if
you are leveraging ATT&CK to plan your detection requirements.

Now that you know what data sources may be available to the detection engineering team, let’s work
through an exercise that will help you think about how these data sources apply to your environment.

Identifying your data sources

The following list will help you identify which data sources you have available, and which should
be prioritized so that they can be integrated into your detection engineering infrastructure. If you
are working for an organization in which you are aware of the infrastructure, we suggest that you
go through this list and identify what your organization’s data sources look like. In future chapters,
understanding your data sources will help you understand the detections that are possible and relevant
for your organization:

• Assets:

 � User endpoints (laptops, desktop computers, mobile devices)

 � Servers:

 � Are any of these servers public facing?

 � What type of servers are they? Domain controllers, web servers, file servers, and so on.

• Software:

 � Operating systems are running on the various assets

 � Software/applications used throughout the organization

• Network architecture diagram

• Cloud assets:

 � SaaS applications

Detection Data Sources84

• Security solutions:

 � SIEM

 � Endpoint protection (AV/EDR)

 � Network protection (IPS/firewall/WAF)

To show what this might look like in a corporate environment, look at the following list as an example
of identifying data sources at a high level:

• Assets:

 � Each employee is issued a laptop computer and cell phone. Our local office each has several
desktops that are used when assisting customers.

 � We have three servers in a co-located data center. This includes a domain controller, internal
file servers, and a public-facing web server.

• Software:

 � All laptops are running Windows 10. All mobile devices are running iOS. The servers are
running Windows Server 2016.

 � Atlassian Jira and Confluence are used by employees. Salesforce is used by our sales team.
The help desk uses TeamViewer to connect to endpoints remotely for troubleshooting.

• Cloud assets:

 � We leverage Microsoft 365 as our SaaS provider for email and productivity tools

 � We have a development team that uses AWS for various projects, primarily for running
virtual machines in the cloud

• Security solutions:

 � We use Splunk as our SIEM.

 � We deploy Sophos to all user endpoints, as well as their cell phones.

 � We have a Palo Alto next-generation firewall protecting the network. Additionally, we have
an F5 web application firewall in front of our web server.

All these resources will result in logs being produced, which will become the data sources for our
detection development. Using the list of resources identified in your organization, you can start to
identify the relevant data sources. For example, there are no Linux hosts in the example organization’s
list of data sources, so they should focus on detections related to Windows hosts, as time spent on Linux
detections would be fruitless. If an email-related threat needs to be protected against, we can see that
Microsoft 365 is used for email in this example – this guides us to where we can detect such threats.

Looking at data source issues and challenges 85

Ensure that you can forward logs from the identified devices. If the device is managed by a vendor
or another team in the organization that will not support exporting logs, it should not be included
as a potential data source.

In terms of prioritizing data sources, this should be guided by the same methods that will be discussed
as part of the requirements discovery process, which we will dive into in Chapter 5. Essentially, your
data sources prioritization will be based on your detection requirements. So, for now, we’ll gather the
list of possible data sources, and then, as detection requirements are determined, we’ll add any data
sources that were not included in our initial data lab configuration based on our needs. This will also
help ensure we’re not consuming compute resources and storage on logs that aren’t even leveraged
in any of our detections.

The other advantage of having this clear list of available data sources from the start is that you can
avoid wasting time planning detections that you don’t have the data available for. For example, if you
don’t have any public-facing applications, you shouldn’t be writing detection rules for attacks that
attempt to exploit such applications.

Now that we know what a data source is and which are relevant, the next section will cover the issues
and challenges that you may encounter when attempting to implement them in your detection lab
or organization.

Looking at data source issues and challenges
Unfortunately, a lot of variabilities are involved in what data sources will be available and the quality
of those data sources. We’ll touch on several of the causes of such variability and the challenges they
present in the following subsections.

Completeness

The completeness of the data provided by a data source is based on the value of the attributes captured
for any given event. We do not want to waste storage resources and bandwidth on data sources that
won’t add value to our investigation due to the data they expose. For example, if a system provides
logs showing a network connection was established but there are no details on the source/destination
of the connection with contextless timestamps and ambiguous time zones, there is likely not much
that can be used from that to develop a quality detection. As such, we either ignore or de-prioritize
this data source.

As an additional note regarding completeness, some data sources provide varying amounts of information
based on logging configurations. There are countless ways to configure Windows, Linux, and macOS
logging to capture additional or less information. For example, in the previous section, we mentioned
PowerShell Script Block Logging. It is not enabled by default, but if enabled, it can provide PowerShell
commands that can be executed on the host. You should be aware of the existing policies but also keep
in mind where it might be worth requesting better logging configurations.

Detection Data Sources86

Quality

When we discuss the quality of a data source, we want to look at a few key features. We need to ensure
our data is reliable, consistent, and trustworthy. First, if we don’t have high confidence in the data source
itself in terms of the data it reports, we should not be using it as part of our detection development.
We need to ensure that the sources we are querying are providing accurate information. If you are
unsure of the value a particular data source will provide, consider that uncertainty when prioritizing
data sources. It may be worth integrating the data to further investigate its value, but this should not
be prioritized over a known-good, high-value data source.

Another aspect affecting the quality of data is the format it is provided in. Third-party tools, such as
the Elastic Stack, which we are using in our labs, often expect data to be formatted in a specific way.
You need to ensure the data you are shipping to your detection system can be understood by the
platform. For example, if the destination system expects a JSON file that can be parsed and you try
to send a Windows Event Log, it will not be parsed and will likely just be dropped. It’s important that
when identifying data sources, you also document what format the logs are in and what methods can
be used to export them to your detection system.

Finally, systems can generate large volumes of rich data for every type of event that occurs. However,
if the interpretation of these events is unclear, this can lead to inaccurate detections and undue delays
during incident response.

Timeliness

When it comes to security, time is of the essence. Our detection platforms must alert us as soon as
possible after malicious activity occurs. As such, the timeliness of receiving data is an important
factor to consider when approaching the topic of data sources. One of the primary issues surrounding
timeliness is that some data sources will not immediately provide data for querying. If the data source
performs any post-processing that causes a delay between the activity being recorded and the processed
data being available to ship to our detection system, we will potentially see a delay between the event
time and the detection time. It is important to be aware of and document any time deltas that may
exist between the event’s occurrence and its delivery to the detection system.

Coverage

Coverage is going to tell us whether the given data sources we have identified provide the data we need
for developing detections. For example, if the detection requirements state we need to detect exploit
activity targeting a public-facing web server, but we aren’t receiving logs from that server, then our
data source coverage is causing blockers for detection development.

Another aspect of coverage is ensuring that the data sources and your data ingestion processes are
resilient. This essentially means that if logging is failing for any given data source, it should either be
known or there should be a fallback mechanism where needed.

Adding data sources 87

If attacker activity is occurring at the same time there is a disconnect between the victim system and
detection platform, we don’t want to find out during an investigation when no evidence exists of activity
on that system. This is even more critical if the data sources have a short retention period and your
logging or detection system is responsible for archiving that data with an extended retention period.

Coverage is something you are going to want to revisit regularly as data sources may expand as the
organization grows, so your coverage will change over time. Make sure that any teams responsible
for deploying new infrastructure and applications are aware of your data source requirements so that
your team can be notified when new potential data sources are created.

Exercise – understanding your data sources

If you completed the Identifying your data sources exercises in the previous section, you can now use
what you’ve learned about data source issues and challenges. For this exercise, take your list of possible
data sources and begin to document the various properties that will potentially affect the value of
your data source. The following questions are worth answering for the sources on your list to ensure
you fully understand the data source:

• What method is required to retrieve logs from the data source? API, Syslog, or something else?

• What format does the data source provide logs in?

• What timezone is the data source using for their timestamps?

• Who is the point of contact for the data source that we need logs from?

• What are the retention policies of the data source?

• Does the detection engineering team have access to retrieve logs from the source?

• What is the delay between an event occurring and it being received in the detection lab?

• Can the logging configuration be modified to improve the data being received?

Now that we know what data sources exist and what value they provide, let’s learn how to integrate
additional logging into our detection engineering lab.

Adding data sources
Now that we know more about the data sources available to us, let’s work through a few exercises to
expand the data sources in our lab. Without the visibility of the data sources we are protecting, we
are unable to write detections.

Keep in mind that each data source will involve an additional virtual machine or application to generate
the logs. As such, if you have a limited number of compute resources available, focus on those most
relevant to your organization.

Detection Data Sources88

The Elastic agent simplifies the process of collecting data from different sources, depending on the type
of service being hosted on an endpoint. Planning the collection of data typically starts with organizing
your endpoints into logical groups, based on shared characteristics, such as operating system, location,
and service being hosted. These typically align with data collection requirements. Using Fleet, we can
then create policies that collect relevant data for each of these groups.

Lab – adding a web server data source

In the Raw Telemetry - Applications section, we mentioned web server logs being a common source
used by corporate organizations. In this lab, we will consider a scenario where a web server is added
to our detection environment. This first half of this lab will focus on how we can use Elastic to pull
logs from a web server. This is vital as the second half of the lab will involve writing a detection for
attack activity specifically targeting web servers.

By completing these labs, you should be able to identify data sources relevant to your organization
and ensure you are collecting valuable telemetry.

Lab setup

As detection engineers, we need to understand the types of events that can occur on web servers and
the common types of attacks targeting web servers. Those inputs can help us design requirements
for data collection. At a high level, we know web servers receive requests from clients, process them,
then send a response back to the client. Figure 4.1 shows the transactional flow between web servers
and clients. Understanding this request-response transaction helps us understand what data might
be available for designing detections:

Figure 4.1 – Web server traffic overview

Now that we understand this response-request flow, let’s begin setting up our lab to include this data
source. We will use a small lab topology for this lab. In addition to the Elastic Stack, we will provision
a single Linux virtual machine to host a web application:

Adding data sources 89

Figure 4.2 – Web server deployment

The Linux virtual machine should have 10 GB of hard disk space and 2 GB of RAM to efficiently
support the application. To provide a web server that will be ripe with opportunities to play with
detections, we will leverage the Deliberately Insecure Web Application (DIWA) project (https://
github.com/snsttr/diwa).

Let’s start by deploying the DIWA project to a new Linux VM:

1. Create a new Linux virtual machine with Docker installed (follow the instructions for Docker
installation from Chapter 3, if needed).

2. Clone the DIWA repository using Git via the following command:

git clone https://github.com/snsttr/diwa.git

3. Create a file named docker-compose.yaml one directory above the diwa folder with the
following contents. This docker-compose file can also be downloaded from this book’s GitHub
repository at https://github.com/PacktPublishing/Practical-Threat-
Detection-Engineering/blob/main/Chapter%204/docker-compose.yaml:

version: "3.8"
services:
 webapp:
 build:
 context: ./diwa
 ports:
 - 80:80
 volumes:
 - /var/log/apache2:/var/log/apache2

4. Start the web application using the docker compose up -d command.

Important note on security
There are many ways to deploy this web application. Please keep in mind that the application
was deliberately designed to be insecure. That said, do not deploy it in a configuration that
allows public access to this server.

Detection Data Sources90

Introduction to Apache logs

DIWA uses the Apache web server, one of the more popular web servers available. Apache handles
the work of receiving requests from web clients and returning a response for valid requests. Apache
is typically configured to log requests to /var/log/apache2/access.log using the common
log format (CLF). The configuration of these log files is stored in an Apache configuration file called /
etc/apache2/apache2.conf. This file tells us what metadata to record for access events. Since
the Apache access logs are plain text, they can be viewed without any special programs. A sample log
entry is shown here:

10.30.23.212 - - [17/Nov/2022:02:56:54 +0000] "GET /js/bootstrap.
min.js HTTP/1.1" 200 10188 "http://10.30.23.137/" "Mozilla/5.0
(Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/107.0.0.0 Safari/537.36 Edg/107.0.1418.42"

While reading an access log file is a fairly trivial task, attempting to analyze log files can quickly
become cumbersome. This is one massive benefit of shipping our Apache logs to a more robust data
platform such as the Elastic Stack. Searching, analyzing, and building detections for Apache access
logs becomes significantly easier once they’ve been ingested into Elastic.

Case study – Labcorp’s new web portal

To help understand this lab a little better, let’s place it within a simple scenario.

Labcorp is a new company and it recently completed a project to build a new web portal. The web
portal is deployed on a web server, which they plan to make publicly accessible next week. Amid all
the excitement surrounding the development and implementation of the web portal, the project team
neglected to involve the security team. The project owners are now working with security to ensure
they mitigate as much risk as possible before launch. Preliminary security tests revealed unauthorized
users may be able to access a sensitive page, secret-xu2d7a.php. Business leadership is adamant
that the portal needs to go online, despite the potential vulnerabilities, but asked the security team
to put as many security controls as possible in place to mitigate any potential risks. The detection
engineering team has been asked to develop detections for any users accessing the sensitive secret-
xu2d7a.php resource.

Data collection configuration

Before we can build any detections, we need to make sure the web portal has been configured to
forward telemetry to a secure data store – in the case of our lab, this is our Elastic Stack. As covered
in Chapter 3, the data that’s collected from each agent is defined in an agent policy. Each agent policy
can have multiple integrations attached to it, which control what specific data gets sent to our Elastic
Stack. By default, when creating a new agent policy, if Collect system logs and metrics is left enabled, a
single integration named System will be added, which intuitively instructs the agent to collect common
system logs and metrics. While this is useful for understanding the general operation of the system
and its monitoring performance, it does not capture the data we need to build security detections.

Adding data sources 91

For web servers, the logs with the highest value for detection and investigative purposes are the web
server access events and network packet telemetry. Network packet data will record all connections
to the web server and any metadata we specify for collection. HTTP access logs will record any access
attempts received by the web server process, as well as details such as the resource requested, client
details, and the response sent for the resource.

The Elastic agent makes forwarding these events simple. This can be accomplished in three steps:

1. Create an agent policy (as shown in Figure 4.3):

I. Navigate to the Agent Policies section of Fleet, then click Create agent policy.

II. Make this new policy Apache Web Server Policy. In practice, it is useful to assign
similarly configured systems, with data collection requirements that are identical to the
same agent policy:

Figure 4.3 – Creating an agent policy

Detection Data Sources92

2. Click Add integration and then search for the Apache HTTP server integration.

3. To get even deeper visibility, we will also add the network packet capture integration. From the
Add Integrations page for our policy, search for Network Packet Capture.

After performing these steps, our new policy should look like the one shown in Figure 4.4:

Figure 4.4 – Apache Web Server Policy

By default, the Network Packet Capture integration is configured to collect data that won’t be relevant to
our web server. To tweak those settings, click on the integration name for the Network Packet Capture
integration, then click on Change Defaults. Change the HTTP setting from its default value to the
new value shown in the corresponding row in Table 4.3. All other settings can be set to Disabled as
they are irrelevant to capturing HTTP traffic:

Setting Default Value New Value Reason

HTTP

Ports: 80, 8080,
8000, 5000, 8002

Send
Request: Disabled

Ports: 80

Send Request: Enabled

Include Request Body
For: application/x-
www-form-urlencoded

In this exercise, we are focusing
on port 80 traffic, so there is
no need to capture traffic on
the other HTTP ports. We
are also interested in seeing
the content of requests, so
we need to enable the Send
Request feature.

Table 4.3 – Network Packet Capture configuration changes

Next, we need to install the Elastic agent on the Apache web server. To do this, we can use the Add
agent option under the Actions menu on our policy page, as shown in Figure 4.5:

Adding data sources 93

Figure 4.5 – Adding an Elastic agent

Ensure the following settings are in place for the Add agent page:

• What type of host are you adding?: Apache web server policy

• Enroll in Fleet?: Enroll in Fleet (recommended)

• Install Elastic Agent on your host: Since we provisioned a Linux server for this lab, ensure
Linux Tar is selected, then copy the installation command shown

Next, we can issue these commands on our Apache web server. Here, we need to make one important
edit to the last command in the listing. At the very end, we need to append –insecure.

When adding the agent, make sure the new agent policy is assigned. Having configured a web server
policy, we can expect web server events to show up in our Elastic Stack. The steps to confirm you are
receiving logs are as follows:

1. Navigate to Fleet, then click on the name of your web server agent.

2. Click Logs, then Open in logs.

Alternatively, you can navigate to Discover under Analytics, then search for your web
server’s hostname.

3. If you don’t see any events, try navigating to your web server address so that Apache’s access
logs get modified.

Elastic also provisions useful dashboards for the integrations that are added to agent policies. To see
the dashboards that are available for your environment, navigate to Analytics | Dashboard. Let’s
take a look at the dashboard for network data. From the dashboard’s search bar, search for Network
Packet Capture, then select the dashboard called [Network Packet Capture] HTTP. You should
see a dashboard similar to the one shown in Figure 4.6:

Detection Data Sources94

Figure 4.6 – Network Packet Capture HTTP dashboard

These dashboards are excellent for providing a high-level view of the collected data. At this point, we
have successfully configured the web server to forward events to the Elastic Stack. This should provide
us with the visibility needed to build detections. Next, let’s look at building a detection so that we can
access that confidential resource:

1. From the case study, we know that the resource we need to monitor is secret-xu2d7a.
php. Let’s take some time to understand how that resource can be accessed. Use your browser to
navigate to the web server (based on the IP address of your VM) that has the DIWA application
deployed. You should be greeted with a page similar to the one shown in Figure 4.7:

Figure 4.7 – DIWA home page

Adding data sources 95

2. There are a few ways to view the contents of secret-xu2d7a.php, but for this scenario,
we’ll just abuse the site’s downloads section. Navigate to Downloads, then hover over one of
the sample documents. You’ll notice a link similar to http://[your vm]/download.
php?file=lorem-ipsum-1000-words.txt.

3. Let’s test what happens when we replace the file parameter with the known-exposed file. Browse
to http://[your vm]/download.php?file=../content/secret-xu2d7a.
php. Sure enough, the secret-xu2d7a.php file gets downloaded, as shown in Figure 4.8:

Figure 4.8 – DIWA file download

4. Navigate to Discover under Analytics. Ensure the time filters are configured to show events
around the time you made the download request, then enter the following KQL query:

url.query: *secret-xu2d7a* OR url.full.text : *secret-xu2d7a*

You should see several results show up, with the matching search hits highlighted. You can
review the data returned to understand which fields can be used to design a detection. For
each row, you can expand the document to see all available attributes, as shown in Figure 4.9:

Figure 4.9 – Expanded document view

Detection Data Sources96

5. We can use the same query to create a detection for the secret document being accessed. From
Alerts, under Security, click Manage rules. Then, click on Create new rule. Set the following
values in each step in the form that is displayed:

 � Step 1:

 � Rule type: Custom query

 � Source: (leave unmodified)

 � Custom query: url.query: *secret-xu2d7a* or url.full.text : *secret-xu2d7a*

 � Step 2:

 � Name: Secret Document Accessed

 � Description: A user has accessed the secret document

 � Step 3:

 � Runs every: 5m

 � Additional look-back time: 1m

6. You can now navigate back to the main alerts page and view your results. As shown in Figure 4.10,
accessing the secret document generates an alert:

Figure 4.10 – “Secret Document Accessed” alerts

As an exercise, consider the detection we’ve just built and how it can potentially be evaded. Are there
any improvements you could make to make it more robust?

With this lab complete, you should now be able to see how certain attacks may be missed if you do
not consider the data sources you collect. Originally, we were only bringing in endpoint logs from
workstations. This would not have allowed us to see a network-based attack targeting our web server.

Summary 97

By identifying a web server in the environment, as well as understanding that attackers will likely try
to remotely target the host via exploit attempts, we were able to bring in the relevant logs and create
a detection for the activity.

Summary
In this chapter, we discussed the concept of data sources as they relate to detection engineering. Fully
understanding your data sources is an integral part of detection engineering – without good data, you
can’t develop quality detections. Furthermore, gaps in data sources being received will also result in
gaps in detections. We ended this chapter by adding a couple of new data sources to our detection
lab, specifically Apache web server logs and network packet capture data.

In the next chapter, we’ll dive into workflows and technologies that enable us to efficiently design,
develop, and maintain detections.

Further reading
If you want to learn more about the MITRE ATT&CK data sources outside of what we briefly mentioned
in the first section of this chapter, there are several blog posts by MITRE themself that specify the goals
of the project and how the schema for data sources was created. Check them out here:

• https://medium.com/mitre-attack/defining-attack-data-sources-
part-i-4c39e581454f

• https://medium.com/mitre-attack/defining-attack-data-sources-
part-ii-1fc98738ba5b

• https://medium.com/mitre-attack/dissecting-a-detection-part-1-
19fd8f00266c

• https://medium.com/mitre-engenuity/researching-data-sources-to-
build-a-foundation-for-detections-e9369a8dbb23

We also recommend diving into the MITRE ATT&CK data sources knowledge base to explore different
data sources available for investigating certain techniques.

5
Investigating Detection

Requirements

In Chapter 4, we discussed the various data sources that may be leveraged for creating and implementing
detections. We also provided guidance on understanding what data sources provide the most value to
your organization. Lastly, a new data source was added to our Elastic Stack as part of a lab demonstrating
the inclusion of additional data sources.

Now that we know how to get data flowing through our detection engineering lab, we can begin
discussing the detections themselves. In this chapter, we’ll specifically discuss prioritizing detection
requirements, establishing a detection repository, and how to deploy detection code.

We will cover the following main topics in this chapter:

• Revisiting the phases of detection requirements

• Discovering detection requirements

• Triaging detection requirements

• Investigating detection requirements

Revisiting the phases of detection requirements
In Chapter 2, we introduced the detection engineering lifecycle, shown again in Figure 5.1. The first phase
of the lifecycle is the Requirements Discovery phase. In that section, we touch on the characteristics of
a complete detection requirement as well as the sources of detection requirements. The second phase
of the lifecycle is the Triage phase, which involves taking the detection requirements from the first
phase and deciding which should be prioritized. Investigate is the last phase before actually turning
our detection requirements into detection designs and code. During this phase, we perform four key
steps: identify the data source, determine the detection indicator types, research the requirement,
and establish validation criteria.

Investigating Detection Requirements100

Figure 5.1 – Detection engineering lifecycle

In the following sections, we are going to go into more detail on each of those phases and provide
exercises that will assist you in beginning to develop detection requirements specific to your objectives.
Detection requirements are our starting point for the rest of the lifecycle, so without our detection
requirements established and fleshed out, we have no direction.

Discovering detection requirements
The first phase of the detection engineering lifecycle and our introduction to detection requirements is
the Requirements Discovery phase. A proper approach to requirements discovery is important because
it ensures that we are receiving context from outside our department that can guide development to
provide the most value. Without connections to our stakeholders and clear guidance on how they
can communicate detection requirements to us, we will spend more time tracking down employees
and information than actually developing detections.

To recap Chapter 2, for each detection requirement, in order to turn a requirement into a design and,
ultimately, into detection code, we need the following information captured as part of our Requirements
Discovery phase:

• The Requesting Organization, that is, where the request originated

• A brief Description of what needs to be detected, either in technical or high-level terms

• The Reason for the requirement, which will be used to help in prioritization in later phases

• Any Exceptions to be taken into account; essentially a list of possible false positives

• The Scope, which assists in reducing false positives by only implementing detections where relevant

• Evidence should be attached to the request, such as packet captures (PCAPs) or logs related
to the event trying to be detected

These types of requests can come from a variety of sources, both from within the detection engineering
team and from outside:

• Threat intelligence

• Internal threat intelligence

Discovering detection requirements 101

• Open source threat intelligence

• Business security requirements

• Red team exercises

• SOC requests

• Continuous activities

Each of these sources is touched on in Chapter 2 if you need a refresher. Since we’ve already covered
what these sources are, we are going to move on to how we leverage the sources and requirement
characteristics to produce requirements.

Tools and processes

An important aspect of detection engineering to discuss and include from the beginning of the lifecycle
is the processes that should be created along with the tools to be leveraged in order to efficiently
collect and track detection requirements. These processes should be clearly established and shared
with all stakeholders upon the establishment of the detection engineering (DE) program. Processes
and tooling will vary from organization to organization based on the existing tools being leveraged,
the organizational structure, and other factors. However, we will provide some examples of ideal
workflow and vendor-agnostic tool recommendations that can be adapted to your specific use case.

Tools

When referring to tools in this stage, we are looking at productivity tools that can assist in implementing
the processes developed by the DE team, rather than technical solutions used for developing detections.
We will remain vendor-agnostic by discussing the types of tools that should be leveraged and leave
it up to you which vendors your organization chooses to leverage. There are three key technologies
that should be implemented as part of your DE team’s requirements discovery workflow: a ticketing
system, a communication platform, and a wiki.

A ticketing system is key to ensuring that detection requirements end up in a centralized location
regardless of the source of the requirement. Whether it’s a detection engineer creating a ticket for
a requirement they’ve identified or the SOC team reporting the need for a detection based on their
observations, we want to know that they will all end up in a single view. Furthermore, the functionality
of ticketing systems will help you track a requirement’s development progress all the way to the Deploy
phase. It also acts as a historical archive so that if a rule needs modifications down the road, a reference
back to the original request and its context can be made.

When evaluating ticketing system solutions, consider features such as integration with Git and your
communication tool (as will be discussed later) that will allow the platform to integrate with the entire
detection engineering flow. Furthermore, the ability to create templates and automated workflows will
reduce manual effort and decrease the chances of inconsistency between tickets.

Investigating Detection Requirements102

The next tool worth highlighting is a communication platform. This may seem obvious and most
likely your team already uses an internal communication tool. It is recommended that your choice
of communication tool includes a way to communicate in real time via voice or text, create groups
and channels to segregate discussions by topic, and integrate with other tools, as mentioned with
the ticketing system. If integrated with the ticketing system, DEs can receive notifications about new
tickets or updates to tickets in real time without monitoring the ticketing system itself. Integration
with Git will allow for notifications related to changes in the code base.

Lastly, we recommend creating a wiki or similar collaborative documentation tool for your team. We’re
about to dive into the processes that should be established for kicking off the detection development
lifecycle. It’s only logical to have a centralized location where these processes are documented and
easy to find. Documentation is an integral part of any security team as it will ensure that processes
are performed consistently, accurately, and efficiently. The wiki will expand to meet your needs and
can include any information that you feel is relevant to the entire team. This could be high-level
workflows, detailed technical specifications for code, onboarding procedures, and more. If a process
is repeated more than a few times or a question is being asked and answered repeatedly, it’s probably
worth developing documentation around.

Next, we’ll look at high-level processes in the Requirements Discovery stage and briefly highlight how
the aforementioned tools can be integrated into these processes.

Processes

In this section, we are specifically going to look at a high-level workflow related to the Requirements
Discovery phase and ending after Triage. This process is represented in Figure 5.2.

Figure 5.2 – Requirements Discovery phase workflow

Discovering detection requirements 103

First, a detection requirement is discovered. As we discussed, this requirement may come from the
DE team itself or could originate from other stakeholders, such as the SOC or red team. Regardless
of the source of the requirement, it should include all the information mentioned previously, being
the components of a complete detection. This detection requirement should be submitted via the
ticketing system following any guidance in the DE team’s ticket creation procedures, which should
be documented in a wiki or similar tool.

Assuming your ticketing system and communication platform are integrated, per our recommendation,
this ticket creation should send a notification via chat to the engineers. This way, regardless of whether
the request originates internally or not, all relevant persons will know immediately rather than needing
to check email or the ticket system itself for any new requests.

During the review of the incoming request, the engineer should compare the content of the ticket
against their criteria for a complete requirement and ensure all information has been provided. If not,
the ticket should be returned to the submitter to provide any missing information. If the ticket meets
the DE team’s requirements, the analyst should triage the ticket (using processes to be discussed later
in this chapter) and set an associated priority. At this point, it will be in the queue ready to move on
to the Investigate phase once it gets assigned to an engineer.

One last thing to mention regarding communication and the exchange of information is the concept of
industry standards. There are many frameworks in the cyber security industry designed to help create a
common nomenclature for communicating certain technical information. For example, the Common
Vulnerability Scoring System (CVSS) to communicate vulnerability information, MITRE ATT&CK
(which we discussed in Chapter 1) to describe tactics, techniques, and procedures (TTPs), STIX to
communicate incident artifacts, and others. If your organization leverages any of these frameworks
or finds a use case for standardizing such information in communications, take that into account
when building your workflows.

Exercise – requirements discovery for your organization

This exercise provides questions and prompts to help you approach requirements discovery and the
application of the Requirements Discovery phase in your own organization. Specifically, we’ll look at
the sources of requirements in your organization to help identify stakeholders that should be aware
of the processes. Save the results from this exercise as it will be leveraged in future exercises to guide
your journey through the detection engineering lifecycle.

Let’s start by looking at requirement sources. As a refresher, we looked at threat intelligence, business
security requirements, red team exercises, SOC requests, and continuous activities as potential sources
of detection requirements. Since continuous activities are part of the detection engineering lifecycle
and thus a source internal to the team, we are going to ignore them for the time being and focus on

Investigating Detection Requirements104

external stakeholders. Use Table 5.1 to identify which of the four remaining sources are relevant to
your team:

Requirement Source Point of Contact POC Email Address

Threat Intelligence

Business Security

Red Team Exercises

SOC Requests

Table 5.1 – Requirement Source Contact Sheet Template

Obviously, if your company does not have an intel or red team, for example, then that requirement
source is not relevant to your organization and can be ignored. Identifying a point of contact (POC)
early in this process is important because there will be much communication needed with stakeholders
to explain processes and collaborate on the development of detections. We recommend scheduling
meetings with each POC and the relevant team members to introduce yourself and your role and
explain how their team can play an integral role in the detection engineering lifecycle. Explain the
benefits that the external team as well as the whole organization will receive in exchange for becoming
part of the DE team’s processes. Filling out this table should be simple and should result in something
that looks like Table 5.2 You’ll notice in this example the organization doesn’t have a red team, so that
row has been removed to focus on only the relevant sources. If you have a wiki, as recommended in
the Tools section, find a place within the documentation to save this information for future reference.

Requirement Source Point of Contact POC Email Address

Threat Intelligence Brenda White bwhite@corp.net

Business Security Larry Walker lwalker@corp.net

SOC Requests Bobby Clark bclark@corp.net

Table 5.2 – Requirement Source Contact Sheet Example

You should now have the list of data sources and associated context (which should also be migrated to
your wiki), if gathered in Chapter 4, as well as this table of requirement sources and context. This will
allow you to more quickly identify what capabilities and resources are available to your team when
we discuss the Triage and Investigate phases.

Triaging detection requirements 105

Triaging detection requirements
In this section, we’ll discuss the steps that should be taken and the criteria to be considered when
prioritizing requirements. Triage is an important phase of the detection engineering lifecycle because
not all detection requirements will have the same impact on the organization’s defenses, so it is
important that we prioritize our efforts toward those that will provide the most value. If engineers
are provided an unprioritized list of detection requirements, you risk missing the requirements that
may prevent a major attack because everyone is working on what they feel like rather than what is
best for the organization.

There are four criteria we mentioned in Chapter 2 as factors when triaging requirements:

• Threat Severity

• Organizational Alignment

• Detection Coverage

• Active Exploits

For each detection requirement that comes in, we need to evaluate how it is affected by the above
four factors in order to determine the return on investment (ROI) of implementing a detection
for the requirement. To simplify converting a triage assessment to a ticket priority, we are going to
implement a simple scoring scale for each category and sum those up for a cumulative score that can
be used to determine which tickets should be worked on first. First, let’s introduce the scoring scale
of each category.

Threat severity

In Chapter 2, we provided the following definition related to threat severity:

“The threat severity relates to the impact of the threat if it is not detected. The greater this impact,
the higher the severity.”

Therefore, when assessing a detection requirement’s threat severity score, we are considering how severe
the impact of a threat not being detected and the attacker successfully carrying out their activities
would be. Table 5.3 provides scoring criteria for the Threat Severity category:

Score Description Example

1 The threat is passive but could
lead to further malicious activity.

Reconnaissance scans
against public-facing servers:
Common activity but not
inherently malicious until the
threat actor abuses findings.

Investigating Detection Requirements106

2
The threat is actively in the
environment but presents a low
risk at this stage in the kill chain.

A phishing email is malicious
but without the context of
the follow-up actions, is not a
critical threat by itself.

3 The threat presents a severe
threat to the organization.

Ransomware payload
execution: If a ransomware
payload executes, it risks
taking down critical
components of the
organization and having a
major financial impact.

Table 5.3 – Threat severity scoring

As can be seen from the definitions, we define threat severity based on the specific activity being
detected, not the context of a wider attack.

Organizational alignment

Using organizational alignment as a method for triaging threats involves understanding how external
threats’ motivations, targets, capabilities, and infrastructure overlap with the industry, organization,
infrastructure users, and data that is being protected. Threat intelligence should be used to identify
which threats align most with your organization’s profile.

Score Description Example

0 The threat is irrelevant to
the organization.

A threat targeting macOS endpoints in a
Windows-only environment.

1 The threat is likely not going to
target your organization but the risk
still exists.

A threat actor primarily focused on
targeting a geography outside your own
but known to target your industry.

2 The threat is widespread/untargeted. A mass Emotet malspam campaign.

3 The threat specifically targets
your organization.

Known threat based on internal
observations or a threat actor known to
target your geography and industry.

Table 5.4 – Organizational alignment scoring

Triaging detection requirements 107

Filling out this table is likely going to be more challenging than the one for threat severity as threat
severity is determined without the organizational context. Organizational alignment requires you to
first understand your environment and then identify based on research how relevant a given threat
is given the additional context.

Detection coverage

Prioritizing detection requirements has a clear relationship with which detections would have the greatest
return on investment for the organization. Part of this is determining whether we are already covered
for all or part of a requirement. Obviously, if we already have in-depth coverage for the requirement,
it shouldn’t even be in the queue. Creating a detection for something that we can’t currently detect
will receive a higher score over improving the detection rate of an existing detection since the impact
it has on our overall coverage is greater.

Score Description

0 In-depth coverage is already provided for this specific technique.

1 This technique requires an update to the scope of an existing detection.

2 No coverage for this requirement exists. A new detection is required.

Table 5.5 – Detection coverage scoring

With the detection coverage score documented, we can either move on to calculating the cumulative
score priority or, if exploits are involved, we need to also determine the Active Exploits score.

Active exploits

The Active Exploits score should only be used in the scoring process if the detection requirement
involves detecting a specific exploit. For this category, we have to consider a couple of factors, which
means we have multiple scoring tables. Specifically, we’ll look at the relevance of the exploit to the
organization and the prevalence of the threat.

Investigating Detection Requirements108

First, identify whether the organization is vulnerable to the exploit based on which technologies and
software versions are affected:

Score Description

0 The organization is not vulnerable to the exploit.

1 The organization is vulnerable to the exploit but the turnaround time
of a patch is quick.

2 The organization is vulnerable and a patch is unavailable or will not be
deployed soon.

Table 5.6 – Active exploit (relevance) scoring

While scores of 1 or 2 both relate to an organization being vulnerable, we differentiate by whether
a patch is available and to be implemented soon as this greatly impacts priority. If we know a patch
is coming to mitigate the risk soon, that could be the difference between working on this detection
requirement and another one. By the time we develop, test, and deploy a detection, it’s possible that
a patch will have already been released. As such, we want to ensure that we don’t just think about the
threat at the exact moment but whether it will still be relevant by the time the detection is released.

One thing not included in the scoring criteria for an organization’s vulnerability but worth considering
is if only a specific geographic region or industry is being targeted with the exploit, it may be worth
considering the requirement irrelevant. You should assess the likelihood of the exploit becoming
more widely leveraged based on the next scoring table. Specifically, this table focuses on how likely it
is that the vulnerability will be exploited based on public reporting of the availability of exploit code
and observed activity.

Score Description

1 No exploit code or in-the-wild activity has been observed.

2 Some in-the-wild activity has been observed but no public exploit code
is available.

3 Exploit code is publicly available and actively being used by threat actors.

Table 5.7 – Active exploit (prevalence) scoring

Now that we understand how to score each of these factors, we can dive into combining the results
into a priority to close out the Triage phase.

Triaging detection requirements 109

Calculating priority

Assuming you’ve assigned a score for each category above, we’re going to perform a simple sum, as
shown in Figure 5.3, to assign a priority score for the entire detection requirement.

Figure 5.3 – Priority score formula

Before we calculate the score though, we first want to make sure no there are no categories with a
score of 0, as this will indicate the detection requirement should be rejected instead.

The following cases of a 0 score indicate that the detection requirement should be marked as irrelevant
with context as to why and returned to the requestor:

• If organizational alignment receives a score of 0, the detection requirement can be rejected as
this means that the organization is not at risk for the given threat

• If detection coverage receives a score of 0, this means that the detection requirement is already
covered and should be returned to the requestor, referring them to the existing detection

• If the relevance of active exploits receives a score of 0, it means that the organization is not
vulnerable to the related exploit so a detection is not required

Assuming there are no zero scores, then the priority can be calculated by summing together all the
scores. Let’s look at three examples of this being implemented at a tech company in the United States
to show how it can help us triage requirements:

• Detection Requirement #1: SOC is requesting a detection be put in place for an Emotet
malspam campaign they are actively observing. They report a remote access Trojan (RAT) is
installed on the host at the end of the infection chain:

 � Threat Severity: 3. The RAT will allow for remote code execution, which is a severe threat.

 � Organizational Alignment: 2. Emotet malspam is a widespread attack and not specifically
targeting the organization.

 � Detection Coverage: 2. Let’s assume no detections currently exist for this threat.

 � Active Exploits: N/A.

 � Priority Score: 7

Investigating Detection Requirements110

• Detection Requirement #2: The intel team is requesting a detection for their research into
a new threat actor primarily targeting utilities in the United States; however, the intel team
believes that this group might change their targeting to include other verticals such as tech.
The primary known TTP associated with this group is credential theft via phishing:

 � Threat Severity: 2. Credential theft is early in the kill chain and we don’t know what the
attacker plans to do with the stolen credentials. Without the context of additional kill chain
actions, we should leave this threat severity at 2.

 � Organizational Alignment: 1. While the threat actor has not directly attacked tech companies
in the United States yet, they are active in the region in adjacent verticals and the intel team
assesses that they may target the organization in the future.

 � Detection Coverage: 1. Let’s assume we have a detection for some of the phishing TTPs
reported by intel, but there are several threat characteristics they want added to our detections.

 � Active Exploits: N/A.

 � Priority Score: 4

• Detection Requirement #3: The red team is requesting a detection for exploitation of a recently
announced vulnerability in Microsoft Exchange. They’ve assessed that the organization’s Exchange
servers are vulnerable and an attacker could cause remote code execution if successfully exploited.
A patch is available, but it is unclear how long it will take to get deployed in the environment.
Widespread in-the-wild exploitation has been observed and public exploit code is available:

 � Threat Severity: 3. If successfully exploited, the threat actor will be able to perform remote
code execution, which presents a severe threat.

 � Organizational Alignment: 2. The exploitation is targeted toward Microsoft Exchange, regardless
of the specific organization involved, so it is essentially an untargeted/widespread attack.

 � Detection Coverage: 2. No detections currently exist for this threat since it’s a new exploit.

 � Active Exploits:

 � Relevance: 2. The red team has validated that the organization is vulnerable and is unsure
of when a patch will be deployed.

 � Prevalence: 3. The red team reports that exploit code is publicly available and attacks are
being seen in the wild.

 � Priority Score: 12

Now let’s assess what these priority scores tell us. Put simply, the higher the score, the sooner the
requirement should be worked on. In the specific requirements discussed above, our scoring indicates
that Detection Requirement 3 (Exchange exploit activity) should be worked on first, then Detection
Requirement 1 (Emotet malspam campaign), and finally, Detection Requirement 2 (new threat actor).

Investigating detection requirements 111

This order makes sense when performing a non-mathematical assessment. First, we are going to get
a detection in place for a widespread vulnerability actively being exploited for which we have no way
to detect it. Once vulnerabilities have public exploit code and major attention, a significant number of
threat actors will try to take advantage. After that, we can work on the active Emotet campaign. Emotet
is widespread and untargeted but can have an impact, just potentially without the same aggressive
and sudden activity we expect from a widely exploited vulnerability. Lastly, we can work on the intel
team’s request, but it can go into the backlog since we have some relevant detections already and the
threat actor has not yet attacked organizations in our vertical, nor do we know what the final impact of
their attack would be. While there may be subjectivity in some cases due to additional factors relating
to managerial decisions on what to prioritize, the formula above can provide some initial guidance.

In your ticketing system, set the ticket priorities accordingly. Even if an integer-based score is not
used, the scores can help you put ticket priorities into the low, medium, high, or critical range. Table
5.8 provides a mapping of scores to priority levels.

Score Priority Level

1-3 Low

4-6 Medium

7-9 High

10+ Critical

Table 5.8 – Priority levels by score

This completes the Triage phase and allows us to move on to the Investigate phase, performing the
rest of the lifecycle for each detection requirement in the order determined by the priority scoring.

Investigating detection requirements
The last phase we’ll discuss as part of this chapter is the Investigate phase. As mentioned in Chapter 2,
the goal of the Investigate phase is to prepare a detection requirement for development, by converting
the detection requirements to more technical requirements. The four steps involved in this phase are
data source identification, detection indicator types, research, and establish validation criteria. These
steps were previously described in Chapter 2 and, as such, we are not going to reiterate the content
here. We will, however, look at the detection from the previous section and show how we can take
detection requirement #3, our top priority requirement, and investigate the requirement further.

First, we start with the detection requirement information:

The red team is requesting a detection for exploitation of a recently announced vulnerability in Microsoft
Exchange. They’ve assessed that the organization’s Exchange servers are vulnerable and an attacker could
cause remote code execution if successfully exploited. A patch is available but it is unclear how long it
will take to get deployed in the environment. Widespread in-the-wild exploitation has been observed
and public exploit code is available.

Investigating Detection Requirements112

As will often be the case when detection requirements come from outside teams, they do not have the
same perspective as a detection engineer so the requirement they provide may not include everything
required to design a detection. Therefore, the Investigate phase is important to ensure all information
is gathered prior to development starting. Establishing the research that needs to be done is how we
can help ensure a quick and effective turnaround of a detection requirement into a detection.

Now let’s go through each step of the Investigate phase and see how we can gather the information
relevant to each step. The first step is Data Source Identification. Looking at the detection requirement
description alone, without knowing the details of the particular vulnerability, there are two things
that stand out as relevant to data source identification. First, they mention the vulnerability targets
Microsoft Exchange. Knowing this, we should gather both the endpoint logs (Windows Event logs)
and application logs (Microsoft Exchange logs) from all vulnerable Exchange servers. We could also
gather IIS logs, which provide visibility over any POST/GET requests made to the Exchange server.
The second key phrase that stands out is “remote code execution.” This means that if the attacker
exploits the vulnerability, they will able to execute the code remotely, from outside of the server itself.
For that to happen, we will potentially be able to observe the attacker’s activity traversing the network.
Therefore, we should identify any network appliances sitting between the Exchange server and the
internet that would have visibility of such traffic, such as a firewall.

The second step of the Investigate phase is to determine relevant detection indicator types, that is,
whether we will be working with static, behavioral, or statistical indicator types. If we were working
with an intel team providing details on known hashes or IP addresses of attackers working with the
specific exploit, static indicators might be relevant. In the case of the red team providing details on
an exploit, however, we are likely going to be looking at developing behavioral detections, as we want
to know what it looks like when the exploit is executed regardless of the specific exploit payload or
attacker leveraging it.

Next, we need to research the threat to understand how we can detect this specific exploit. With the
description we have, we would likely need to dive deeper into how the exploit works to understand how
we can detect it. For the sake of the example, let’s say that the red team tells us that ProxyShell is
the Exchange vulnerability they are concerned about. Having been a widely reported-on vulnerability,
a simple Google search for Detecting ProxyShell will lead you to numerous blog posts
from security vendors and researchers demonstrating the behavior observed when exploiting the
vulnerability. Some examples of what you’ll find with such research are that there are certain values
in POST requests in the IIS logs that indicate an attempt to exploit the vulnerability as well as certain
Exchange Management Shell Cmdlets that are executed during the exploitation. Those are both
good starting points for how we could detect this behavior. Furthermore, the widespread nature of
this vulnerability means that researchers have published open source signatures for projects such as
Sigma. We encourage you to search online for ProxyShell detection techniques and identify various
activities that we could alert on to potentially stop such an attack.

Summary 113

Given the information gathered during the research step, combined with our knowledge of relevant
data sources and indicator types, we can establish validation criteria. Essentially, how do we know
that the detection we’ve written works as expected? At this point in the process, we can create some
technical statements that indicate what we expect from the detection. Here is an example of one
possible validation criterion:

If successful, then executing the PowerShell New-MailboxExportRequest command
on Exchange Server should result in the detection being triggered based on the presence of
New-MailboxExportRequest in the MS Exchange Cmdlet logs.

Notice the preceding statement defines the behavior we want to test (executing
New-MailboxExportRequest), the result we should see (a triggered detection), and the data
source and associated condition to be met (New-MailboxExportRequest in the MS Exchange
Cmdlet logs). If we aren’t executing the right command, seeing the right detection, or gathering the
right data from the right source, there is something wrong with our detection.

We recommend reviewing the Investigate section of Chapter 2 if you need a refresher on the above concepts.

Summary
In this chapter, we first looked at the phases involved in creating and documenting detection requirements.
We defined a methodology for scoring and prioritizing requirements allowing an organization to triage
requests from multiple stakeholders. Lastly, we worked through some example scenarios using this
prioritization approach to demonstrate how it can be used to support a detection engineering team.

In the next chapter, we’re going to work through multiple example detections to demonstrate the
design and creation process of detection rules for various scenarios. Then we’ll briefly touch on testing
our new detections.

6
Developing Detections Using

Indicators of Compromise

In this chapter, we will apply the detection engineering life cycle to investigate and develop detections
in our lab. In Chapter 2, we identified four sub-steps to the Investigate phase and three sub-steps to
the Develop phase, which we will follow in our exercises in this chapter.

Investigate:

1. Research context

2. Data source identification

3. Detection indicator types

4. Establish validation criteria

Develop:

1. Design

2. Develop

3. Unit test

At the beginning of the book, we introduced the Pyramid of Pain, which can be used to evaluate how
easily the adversary can evade our detections. In addition to signifying the difficulty for the adversary
to evade detection, the pyramid levels also (mostly) align with how easily a detection can be created.
For this reason, we will start with implementing simpler static indicator detections that align to lower
levels of the pyramid, and in the next chapter, we will move on to behavior-based detections.

We will cover the following main topics in this chapter:

• Leveraging indicators of compromise for detection

• Scenario 1 lab

Developing Detections Using Indicators of Compromise116

Technical requirements
The labs in this chapter will involve the use of the detection engineering lab built as part of Chapter 3.

Leveraging indicators of compromise for detection
When developing detections, the concept of indicators of compromise (IoCs) will frequently come
up. Threat intelligence sources commonly share information about threats and will often include IoCs,
which can take multiple forms. We briefly discussed the concept of indicators in Chapter 1.

In this section, we are going to dive further into the concept of IoCs, the Pyramid of Pain, and how
they relate to detections. These concepts will be brought up again in Chapter 8 when we go in-depth
into leveraging threat intelligence for detection engineering.

In Chapter 1, we saw that static indicators such as hashes, IP addresses, and domain names are at the
bottom of the Pyramid of Pain, and are trivial for adversaries to change. Despite being easy to change,
they do provide a method for short-term, tactical defense. When talking about detecting IoCs, this is
typically our focus: a quick way to detect known threats until the threat actor modifies their attack to
evade static detection. While it is often a game of whack-a-mole, it provides a stop-gap solution while
more in-depth detections can be written against the tools and tactics, techniques, and procedures
(TTPs), the less mutable elements of the Pyramid of Pain. For that reason, we cannot ignore the
concept of creating detections against static IoCs, and in this chapter, we will look at how we can take
IoCs published publicly and leverage them to detect known malicious activity.

At the most basic levels on the Pyramid of Pain, we have hash values, IP addresses, and domain names.
These are the three layers we are going to focus on with our example scenario in this chapter focusing
on detecting IoCs. Although simple for the attacker to change and thus short-lived, these indicators are
often quickly identifiable via threat intelligence, whether from internal data sources or open source
intelligence (OSINT), and easy to implement. Furthermore, there are tons of open source feeds and
resources that provide these types of indicators.

Typically, when looking at these indicator types, we see two categories, host-based and network-based
indicators. Host-based indicators are those that exist on a host in their final state. Hashes are host-
based indicators. Along with hashes, we could also look at other host artifacts, such as registry keys
or directories. These are slightly harder for the attacker to modify but also not as widely distributed
in threat intel feeds. As such, we’ll be focusing on hashes, but the same concepts and processes apply
to all host-based artifacts but against different log fields.

The second category is network-based indicators, such as domains, IP addresses, and URLs. Network-
based indicators are focused on those that are captured by data sources monitoring network traffic
or hosted on network infrastructure. Once again, we can expand on these indicator types to include
user agents, URI patterns, and other network artifacts if we have that information available to detect
on. This chapter’s example, however, will focus on just domains, IP addresses, and URLs, as they are
the most common ones you will encounter.

Leveraging indicators of compromise for detection 117

When it comes to creating detections using IoCs, it is one of the easiest and quickest detections that can
be developed. At the simplest level, with static indicators, we identify fields matching specific values,
for example, looking for any fields associated with MD5 hashes containing a given known malicious
hash. The steps for creating a detection based on static indicators are standard regardless of the artifact
type and take place in the Investigate and Develop phases. We start with the Investigate phase. The
following is a list of the sub-steps in the Investigate phase along with a description of their purpose:

1. Research: We need to use the information provided in the detection requirement to expand our
knowledge of the threat. With regard to detecting IoCs, this will typically involve identifying
context related to each indicator (that is, how a given file or domain is related to a threat).

2. Data source identification: With the context of indicators known, we can determine which data
sources are likely to have visibility over the threat, which will tell us what logs to detect against.

3. Detection indicator types: If the indicator types are unknown, they should be documented. At
a high level, you will have either static or behavioral indicators. In the case of static indicators,
the detection requirement may provide the indicators in a format that includes their specific
type, such as IP address, domain, or SHA256 hash. If so, this step becomes negligible as it’s
part of the detection requirement.

4. Establish validation criteria: Before a detection can ever be deployed to production, we need
to ensure it works as expected. Establishing validation criteria helps us specify how we can
determine that a detection meets the goal of the detection requirement.

Let’s look at the Investigate phase in more depth as it relates to detecting static indicators. First, we
must gather the list of indicators. These indicators will either come from within the organization, such
as indicators identified in attacks against the organization, or from OSINT, which could be either blog
posts or threat feeds. Once we have the starting list provided by the detection requirement, we can
perform the Investigate phase of the detection engineering life cycle to gather additional indicators
and context. Typically, when we receive indicators as part of a detection requirement some context is
provided as to why these indicators need to be blocked. This context should be noted as it will help
us in the next step. Additionally, we should perform research to ensure that there are no additional
related indicators of value. For example, we might be able to obtain a file hash associated with a payload
URL or the IP address a domain is being hosted at.

Given the indicators and their context, we next need to identify the data sources within the scope for
this detection. This is going to depend on both the indicator type and the context. The first way to
narrow down relevant data sources is based on indicator type. Simply put, if the data source does not
provide logs containing indicators of that type, it is irrelevant. For example, hashes will not appear
in Apache access logs, so that they can immediately be ignored as a data source for the detection of
hashes. If you are unsure of whether a data source will provide certain information, look at samples
to see what fields are available. Make sure to record this information in the detection engineering
(DE) team’s documentation for future reference so that it does not need to be evaluated every time.

Developing Detections Using Indicators of Compromise118

The second factor in whether a data source is relevant is the context of the indicator. By this we mean,
is the indicator likely to appear in a given log based on its context? For example, if we are attempting
to detect indicators associated with a social engineering campaign that gets users to navigate to a URL
via phishing over phone calls (vishing), then it would not make sense to waste resources building
detections for that URL appearing in email data sources, because email was not involved. Similarly, if
a malicious payload is being distributed via email, then detecting a file hash observed via web traffic
downloads is fruitless.

The last piece of information we need to gather is the relevant field names based on the data sources
identified. In this case, since we already have the indicators, this step is equivalent to the Detection
indicator types step of the Investigate phase. There are two key considerations here:

• Indicator type and context: You want to first narrow down the list of fields containing the
indicator types for which you are writing detections. For example, if you are detecting an IP
address in a firewall log, you have two fields to choose from, one for the source IP and the other
for the destination IP. At this point, you have to use the context obtained in your research to
decide which specific field is relevant to the indicator you are detecting. For example, if you are
trying to detect an IP address known to be used for data exfiltration, you want to look for it as a
destination IP. If the IP address is the member of a botnet performing brute-force attacks against
your organization, then the source IP is more relevant. Sometimes you may want to detect on
both the source and destination, but in cases where you want to reduce performance impact
or the chance of false positives, the context can often help create a more specific detection.

• Naming conventions: Ideally, you are writing detections for a platform that normalizes data
from different sources to use a shared field name. For example, if your firewall stores the source
IP address in a field called src.ip and your virtual private network (VPN) logs use src_ip,
you must create a check for the value of the IP in all possible versions of source IP fields. In the
case of a system that normalizes data, all source IPs, regardless of data source, will be stored
in a field as named by the system administrator.

To help solidify these concepts, we will look at an example of how an OSINT provider that provides
indicators can be leveraged for developing detections.

Example scenario – identifying an IcedID campaign using indicators

In this example scenario, we will look at an OSINT provider on an IcedID malware campaign in order to
understand how we can use this intel to identify static indicator detection opportunities. Furthermore,
it’s important to identify the data source requirements related to such a detection requirement.

There are many vendors and websites dedicated to the sharing of threat intel. One of these websites
is AlienVault’s Open Threat Exchange (OTX), which provides a collection of IoCs associated with
campaigns that AlienVault refers to as pulses. For this example, we are going to look at a pulse
associated with a malvertising campaign distributing IcedID via fake Google ads. The pulse can be
viewed here: https://otx.alienvault.com/pulse/639b10240d0534275ddbdea1.

Leveraging indicators of compromise for detection 119

The indicators gathered were based on a SANS Internet Storm Center (ISC) diary, which can be read
here: https://isc.sans.edu/diary/rss/29344. At a high level, this campaign involves
the following steps:

1. A user visits an SEO-poisoned Google ad.

2. A series of redirects leads the user to a fake AnyDesk download page.

3. A ZIP archive is downloaded from this page that contains an MSI file.

4. The MSI file, if opened, drops and runs a malicious DLL to install IcedID, and C2 communication
is established.

Included in the pulse are IPv4 addresses, domains, URLs, and file hashes, all of which can be leveraged
for static indicator detection. While the attacker may create new infrastructure or modify payloads,
these indicators provide a quick method to block the immediate threat while more comprehensive,
behavioral detections can be developed.

The first step in creating a detection for these static indicators is to identify which data sources provide
events containing the data we want to detect – in this case, file hashes, IPv4 addresses, domains, and
URLs. Let’s start with file hashes. There are several data sources from which we might receive hash
values. The primary source is going to be endpoint-level logs, including both raw telemetry (such
as Windows event logs) and security events (such as anti-virus (AV) and endpoint detection and
response (EDR) logs). Security tools will typically capture file hashes as part of their events. File
hashes are less common within raw telemetry, although sometimes logging configurations can be
used to capture additional information. For example, in the following exercise, we will review how to
install and configure Sysmon. Sysmon will provide you access to several events that record the hash
of a file, including process creation and driver load events.

In some cases, we may observe file hashes in logs from network-based security tools. Two key examples
of this are email security appliances (ESAs) and next-generation firewalls (NGFWs). ESAs may
include the hashes of any observed attachments. Although not a capability of all NGFWs, some of
them will calculate the hash of files traversing the network.

Along with file hashes, we have IPv4 addresses, domains, and URLs, all of which are network-based
indicators. Just like with file hashes, we have multiple sources related to such indicators. In this case,
however, network logs are going to be our primary source with some endpoint logs available as a
secondary source. IPv4 addresses are going to be the most common of the three indicator types,
whereas domains and URLs are going to appear only where either Domain Name System (DNS)
resolution or web traffic is involved.

Developing Detections Using Indicators of Compromise120

Table 6.1 outlines the data sources most relevant to this scenario as well as the indicator types associated
with those data sources. The indicator types will vary based on event type, so only a subset of logs from
each source may contain that indicator type. The Notes column of the table provides some context
surrounding the limitations of certain indicator types:

Log Type Indicator Types Notes

Raw telemetry – endpoints (e.g.,
Windows event logs)

File hashes

IPv4 addresses

Domains

File hashes depend on specific
logging tools or configurations,
such as Sysmon.

Non-internal IP addresses are
only going to appear in logs
involving network activity.

Domains depend on logs that
perform DNS resolution.

AV/EDR alerts File hashes

IPv4 addresses

Domains

URLs

File hashes should be present in
many AV/EDR alerts, although
the hash type may vary.

Network indicators are going to
depend on the type of event. AV/
EDR are endpoint-focused but if
the source of a malicious payload
is an external website, the
network info may be captured.

Firewalls File hashes

IPv4 addresses

Domains

URLs

Network indicators are going
to be more common. Stateless
firewalls are only going
to provide IPs and maybe
domains if some sort of DNS
resolution is in place. NGFWs
typically include URL filtering
capabilities and will record
URLs being visited.

File hashes will only be
present if an NGFW provides
some sort of file analysis that
also computes the hash.

Leveraging indicators of compromise for detection 121

Log Type Indicator Types Notes

ESAs/email logs File hashes

IPv4 addresses

Domains

URLs

Sender and recipient IP
addresses and email domains
will be present in ESAs and
email logs.

File hashes and URLs may

be present in these logs if the
ESA is performing an analysis
of attachments and embedded
URLs. Some email providers
will also record file hash
attachments or extract URLs.
It is all dependent on the
vendors being leveraged.

Table 6.1 – Relevant data sources for scenario 1

As can be seen, all of our data sources have the potential to provide most of the indicators relevant
to our detection requirement, but it all depends on the configurations and capabilities of the systems
being leveraged. This is where understanding your environment becomes important. If you don’t
know whether your firewalls perform URL filtering, you won’t know whether you can leverage those
appliances for detecting suspicious/malicious URLs.

The other consideration here is that we have multiple places where indicator types match those in
our detection requirement, but we need to identify which data sources it makes the most sense to
implement detections against. This involves fully understanding the activity you are trying to detect,
and which systems will have visibility based on the attack chain.

As part of the detection engineering life cycle, we must go through the Investigate phase. In this phase,
we attempt to gather additional context related to our detection requirement in order to most effectively
develop a detection. For our example scenario, that means understanding the context related to the
indicators so that we can determine what data sources would be of most value. We’ll begin by looking
at the file hashes provided in the pulse. While the pulse solely provides a list of indicators, we can look
at the reference article to determine how these hashes came into play.

The source article provided all hashes in SHA256 format, while the pulse included the associated
MD5 and SHA1 hashes as part of the pulse. Since the source article solely provided SHA256, we will
focus on those for this purpose. If a system you are developing a detection for only supports SHA1 or
MD5 and the sample is publicly available, AlienVault OTX or other OSINT providers can be used
to obtain the SHA1 and MD5 hashes associated with each SHA256 hash. Table 6.2 contains a list
of hashes and notes about each hash based on reviewing the SANS ISC diary that was referenced.

Developing Detections Using Indicators of Compromise122

Luckily for us, the article lists the indicators with details about the associated file, so we just need to
parse out the provided information:

Hashes Investigation Notes
19265aac471f7d72fcddb133e652e04c03a54
7727b6f98a80760dcbf43f95627

File description: ZIP
archive downloaded from
malvertising redirects.

Filename: Setup_Win_14-12-
2022_18-36-29.zip

63a7d98369925d6e98994cdb5937bd8965066
65be9f80dc55de7eb6df00f7607

MSI (installer) contained within the
downloaded ZIP archive.

Filename: Setup_Win_14-12-
2022_18-36-29.msi

7e5da5fcda0da494da85cdc76384b3b08f135
f09f20e582e049486e8ae2f168e

DLL dropped by MSI installer. Used
to install IcedID payload.

File path: C:\Users\
[username]\AppData\
Local\MSI5da0ddad.mst

53639070024366d23c3de5ba1d074cbd1d8b9
e78d46f75c32ef02fc20c279fc3

GZIP binary download by the
installer DLL from a remote URL.

205fbc52fafd456388d3ef80ff00498c90295
791a91811725fea94052dc4fe7a

Data binary used in combination
with the IcedID DLL for persistence.

File path: C:\Users\
[username]\AppData\
Roaming\GenreAttract\
license.dat

bfa3eb36beeaa65334abe81cdd870e66b37da3
e478d1615697160244fd087b48

Persistent IcedID DLL payload.

File path: C:\Users\
[username]\AppData\
Roaming\{12A3307B-B372-
BBC6-7E4B-4992C7C7842B}\
{6127EF7F-696C-8BDF-
5350-88ECC5774CA5}\
uwurtb4.dll

Leveraging indicators of compromise for detection 123

Hashes Investigation Notes
7486c3585d6aa7c2febd8b4f049a86c72772fd
a6bd1dc9756e2fb8c5da67bafa

Cobalt Strike PowerShell script
downloaded from remote URL.

e8f2c929e1b84a389fede03bff9a4ee951cf563a
64809b06f2f76201536fddf7

Cobalt Strike EXE downloaded from
remote URL.

File path:

C:\Users\[username]\
AppData\Local\Temp\
Dimuak.exe

40194a07a5afa1ef8e0ea4125a62d4ff5b70a148
49b154a4694cfd08e40eb22b

Binary related to Sliver-based and/or
DonutLoader malware.

08dd1a4861f4d2b795efb71847386bd141caa0a7
ce141798e251db8acd63d3a9

Executable related to Sliver-based
and/or DonutLoader malware.

Table 6.2 – Scenario 1 hashes with investigation notes

We now have some context about what each hash represents and where it originated from. This will
make sure we are targeting the detections we build toward the systems where that activity might be
observed. The Investigation Notes column of the table also includes notes about file paths and names
that could also be used within detections.

The SANS ISC diary can be reviewed to obtain even more intel relevant to detection engineering, such
as command lines executed, the specific URL at which the payloads were hosted, and more. For the
purposes of this exercise though, we are going to focus on how we can use the hashes in particular.
To do this, we are going to leverage Table 6.1 and Table 6.2 in combination to see which data sources
should be leveraged for creating detections for these hashes. Table 6.3 adds an additional column to
our last table in order to show the relevant data sources:

Hashes Investigation Notes Relevant
Data Source(s)

19265aac471f7d72fcddb133e65
2e04c03a547727b6f98a80760dc
bf43f95627

File description: ZIP
archive downloaded from
malvertising redirects.

Endpoint telemetry

AV/EDR

Firewalls

63a7d98369925d6e98994cdb5937
bd896506665be9f80dc55de7eb6d
f00f7607

MSI (installer) is contained
within the downloaded
ZIP archive.

Endpoint telemetry

AV/EDR

Developing Detections Using Indicators of Compromise124

Hashes Investigation Notes Relevant
Data Source(s)

7e5da5fcda0da494da85cdc76384
b3b08f135f09f20e582e049486e8
ae2f168e

DLL dropped by MSI
installer. Used to install
IcedID payload.

Endpoint telemetry

AV/EDR

53639070024366d23c3de5ba1d07
4cbd1d8b9e78d46f75c32ef02fc2
0c279fc3

GZIP binary download by
the installer DLL from a
remote URL.

Endpoint telemetry

AV/EDR

Firewalls

205fbc52fafd456388d3ef80ff00
498c90295791a91811725fea9405
2dc4fe7a

Data binary is used in
combination with the
IcedID DLL for persistence.

Endpoint telemetry

AV/EDR

bfa3eb36beeaa65334abe81cdd87
0e66b37da3e478d1615697160244
fd087b48

Persistent IcedID
DLL payload.

Endpoint telemetry

AV/EDR

7486c3585d6aa7c2febd8b4f049a
86c72772fda6bd1dc9756e2fb8c5
da67bafa

Cobalt Strike PowerShell
script downloaded from
remote URL.

Endpoint telemetry

AV/EDR

Firewalls
e8f2c929e1b84a389fede03bff9a
4ee951cf563a64809b06f2f76201
536fddf7

Cobalt Strike EXE
downloaded from
remote URL.

Endpoint telemetry

AV/EDR

Firewalls
40194a07a5afa1ef8e0ea4125a62
d4ff5b70a14849b154a4694cfd08
e40eb22b

Binary related to
Sliver-based and/or
DonutLoader malware.

Endpoint telemetry

AV/EDR

Firewalls
08dd1a4861f4d2b795efb7184738
6bd141caa0a7ce141798e251db8a
cd63d3a9

Executable related to
Sliver-based and/or
DonutLoader malware.

Endpoint telemetry

AV/EDR

Firewalls

Table 6.3 – Scenario 1 hashes and relevant data sources

Due to the fact that all the files are dropped on the endpoint at some point, in all cases, any endpoint
telemetry or AV or EDR alerts that log file hashes are relevant to our detection development. In the
cases where the payload was downloaded from a remote URL, firewall logs also become relevant if
some sort of URL filtering and file analysis is occurring as we should be able to observe the payload
traversing the network. Packet captures would provide the most value in this case, but a full packet

Leveraging indicators of compromise for detection 125

capture infrastructure is not common in most enterprises, so we are going to focus on the more
common data sources. We also mentioned ESAs as a potential data source to detect IoCs, but in our
example, we are not dealing with an email-based threat, so it becomes irrelevant to our specific use case.

At this point, we know what hashes we want to detect, why we want to detect them, and where/how we
want to detect them. The next step is to make sure that the data sources we have identified provide the
required information in your specific environment. For example, if you don’t have Sysmon configured
on Windows hosts, you are not going to find hashes in endpoint telemetry. Most AV/EDR platforms
provide hashes, but the hashing algorithm varies so you need to identify whether your system supports
MD5, SHA1, or SHA256. If it doesn't support SHA256, then in this example scenario you would need
to use OSINT to see whether you could find the associated MD5 or SHA1 associated with the given
SHA256. Lastly, you need to determine whether your firewall records hashes of downloaded payloads.
In most cases, this is considered a more advanced feature so will likely only be found in NGFWs. As
you are identifying which sources record which indicator types, you should consider documenting
the information so that for future development you can quickly reference your previous findings.

With an understanding of detecting hashes, we can now move on to our network-based indicators.
We are going to create a table similar to Table 6.3 but for the network-based indicators this time.

It is important to keep in mind that for the network indicators, many of them are related in the sense
that they involve a URL, which contains a domain, which resolves to a specific IP address. This means
that we have three indicators of the same threat. As we’ve discussed though, some systems record one
indicator type but not others, so having this flexibility in how we can approach the detection is valuable.

For brevity’s sake, we will focus on the domains and IPs. The URLs within the pulse are all paths
on one of these servers. You’ll also notice that there are some IPs associated with multiple domains,
indicating that the domains are resolving to or were once resolving to a shared IP. Furthermore, there
are some IP addresses that did not resolve to a domain. The data sources listed may only be relevant
for a subset of the indicators. Table 6.4 shows the network indicators, investigation notes, and relevant
data sources in an organized fashion:

Domain IP Address Investigation Notes Relevant
Data Sources

wwwanydesk[.]
top

45.8.229[.]109 Fake AnyDesk website
distributing malware

Endpoint telemetry

AV/EDR

Firewalls

trashast[.]
wiki

158.255.211[.]126 IcedID C2 traffic over
port 443

Endpoint telemetry

AV/EDR

Firewalls

Developing Detections Using Indicators of Compromise126

Domain IP Address Investigation Notes Relevant
Data Sources

primsenetwolk[.]
com

94.140.114[.]40 IcedID C2 traffic over
port 443

Endpoint telemetry

AV/EDR

Firewalls

onyxinnov[.]
lol

94.140.114[.]40 IcedID C2 traffic over
port 443

Endpoint telemetry

AV/EDR

Firewalls

oferialerkal[.]
online

31.41.244[.]54 Malicious traffic
distribution system
(TDS) domain

Endpoint telemetry

AV/EDR

Firewalls
klepdrafooip[.]
com

143.198.92[.]88 Traffic from IcedID
installer DLL over
port 80

Endpoint telemetry

AV/EDR

Firewalls
kingoflake[.]
com

172.67.130[.]194 Cobalt Strike C2
traffic over port 443

Endpoint telemetry

AV/EDR

Firewalls
bukifide[.]com 108.177.235[.]187 Cobalt Strike C2

traffic over port 443
Endpoint telemetry

AV/EDR

Firewalls

N/A 199.127.62[.]132 Cobalt Strike C2
traffic over port 80

Endpoint telemetry

AV/EDR

Firewalls

N/A 176.105.202[.]212 Cobalt Strike C2
traffic over port 80

Endpoint telemetry

AV/EDR

Firewalls

N/A 190.61.121[.]35 Sliver and/or
DonutLoader traffic
over port 80

Endpoint telemetry

AV/EDR

Firewalls

Leveraging indicators of compromise for detection 127

Domain IP Address Investigation Notes Relevant
Data Sources

N/A 46.4.182[.]102 Sliver and/or
DonutLoader post-
infection traffic over
port 80

Endpoint telemetry

AV/EDR

Firewalls

N/A 51.195.169[.]87 IcedID VNC traffic
over port 8080

Endpoint telemetry

AV/EDR

Firewalls

Table 6.4 – Scenario 1 network-based indicators

Once again, we see that we have various points of logging in our network that can capture network
indicators, just like hashes. We see a couple of payload distribution sites, C2 traffic, and other post-
infection traffic. In all cases, the context is always communication between victim hosts and the
internet, in both directions. Therefore, depending on logging configurations, it’s possible to see these
indicators appear at each logging data source, both at the endpoint and network level.

As a reminder, this table includes the most universally common data sources, but in your network, you
might have other network-related data sources, such as VPN servers or HTTP access logs, so make
sure you are leveraging the data source inventory from when we identified data sources in Chapter 4.

Something to think about when looking at network indicators is the confidence level we can put
behind an indicator. Hashes are completely unique per file, so when we say a file is malicious, we can
detect its hash with a high degree of confidence.

The dynamic nature of IP addresses and their relationships to domains makes it much more difficult to
assume maliciousness. Threat actors will often go through hosting providers or cloud vendors to host
their attack infrastructure. The provider of the infrastructure is likely, by default at least, to dynamically
assign IP addresses. This means that one day an IP address could be assigned to a domain hosting a
malware distribution site and the next it could be assigned to a legitimate business. For that reason,
it is preferable to detect a domain rather than an IP address if possible.

If only an IP address is available, it needs to be researched to determine the level of confidence that it
will remain associated with the malicious activity to avoid a high number of false positives.

Now that we have performed our Investigate phase and documented our findings, including indicators,
indicator types, context, and relevant data sources, we can move on to the Develop phase, where we
will plan out and implement detections in our lab environment. We’ve provided a hands-on lab to
walk you through the steps in the following lab, using the same IcedID campaign example.

Developing Detections Using Indicators of Compromise128

Scenario 1 lab
As a hands-on exercise for scenario 1, you are going to implement detections for both the hashes and
network indicators based on the context we identified in the previous section during the Investigate
phase. We are going to specifically focus on Sysmon as a data source for the sake of simplicity. We’ve
already mentioned that there are other places where these detections could be created, both listed in
the prior tables and specific to your own environment, but the process of designing and implementing
the detection remains the same regardless of the data source. After walking through this exercise, you
should be able to understand how to apply the same process to your use cases.

Installing and configuring Sysmon as a data source

In this part of the lab, we will integrate Sysmon as a data source in our detection engineering lab and
use it to create a detection based on the list of hashes we’ve obtained from OSINT. Sysmon is not
installed and configured by default but provides high-value telemetry and we recommend integrating
it into your own environment if possible.

Sysmon enables fine-grained control over what events can be recorded on a Windows host, and the
attributes recorded with those events. For comparison, while the advanced audit policy Event ID
4688 shows us process creation events, it does not show us the hash of the executable or the working
directory for the newly created process. Sysmon has the capability to record these attributes and more.

To get started with Sysmon, we need to first download it from Microsoft’s site, here: https://
learn.microsoft.com/en-us/sysinternals/downloads/sysmon. A single .zip
archive containing some executable files and the license agreement will be provided. Installing Sysmon
is as easy as running sysmon.exe with the -i parameter. Run the sysmon.exe -i command
and you should get an output similar to the following:

System Monitor v14.13 – System activity monitor
By Mark Russinovich and Thomas Garnier
Copyright © 2014-2022 Microsoft Corporation
Using libxml2. libxml2 is Copyrig©(C) 1998-2012 Daniel Veillard. All
Rights Reserved.
Sysinte–nals - www.sysinternals.com

Sysmon installed.
SysmonDrv installed.
Starting SysmonDrv.
SysmonDrv started.
Starting Sysmon..
Sysmon started.

Scenario 1 lab 129

Once installed, events will start being populated in the Microsoft-Windows-Sysmon/
Operational log. To get these events forwarded to the Elastic Stack, we need to add an additional
integration for the given agent policy:

1. Navigate to the relevant agent policy, click Add Integration, and select Custom Windows
Event Logs.

2. Click Change defaults under the Custom Windows event logs section, shown in Figure 6.1,
and enter the following values:

 � Channel Name: Microsoft-Windows-Sysmon/Operational

 � Dataset name: winlog.sysmon

3. Save the changes by selecting Save and Continue followed by Save and deploy changes.

Figure 6.1 – Add Sysmon integration

With this integration in place, Sysmon events will show up in our data store. With logs being ingested,
we can begin the implementation of our detections. It’s important to mention that Sysmon has powerful
configuration functionality, allowing us to tightly control which events are being captured.

Developing Detections Using Indicators of Compromise130

Note
At the time of writing, forwarding Sysmon logs to the Elastic Stack can also be accomplished
by using the default Windows integration. Both methods fundamentally achieve the same
outcome; however, some data fields are mapped with slightly different names.

Detecting hashes

Once again, we’ll start by looking at how we can detect the hashes. Reviewing the Sysmon documentation
(https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon), we
can see that there are a few types of events that will record hashes:

• Event ID 1: Process creation

• Event ID 6: Driver loaded

• Event ID 7: Image loaded

• Event ID 15: FileCreateStreamHash

Based on the context we’ve researched, if we see malicious hashes in our environment, it is likely
going to be in the context of process creation since we are discussing executable files. However, since
we are centralizing all the events in our Elastic Stack and normalizing field names, combined with
the uniqueness of hashes, we will write a detection directly against the hash field of Sysmon logs,
regardless of the event ID.

Let’s look at an example of event ID 1 within SOF-ELK so we can identify what fields we should
be matching against. Figure 6.2 shows a document (event) in Kibana for event ID 1, specifically the
raw event.

Scenario 1 lab 131

Figure 6.2 – Event ID 1 sample event

Developing Detections Using Indicators of Compromise132

Figure 6.3 results from searching the document for the Hash.

Figure 6.3 – Event ID 1 hashes field

Earlier in the example, we documented SHA256 hashes in particular, so winlog.event_data.
Hashes is the field that we need to match against. At this point, we can begin to design our detection
using all the information we’ve gathered to this point.

In the case of detecting atomic indicators, we simply need to map the field name we identified previously
to values that we want to alert on. Before looking at the technical implementation, let’s first document
the conceptual design. This can be done in a variety of ways; it’ll be vendor-agnostic in format and
provide an understandable blueprint for our detection moving forward. The following is an example
of how we could write this out:

if winlog.event_data.Hashes is one of
[19265aac471f7d72fcddb133e652e04c03a547727b6f98a80760dcbf43f95627,
63a7d98369925d6e98994cdb5937bd896506665be9f80dc55de7eb6df00f7607]:

then generate an alert

For brevity’s sake, this example includes only the first two hashes, but the list can contain all the hashes
that need to be detected.

We’ve finally reached the point of implementation, where we can take our design and put it in our
development environment. The following steps will allow us to implement a detection based on a list
of hashes:

1. Log in to your Kibana server and go to Security | Alerts.

2. Select Manage Rules in the top right. On the following page, select Create Rule in the top right.

Scenario 1 lab 133

3. In the first step of the rule creation process (Define rule, shown in Figure 6.4), select Custom
query as your rule type. We are going to use KQL for this rule since it’s the easiest solution and
we only need to detect key-value pairs.

Figure 6.4 – Define rule configuration

4. Under Custom query, enter the following search:

event.code: 1 and winlog.event_data.Hashes:
(*19265aac471f7d72fcddb
133e652e04c03a547727b6f98a80760dcbf43f95627* OR
*63a7d98369925d6e
98994cdb5937bd896506665be9f80dc55de7eb6df00f7607*)

The first parameter looks specifically for event ID 1 (process creation). The second parameter
looks for the presence of a hash in the winlog.event_data.Hashes field that matches
one of the hashes in the list.

Additional or statements can be added within the parentheses to include more of our sample hashes.

5. Click Continue.

6. In the second step (About rule, shown in Figure 6.5), choose a descriptive title and description.
For example, a good title might be IcedID Campaign Process Creation.

Developing Detections Using Indicators of Compromise134

Figure 6.5 – About rule configuration

7. Set the risk to High. Since hashes are unique and have high fidelity, we can assume if a process
is created with that hash, it is most likely actually IcedID or a related payload running on
the endpoint.

8. Click Continue and leave the options as the defaults in the rest of the steps until you select
Create & enable rule at the end.

With this rule deployed, if any processes associated with the files we discussed in this scenario are
created, we will receive an alert.

Detecting network-based indicators

As with the previous exercise, we are going to continue to leverage Sysmon logs to detect our indicators.
Reviewing the documentation, we can identify two event IDs to reference for network-related activity:

• Event ID 3: Network connection

• Event ID 22: DNSEvent (DNS query)

The most valuable of these in the context of this scenario is event ID 3. When enabled, it records
network connections made by processes and records the process ID, source and destination host
names, IP addresses, and ports. The default Sysmon configuration does not record event ID 3,
so before continuing to develop the detection, we need to update the Sysmon configuration in our
lab environment.

Scenario 1 lab 135

More information about Sysmon configuration files can be found here: https://learn.
microsoft.com/en-us/sysinternals/downloads/sysmon#configuration-
files. Configuration files enable an impressive degree of control over the type of events you can
capture and how they get recorded in the Sysmon event log. For an excellent example of what well-
developed Sysmon configuration files can look like, we recommend looking at SwiftOnSecurity’s
sample configuration file, located here: https://github.com/SwiftOnSecurity/
sysmon-config.

To capture the network connection events, we need to make a modification to the Sysmon configuration.
To do this, create a configuration file and add the following content:

<Sysmon schemaversion="4.82">
 <EventFiltering>
 <RuleGroup name="Network connection over port 80 or 443 or 8080"
groupRelation="or">
 <NetworkConnect onmatch="include">
 <DestinationPort>443</DestinationPort>
 <DestinationPort>80</DestinationPort>
 <DestinationPort>8080</DestinationPort>
 </NetworkConnect>
 </RuleGroup>
 </EventFiltering>
</Sysmon>

To apply the new Sysmon configuration, save the file, then issue the following Sysmon command:

sysmon.exe -c [path to config file]

This command will update the running configuration of Sysmon to capture network connection events
over port 80, 443, or 8080, all mentioned in the IcedID report.

Since we know based on the SANS ISC diary that there are malware payloads establishing C2
connections, we expect to see communication from the related process between the victim host and
the C2 servers over a given port.

As you may recall, we have domains, URLs, and IP addresses operating outside of the scope of what
a Sysmon network connection event would observe, but this same procedure can be reused with any
data source providing fields with the chosen indicator type within the right context.

First, we are going to do as we did with the hash-based detection procedure. We need to look at an
example of event ID 3 to determine which fields are relevant to our set of indicators. Figure 6.6 provides
an example of event ID 3 as it appears in Kibana, and Figure 6.7 shows some of the fields of interest
related to our example scenario, specifically destination traffic fields.

Developing Detections Using Indicators of Compromise136

Figure 6.6 – Event ID 3 sample event

Scenario 1 lab 137

Figure 6.7 – Event ID 3 destination traffic fields

We have both IP addresses and domains so the following fields could be relevant, depending on the
context of each indicator:

• winlog.event_data.DestinationHostname

• winlog.event_data.DestinationIp

When looking at samples in our lab, we observed domain resolution was not occurring for the external
IP addresses; as such, detecting based on domains with this specific data source will be fruitless. For
that reason, we will focus on the IP addresses. If you have a data source that is generating domains
though, the Pyramid of Pain shows us those are going to be more long-lasting indicators. Try to
implement similar detections based on additional data sources if you have them. Source hostname and
IP address may be interesting too if the traffic is originating from the attacker server, but we should
be able to catch any C2 communication as a destination.

Developing Detections Using Indicators of Compromise138

The steps for creating our detection rule based on the network indicators will be the same as the hashes
but with different search queries:

1. Log in to your Kibana server and go to Security | Alerts.

2. Select Manage Rules in the top right. On the following page, select Create Rule on the top right.

3. In the first step of the rule creation process (Define rule), select Custom query as your rule
type. We are going to use KQL for this rule since it’s the easiest solution and we only need to
detect on key-value pairs.

4. Under Custom query, enter the following search:

event.code: 3 and winlog.event_data.DestinationIp:
(*45.8.229.109* OR *158.255.211.126*)

The first parameter looks specifically for event ID 3 (network connection). The second parameter
looks for the presence of a hash in the winlog.event_data.DestinationIp field that
matches one of the IP addresses in the list.

Additional or statements can be added within the parentheses to include more of our sample
IP addresses.

5. Click Continue.

6. In the second step (About rule), choose a descriptive title and description. For example, a good
title might be IcedID Campaign Network Connection.

7. Set the risk to low. We don't want to trigger high-severity alerts for IP addresses. IP addresses
are lower fidelity and highly dynamic, so the IP that was once associated with IcedID may be
reassigned to a legitimate website by the time it is detected.

8. Click Continue and leave the options as the defaults in the rest of the steps until you select
Create & enable rule at the end.

With this rule deployed, if any network connections are made to the IP addresses in this scenario,
we will receive an alert.

Lab summary

In this hands-on exercise, we took a series of IoCs obtained via OSINT and used them to develop
detections for the presence of those values in relevant event types, specifically Sysmon.

While we used a specific set of indicators and Sysmon as the data source, the exact process and steps
followed in this section can be used to develop detections for any key-value pairs. Next, we will move up
the Pyramid of Pain, beyond static indicators, and see how to detect the tools adversaries may be using.

Summary 139

Summary
In this chapter, we focused on the lower levels of the Pyramid of Pain by creating detections focused
on static indicators. These kinds of detections are quick and easy to implement but are more of a
short-term measure. For more robust detections with wider coverage, we want to leverage tool- and
behavior-based detections, which we’ll discuss and create in the next chapter.

Further reading
While out of the scope of the context of this book, it may prove useful to learn more about both
Sysmon configurations and Elastic Query Language (EQL).

To learn more about Sysmon configuration files, go to https://learn.microsoft.com/
en-us/sysinternals/downloads/sysmon.

To learn more about EQL syntax, go to https://www.elastic.co/guide/en/
elasticsearch/reference/current/eql.html.

7
Developing Detections Using

Behavioral Indicators

In the previous chapter, we took our first look at building detections. Specifically, we used indicators
of compromise (IoCs) to detect known malicious artifacts from threat intelligence. In this chapter, we
are instead going to focus on how we can create more robust detections by focusing on the adversary’s
tools and behaviors.

First, we’ll look at how we can detect a threat actor based on the tools they use. This will involve a
lab where we identify what PsExec usage looks like from a detection engineering perspective. Then,
we’ll move on to focus on specific tactics, techniques, and procedures (TTPs) and how we can take
a specific technique and identify associated evidence that can be used to build a detection.

Technical requirements
The labs in this chapter will involve the use of the detection engineering lab built as part of Chapter 3.

Detecting adversary tools
In this section, we will move further up the Pyramid of Pain to focus on detecting an adversary’s
behavior. The exercise will look at multiple tools that are used by an adversary to perform remote
execution. Rather than detecting the tool directly, we instead detect the behaviors performed by the
tool or performed by the adversary by using the tool. Since the behaviors align with a technique used
to achieve the adversary’s tactical objective, these types of detections can be more difficult for the
adversary to evade.

Example scenario – PsExec usage

PsExec is a legitimate remote execution tool developed by Sysinternals, a Microsoft subsidiary. It is part of
a collection of tools called PsTools. PsExec offers a lightweight means for authenticated users to execute
commands on systems remotely. This functionality is extremely valuable for system administrators

Developing Detections Using Behavioral Indicators142

but is often abused by threat actors to advance malicious objectives. Using this tool, threat actors can
execute discovery commands, deploy command and control tools, or deploy ransomware.

Before approaching the task of detecting PsExec usage, we need to research the tool to understand
how it works, and what telemetry is generated as a result of its usage. We also need to be aware that
the functionality of PsExec is implemented by a few other tools, such as Impacket and Remcom.

Researching PsExec

Given the task in this scenario is to detect the use of PsExec as a remote admin tool, we will take some
time to understand how it works. An archive containing all PsTools, including PsExec, can be downloaded
from Microsoft’s website at https://learn.microsoft.com/en-us/sysinternals/
downloads/psexec. After downloading and unzipping the contents of the file on a Windows
workstation, you will have PsExec.exe available for execution. For our tests, it is best to interact
with PsExec using an elevated command prompt or PowerShell session. When you run PsExec for the
first time, you will be prompted to accept the license agreement. As indicated in the documentation,
you can also accept this license agreement by passing the /accepteula command-line argument.

Some additional configurations may be needed when running PsExec remotely. To get around most
roadblocks, we recommend making the following configuration changes to the target system:

1. Click on the Windows Start button, search for Windows Defender Firewall, and open the
application. Click Allow an app or feature through Windows Defender Firewall. Click
Change Settings, then ensure the checkboxes for File and Printer Sharing are enabled, as
shown in Figure 7.1.

Figure 7.1 – Allow File and Printer Sharing

Detecting adversary tools 143

2. Disable User Account Control (UAC). From an elevated command prompt, issue the
following commands:

reg ADD HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\
System /v EnableLUA /t REG_DWORD /d 0 /f
reg ADD HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\
System /v EnableLUA /t REG_DWORD /d 0 /f

3. Reboot the system.

After following those steps, PsExec should work for our lab scenarios.

Issuing the psexe.exe command with no parameters shows the full list of valid parameters for
executing PsExec. You can review these options to get an understanding of its capabilities. Detailed
documentation is also available on PsExec’s Sysinternals page provided previously.

Issuing the psexec.exe -s ipconfig command produces output similar to the following:

PsExec v2.4 - Execute processes remotely
Copyright (C) 2001-2022 Mark Russinovich
Sysinternals - www.sysinternals.com

Windows IP Configuration

Wireless LAN adapter Wi-Fi:

 Connection-specific DNS Suffix . : lan
 Link-local IPv6 Address : fe80::7f0d:f779:ff0:27a6%25
 IPv4 Address. : 172.17.28.67
 Subnet Mask : 255.255.255.0
 Default Gateway : 172.17.28.50
ipconfig exited on LABHOST8 with error code 0.

You can retrieve a similar result remotely by issuing the following command from a connected system
(replacing the values in the square brackets):

Psexec.exe \\[ip address of target] -s -u [privilege account on target
system] -p [password for privileged account] ipconfig

Now let’s look at some of the functions we can carry out with PsExec. The -s argument instructs
psexec to run the provided commands as a built-in SYSTEM account. This can be useful for
administrators as well as threat actors. Using this parameter allows the launching of processes with
the highest possible level of privileges on the target system. As shown in the following output, the
command issued produces the output of ipconfig.exe. We can expand our testing to explore
how this might work when targeting a remote system.

Developing Detections Using Behavioral Indicators144

Note
For the following example, the command was issued from a domain-joined workstation. A
command prompt was launched using a privileged domain user account.

The following code block shows whoami being executed against a host at 10.30.23.80 using the
SYSTEM account via PsExec and the resulting output:

c:\tmp\pstools>psexec \\10.30.23.80 -s whoami -s -u administrator -p
weak-password! whoami

PsExec v2.4 - Execute processes remotely
Copyright (C) 2001-2022 Mark Russinovich
Sysinternals - www.sysinternals.com
nt authority\system
whoami exited on 10.30.23.80 with error code 0.

In this example, we pass three arguments:

• The address of the remote system, \\10.30.23.80.

• The -s parameter, to indicate we want to run this command as SYSTEM.

• The command we want to execute on the remote system. In this case, we want to run the
whoami command.

Prior to the final output being displayed, you would see a message being displayed, similar to the following:

Starting PSEXESVC service on 10.30.23.80...

This is because PsExec creates a Windows service on the target system as part of its process for running
commands remotely. We can validate this by looking at the service creation events (system event ID
7045) on the remote system. You should see an event with the details shown in Table 7.1:

Event Log Attribute Value

EventID 7045

Provider Service Control Manager

UserName Administrator

Image Path %SystemRoot%\PSEXESVC.exe

Detecting adversary tools 145

Message

A service was installed on the system.

Service Name: PSEXESVC

Service File Name: %SystemRoot%\
PSEXESVC.exe

Service Type: user mode service

Service Start Type: demand start

Service Account: LocalSystem

Table 7.1 – Windows event ID 7045 for PsExec activity

Each time we run PSEXEC targeting this remote system, it creates a new service creation event
with very similar attributes. The service name is always PSEXESVC and the service filename is
always %SystemRoot%\PSEXESVC.exe.

Having understood how PsExec can work from the user standpoint, we can take a closer look at the
data sources relevant to its detection. PsExec usage leaves an imprint on multiple data sources, and
using different implementations of PsExec modifies data sources in slightly different ways.

We can get a preliminary idea of the data sources we should be interested in by using MITRE ATT&CK.
Taking a look at MITRE ATT&CK technique T1569.002, Service Execution (for the enterprise tactic
Execution), we can see it lists the following data sources:

• Command: Command execution

• Service: Service creation

• Process: Process creation

• Windows Registry: Windows Registry key modification

There is some data source configuration that must occur in order to capture the data we need.

Configuring data sources

Before we get started looking for events we can use for detections, we need to make sure our Windows
clients are properly configured to capture these events, and that they get forwarded to the Elastic Stack.
We already know that service creation events are being recorded by default (system event ID 7045).
So, let’s look at how we can capture command execution and process creation.

Developing Detections Using Behavioral Indicators146

In this section, we will apply the concepts first introduced in Chapter 4 regarding data sources.
Specifically, we will configure the data sources relevant to identifying malicious PsExec activity,
Windows Security auditing logs, and Sysmon. While, as mentioned, Sysmon provides more details
than Windows Security auditing logs, not all organizations will be willing to mass install Sysmon, so
we will show how the built-in logs can be used in the scenario where Sysmon is not available.

Windows Security auditing

This topic is quite vast and well beyond the scope of this book; however, it is important to understand
that many events that Windows is capable of capturing do not get captured by default. This can
impair our ability to build certain detections. One example is process creation (https://learn.
microsoft.com/en-us/windows/security/threat-protection/auditing/
audit-process-creation).

In default configurations, new process creations do not get logged. To record valuable process creation
events, without using any additional software, we can make a simple configuration change to our
Advanced Audit Policy as shown in the following steps:

1. Using Group Policy Management Editor (shown in Figure 7.2), navigate to Windows
Settings | Security Settings | Advanced Audit Policy Configuration, then double-click Audit
Process Creation.

Figure 7.2 – Group Policy Management Editor

Detecting adversary tools 147

2. Double-click Audit Process Creation, then select Configure the following audit events then
Success, and finally Apply or Ok.

3. To apply these settings, we can issue the gpupdate command via the command line.

Once the new settings are in place, we will start seeing security event ID 4688 appear in the logs. An
example of one of these events is shown in Table 7.2:

Event Log Attribute Value
EventID 4688

Provider Microsoft-Windows-Security-Auditing

UserName Administrator

Message A new process has been created.

Creator Subject: …

Security ID: S-1-5-21-4192533688-2314721672-
1549011681-500

Account Name: Administrator

Account Domain: DELAB

Logon ID: 0x14192BC

Target Subject:

Security ID: S-1-0-0

Account Name: -

Account Domain: -

Logon ID: 0x0

Process Information:

New Process ID: 0x1d8c

New Process Name: C:\Windows\System32\mmc.exe

Token Elevation Type: TokenElevationTypeDefault (1)

Mandatory Label: S-1-16-12288

Creator Process ID: 0x1a8c

Creator Process Name: C:\Windows\System32\cmd.exe

Table 7.2 – Windows event ID 4688

Developing Detections Using Behavioral Indicators148

This event shows that the mmc.exe process was launched by the DELAB\Administrator account.
Since these events get recorded in the security event log, they will be automatically forwarded to the
Elastic Stack. To validate, we can issue the following KQL query:

event.code : 4688

While this information has significant detective value, an even more powerful option exists, which can
be rapidly implemented at no additional cost. Keep in mind that in our isolated lab, we were able to
collect this event ID without worrying about the quantity of traffic it would produce. In a production
environment, you would want to assess the number of logs generated from this auditing and filter
out unnecessary data.

Sysinternals Sysmon

In one of the examples in Chapter 6, we reviewed Sysmon and its uses in detecting certain types of
host events and artifacts. Refer to the section titled Installing and configuring Sysmon as a data source
in that chapter to install and use Sysmon as a data source for this exercise. In this section, we will look
at new event IDs and apply additional configurations to capture the information we require for this
scenario. Specifically, we will look at two categories of events: the Windows Registry and named pipes.

The Windows Registry is a core part of the Windows operating system. It is a set of hierarchical
databases that store configuration information for nearly every application and system component.
Unsurprisingly, most interactive and non-interactive system operations can end up modifying the
registry in some way. This means this data source is also significantly busier than most. Sysmon logs
registry events as event IDs 12, 13, and 14.

To capture the registry events relevant to service execution, we need to make a modification to the
Sysmon configuration. For our purposes, we simply want to be able to record the registry changes that
get made when a new service is created on a system. These changes are made to the HKEY Local
Machine\System\CurrentControlSet\Services registry path. To make sure
modifications to that path get captured by Sysmon, we can add the following rule group to our
existing Sysmon configuration file by inserting it between the existing <EventFiltering> and
</EventFiltering> tags after our previous rule group(s):

<RuleGroup name="Service modifications" groupRelation="and">
 <RegistryEvent onmatch="include">
 <TargetObject condition="contains">HKLM\SYSTEM\
CurrentControlSet\Services</TargetObject>
 </RegistryEvent>
 <RegistryEvent onmatch="include">
 <TargetObject condition="end with">\ImagePath</TargetObject>
 </RegistryEvent>
 <RegistryEvent onmatch="exclude">

Detecting adversary tools 149

 <TargetObject condition="excludes">\ImagePath</TargetObject>
 </RegistryEvent>
</RuleGroup>

To apply the new Sysmon configuration, save the file, then issue the following Sysmon command:

sysmon.exe -c [path to config file]

This command will update the running configuration of Sysmon, to capture registry changes for service
creation. We can test this by rerunning PsExec and seeing what happens. If the new configuration
is successfully applied, you will receive a registry value set event with data similar to that shown in
Table 7.3:

Event Log Attribute Value
EventID 13

Provider Microsoft-Windows-Sysmon

UserName SYSTEM

Message Registry value set:

RuleName: Service modifications

EventType: SetValue

UtcTime: 2023-01-11 03:13:16.343

ProcessGuid: {71ccf5f5-20bf-63be-
0b00-000000001d00}

ProcessId: 688

Image: C:\Windows\system32\services.
exe

Targe t O bj e c t : H K L M \ S y s t e m \
CurrentControlSet\Services\
PSEXESVC\ImagePath

Details: %%SystemRoot%%\PSEXESVC.exe

User: NT AUTHORITY\SYSTEM

Table 7.3 – Sysmon event ID 13

Developing Detections Using Behavioral Indicators150

PsExec makes use of named pipes for communication between the source and target system. We need
to also make sure that our client is collecting events associated with named pipe creation. Sysmon
captures these as event ID 17 (pipe created) and event ID 18 (pipe connected). We need to update
our configuration file by appending our named pipe configuration to the previous file, as shown in
the previous configuration steps. Here is the group that needs to be added to the event filtering:

 <RuleGroup name="Named Pipes" groupRelation="and">
 <PipeEvent onmatch="include">
 <PipeName condition="contains any">\</PipeName>
 </PipeEvent>
 <PipeEvent onmatch="exclude">
 <PipeName condition="contains any">msedgeview</PipeName>
 <PipeName condition="is">\wkssvc</PipeName>
 <PipeName condition="is">\srvsvc</PipeName>
 <PipeName condition="is">\lsass</PipeName>
 </PipeEvent>
 </RuleGroup>

For context, the new section instructs Sysmon to record the creation of named pipe events but to ignore
the creation of some default named pipes that don’t have value for the event we’re trying to detect.

Testing PsExec again reveals the capture of the following named pipe events. You’ll see there are three
separate named pipe creation events that were created, each listed in the Message section of Table 7.4:

Event
Log Attribute

Value

EventID 17

Provider Microsoft-Windows-Sysmon

UserName SYSTEM

Detecting adversary tools 151

Message —----------------------------

Pipe Created:

RuleName: Named Pipes

EventType: CreatePipe

UtcTime: 2023-01-14 03:16:18.045

ProcessGuid: {71ccf5f5-1e81-63c2-5603-
000000001e00}

ProcessId: 12048

PipeName: \PSEXESVC-LABHOST8-17532-stdin

Image: C:\Windows\PSEXESVC.exe

User: NT AUTHORITY\SYSTEM

—----------------------------

Pipe Created:

RuleName: Named Pipes

EventType: CreatePipe

UtcTime: 2023-01-14 03:16:18.045

ProcessGuid: {71ccf5f5-1e81-63c2-5603-000000001e00}

ProcessId: 12048

PipeName: \PSEXESVC-LABHOST8-17532-stdout

Image: C:\Windows\PSEXESVC.exe

User: NT AUTHORITY\SYSTEM

—----------------------------

Pipe Created:

RuleName: Named Pipes

EventType: CreatePipe

UtcTime: 2023-01-14 03:16:18.045

ProcessGuid: {71ccf5f5-1e81-63c2-5603-000000001e00}

ProcessId: 12048

PipeName: \PSEXESVC-LABHOST8-17532-stderr

Image: C:\Windows\PSEXESVC.exe

User: NT AUTHORITY\SYSTEM

Table 7.4 – Sysmon event ID 17

Developing Detections Using Behavioral Indicators152

Additionally, there is an event ID 18 for the pipe connection event, as summarized in Table 7.5.

Event Log Attribute Value
EventID 18

Provider Microsoft-Windows-Sysmon

UserName SYSTEM

Message Pipe Connected:

RuleName: Named Pipes

EventType: ConnectPipe

UtcTime: 2023-01-14 03:03:22.124

ProcessGuid:
{71ccf5f5-b005-63c1-eb03-000000000000}

ProcessId: 4

PipeName: \PSEXESVC-LABHOST8-17584-stdin

Image: System

User: NT AUTHORITY\SYSTEM

Table 7.5 – Sysmon event ID 18

At this point, we should be collecting enough data to detect service execution with PsExec. From
the previous steps, we have a fair understanding of some events that get recorded when PsExec gets
used. However, we should take a look at some additional tools that utilize the same technique (service
execution), to see how the telemetry might change. This step is important to avoid writing a detection
that is too tightly defined for a few event scenarios.

For an example of why this can be an issue, let’s look at a sample event and an inappropriate detection:

• Requirement: Detect execution of evil.exe on all systems. (For the purposes of this example,
ignore the fragility of executable names.)

• Event sample:

 � Event time: 2023-05-01 20:32:01

 � Event Type: File execution

 � Executable name: evil.exe

 � System name: DBServer01

 � Outcome: 0 - started successfully

Detecting adversary tools 153

One plainly wrong approach would be to build a detection that looks for exact matches for all the
event attributes. The reason this won’t work is that we expect certain attributes to change. The event
time will almost always be different, and since we want to be able to detect events on multiple systems,
the system name cannot be part of the definition. Inversely, if we develop a rule that only relies on
Event Type = File Execution, then we will likely capture every execution of evil.exe, but also the
execution of many other files that do not have the name evil.exe.

Since attributes can change for events representing the same underlying activity, the rules we develop
need to be similarly tuned to account for these changes. If rules are too tightly defined, they will
likely not match every occurrence of the event; if rules are too loosely defined, they will generate
false positives. A safe goal is to write a rule that minimizes false positives. Let’s take a look at how
the telemetry changes when using different tools that are functionally similar to PsExec in order to
identify which fields will remain consistent.

Impacket

Impacket (https://github.com/fortra/impacket) is described as a
“collection of Python classes for working with network protocols." The repository contains
an implementation for PsExec (https://github.com/fortra/impacket/
blob/8799a1a2c42ad74423841d21ed5f4193ea54f3d5/examples/psexec.py),
which very closely resembles Sysinternal’s PsExec, in terms of its functionality. The following excerpt
shows the output of running impacket-psexec:

┌──(examiner ㉿ labhost3)-[~]
└─$ /usr/bin/impacket-psexec delab.local/
administrator:secret!pw21123@10.30.23.138
Impacket v0.10.0 - Copyright 2022 SecureAuth Corporation

[*] Requesting shares on 10.30.23.138.....
[*] Found writable share ADMIN$
[*] Uploading file HRrcwYpJ.exe
[*] Opening SVCManager on 10.30.23.138.....
[*] Creating service kFWn on 10.30.23.138.....
[*] Starting service kFWn.....
[!] Press help for extra shell commands
Microsoft Windows [Version 10.0.22000.1455]
(c) Microsoft Corporation. All rights reserved.

C:\Windows\system32> whoami
nt authority\system

C:\Windows\system32> exit
[*] Process cmd.exe finished with ErrorCode: 0, ReturnCode: 0
[*] Opening SVCManager on 10.30.23.138.....

Developing Detections Using Behavioral Indicators154

[*] Stopping service kFWn.....
[*] Removing service kFWn.....
[*] Removing file HRrcwYpJ.exe.....

On the target system, the system event shown in Table 7.6 was generated for the created service:

Event Log Attribute Value

EventID 7045

Provider Service Control Manager

UserName Administrator

Image Path %systemroot%\HRrcwYpJ.exe

Message

A service was installed in the system.

Service Name: kFWn

Service File Name: %systemroot%\HRrcwYpJ.exe

Service Type: user mode service

Service Start Type: demand start

Service Account: LocalSystem

Table 7.6 – Event ID 7045 for Impacket execution

Additionally, the Sysmon registry event shown in Table 7.7 was recorded:

Event Log Attribute Value

EventID 13

Provider Microsoft-Windows-Sysmon

UserName SYSTEM

Detecting adversary tools 155

Message

Registry value set:

RuleName: Service modifications

EventType: SetValue

UtcTime: 2023-01-14 03:29:21.620

ProcessGuid: {71ccf5f5-b00d-63c1-0b00-000000001e00}

ProcessId: 700

Image: C:\Windows\system32\services.exe

TargetObject: HKLM\System\CurrentControlSet\Services\kFWn\ImagePath

Details: %%systemroot%%\HRrcwYpJ.exe

User: NT AUTHORITY\SYSTEM

Table 7.7 – Event ID 13 for Impacket execution

And finally, in Table 7.8 we can see some associated named pipe creation events (four named pipes created):

Event Log Attribute Value

EventID 18

Provider Microsoft-Windows-Sysmon

UserName SYSTEM

Message

Pipe Created:

RuleName: Named Pipes

EventType: CreatePipe

UtcTime: 2023-01-14 03:29:21.667

ProcessGuid:
{71ccf5f5-2191-63c2-7303-000000001e00}

ProcessId: 12852

PipeName: \RemCom_communicaton

Image: C:\Windows\HRrcwYpJ.exe

User: NT AUTHORITY\SYSTEM

Developing Detections Using Behavioral Indicators156

Message

Pipe Created:

RuleName: Named Pipes

EventType: CreatePipe

UtcTime: 2023-01-14 03:29:21.683

ProcessGuid:
{71ccf5f5-2191-63c2-7303-000000001e00}

ProcessId: 12852

PipeName: \RemCom_stdinCQHe2366530

Image: C:\Windows\HRrcwYpJ.exe

User: NT AUTHORITY\SYSTEM

Pipe Created:

RuleName: Named Pipes

EventType: CreatePipe

UtcTime: 2023-01-14 03:29:21.683

ProcessGuid:
{71ccf5f5-2191-63c2-7303-000000001e00}

ProcessId: 12852

PipeName: \RemCom_stderrCQHe2366530

Image: C:\Windows\HRrcwYpJ.exe

User: NT AUTHORITY\SYSTEM

Pipe Created:

RuleName: Named Pipes

EventType: CreatePipe

UtcTime: 2023-01-14 03:29:21.683

Detecting adversary tools 157

Message

ProcessGuid:
{71ccf5f5-2191-63c2-7303-000000001e00}

ProcessId: 12852

PipeName: \RemCom_stdoutCQHe2366530

Image: C:\Windows\HRrcwYpJ.exe

User: NT AUTHORITY\SYSTEM

Table 7.8 – Event ID 18 for Impacket execution

Notice that while we used the same technique, the generated telemetry looked slightly different. We
need to keep these changes in mind as we develop our code to detect these events.

Rule development

Looking at the details we have so far, it seems as though we have enough to develop a simple detection.
The effect of using PsExec leaves an imprint on three sets of data that are successfully being forwarded
to our data store. Table 7.9 summarizes our observations so far:

Tool name Service registration
– event logs

Service modification
– registry Named pipe creation

PsExec

The service name
is PSEXESVC, and
the service filename
is %SystemRoot%\
PSEXESVC.exe.

These attributes
match the service
creation event.

Three named pipes
get created after the
creation of the PsExec
service, one for
standard input, one
for standard output,
and one for errors.
The named pipe
names all start with \
PSEXESVC.

Impacket-
psexec

The service name
seems to be randomly
generated, as well
as the filename.
The service file
gets copied to c:\
windows\.

These attributes
match the service
creation event.

Three named pipes
get created after the
creation of the PsExec
service. The named
pipe names all start
with \RemCom.

Table 7.9 – Tool log generation comparison

Developing Detections Using Behavioral Indicators158

Our detection definition should include a check for a service creation event; however, by itself this isn’t
enough to detect PsExec usage. By profiling the data, we can see that multiple service creation events
happen as part of normal Windows operations. (Search for Windows Defender service creation events.)
We also can’t rely on a service or executable name, since Impacket seems to generate unique names.
While registry events do get generated when services are created, for our current environment, the
recorded attributes do not give us any new information, or a strong indication of PsExec usage. Relying
on only Windows event logs to identify newly created services is therefore reasonable. Our Elastic
Query Language (EQL) for searching for newly created Windows services looks something like this:

any where event.code==7045 and winlog.channel=="System"

The testing we’ve just walked through also shows that named pipe creation is a valuable indicator of
PsExec usage. The prefixes of these named pipes are predictable, and they always get created after the
creation of the Windows service. The following EQL can find named pipe creation events, where the
pipe name starts with \RemCom or \PSEXEC:

any where event.code==17 and winlog.channel=="Microsoft-Windows-
Sysmon/Operational" and (winlog.event_data.PipeName like~
"*PSEXESVC*" or winlog.event_data.PipeName like~ "*\\RemCom*")

A note about Sysmon field mappings
As mentioned earlier, depending on how the Fleet agent policy integration was set up, the Sysmon
fields would get mapped differently. If you used the Sysmon collection as part of the default
Windows integration, your query will look slightly different, since the winlog.event_data.
PipeName attribute is stored as file.name. The EQL in this case will look like the following:

any where event.code==17 and winlog.channel=="Microsoft-Windows-
Sysmon/Operational" and (file.name like~ "\\RemCom*" or file.name
like~ "\\PSEXESVC*")

EQL sequences can search for and match a given sequence of events, within a specified timeframe. We
can use this feature to match a service creation event, followed by the creation of relevant named pipes:

sequence with maxspan=1m
 [any where winlog.event_id==7045 and winlog.channel=="System"]
 [any where event.code==17 and winlog.channel=="Microsoft-
Windows-Sysmon/Operational" and (winlog.event_data.PipeName like~
"*PSEXESVC*" or winlog.event_data.PipeName like~ "*\\RemCom*")]

Testing

In this phase, we want to keep track of the number of events returned, the fidelity of those events, and
the time taken for the query to complete. This will help us understand how well our query performs,
and how often the detection rule should be executed against live data.

Detecting adversary tools 159

Armed with the EQL from the development process, we need to make sure it returns the data we
expect, with as few false positives as possible.

Navigate to Management | Dev Tools in the Elastic Stack. Under Console, you can enter the query
we developed, to ensure only PsExec events show up. Enter the following request:

GET /logs*/_eql/search
{
 "query": """
 sequence with maxspan=1m
 [any where event.code==7045 and winlog.channel=="System"]
 [any where event.code==17 and winlog.channel=="Microsoft-Windows-
Sysmon/Operational" and (winlog.event_data.PipeName like~ "\\RemCom*"
or winlog.event_data.PipeName like~ "\\PSEXESVC*")]
 """
}

With the cursor within the request text, click the green play button to see the results. Ideally, this
should only return records that indicate PsExec usage.

To make the returned data easier to look at, we can use the filter_path argument to only return
values we want to review:

GET /logs*/_eql/search?filter_path=hits.total.value,hits.sequences.
events._source.agent.name,hits.sequences.events._source.winlog.
channel,hits.sequences.events._source.event.code,hits.sequences.
events._source.winlog.event_data
{
 "query": """
 sequence with maxspan=1m
 [any where event.code==7045 and winlog.channel=="System"]
 [any where event.code==17 and winlog.channel=="Microsoft-Windows-
Sysmon/Operational" and (winlog.event_data.PipeName like~ "\\RemCom*"
or winlog.event_data.PipeName like~ "\\PSEXESVC*")]
 """
}

Review the data returned as you may have events unique to your environment. Does the query return
the expected results? If not, how can the false positive rate be reduced?

Implementing the detection

The final step is to implement the detection in the Elastic Stack. To do this, follow these steps:

1. Log in to your Kibana server and go to Security | Alerts.

2. Select Manage Rules at the top right. On the following page, select Create Rule at the top right.

Developing Detections Using Behavioral Indicators160

3. Since we are attempting to identify a sequence of events, select Event Correlation as the event type.

4. For the query, specify the one we wrote previously, at the end of the Rule development section:

 � Query:

sequence with maxspan=1m
 [any where event.code==7045 and winlog.channel=="System"]
 [any where event.code==17 and winlog.channel=="Microsoft-
Windows-Sysmon/Operational" and (winlog.event_data.PipeName
like~ "\\RemCom*" or winlog.event_data.PipeName like~ "\\
PSEXESVC*")]

 � Name: Possible PsExec Usage

5. Schedule the rule to run every 10 minutes.

6. For rule actions, leave the default Perform no actions action unchanged. Finally, click Create
& enable rule.

Testing the execution of PsExec should now cause an alert to be raised that looks similar to that in
Figure 7.3.

Figure 7.3 – Triggered Possible PsExec usage alert

Detecting tactice, techniques, and procedures (TTPs) 161

At this point, we’ve seen implementations of detections at the indicator level and tool level. The final
and top part of the Pyramid of Pain is TTPs. The last example scenario in this chapter will walk
through an example of implementing a detection based on TTP.s

Detecting tactice, techniques, and procedures (TTPs)
In our last example scenario, we are going to move to the top of the Pyramid of Pain and discuss the
detection of TTPs. We are specifically looking at the detection methodology for MITRE ATT&CK
technique T1553.005, Subvert Trust Controls: Mark of the Web Bypass. First, we’ll carry out the Investigate
phase to understand the threat we are trying to detect and then we will move to the Develop phase
to create the detection for such activity.

Example scenario – mark of the web bypass technique

Our goal in this scenario is to detect the mark of the web bypass technique and reconnaissance used
by Qakbot as described here: https://www.trendmicro.com/en_us/research/22/j/
black-basta-infiltrates-networks-via-qakbot-brute-ratel-and-coba.html

From the article, we can see this specific Qakbot campaign uses the technique T1553.005, Subvert
Trust Controls: Mark of the web bypass. An email is delivered to a victim’s mailbox, with a link to an
encrypted .zip file. The email also contains a password to extract the contents of the .zip file,
which in this case is an ISO file that contains the Qakbot payloads. For our initial investigation, we’ll
test some of these actions to study the telemetry that gets generated, so we can plan a method for
detecting this activity.

Investigate

Mark of the web tags exist on Windows operating systems to inform the user and system when certain
files were downloaded from the internet. Figure 7.4 shows this tag as it’s displayed to the user when
accessed via the properties of a file on Windows systems. This tag attempts to block or otherwise
subvert certain potentially unsafe actions from being performed.

Figure 7.4 – Mark of the web tag on Windows

Mark of the web bypass techniques (https://attack.mitre.org/techniques/T1553/005/)
attempt to deliver files to the end user without this tag set, allowing potentially unsafe actions to be taken.

Developing Detections Using Behavioral Indicators162

We don’t necessarily need a live Qakbot sample to test these behaviors. For our investigation, we
can take any ISO file, add it to a password-protected .zip file, then interact with it on a Windows
workstation. Opening the .zip file and then double-clicking the contained ISO file should produce
the same telemetry we expect to see when an end user interacts with a Qakbot .zip file.

That being said, looking at sandbox reports for publicly available samples is extremely valuable since
it provides a safe method for reviewing detailed behaviors of malware. For our investigation, we can
take a look at a sample with an SHA256 hash of 08e2bf60f946708bc43f842b44a72af-
8349c6eeb515d17db96e45a7ef5ee5420 found on MalwareBazaar: https://bazaar.
abuse.ch/sample/08e2bf60f946708bc43f842b44a72af8349c6eeb515d17d-
b96e45a7ef5ee5420/

Qakbot comes in many flavors, but this sample closely resembles the version mentioned in the Trend
Micro intel report linked to at the beginning of this section. The article depicts the following behaviors,
which lead up to the Qakbot infection:

• User action: Link to .zip file clicked

• System action: .zip file downloaded, commonly to the user’s downloads folder

• User action: .zip file opened

• User action: ISO within the .zip file double-clicked

• System action: Prompt for .zip password

• User action: Password entered

• System action: ISO file mounted and a new Windows Explorer window is presented to the
user, set to the directory of the mounted ISO file

• User action: lnk file on the ISO file is double-clicked/invoked

Fortunately, Windows records events when ISO files get mounted. These are recorded in the Microsoft-
Windows-VHDMP-Operational channel. This gives us access to the events shown in Table 7.10:

EventID
(Microsoft-Windows-VHDMP-Operational) Description

1
Stop event: Surface Virtual Disk. Recorded when
a virtual disk has been successfully brought online
and is available for use.

2
Stop event: Unsurface Virtual Disk. Recorded
when a virtual disk has been successfully
taken offline.

Detecting tactice, techniques, and procedures (TTPs) 163

25
Start event: Surface Virtual Disk. Recorded when
the OS starts bringing a virtual disk online.

26
Start event: Unsurface Virtual Disk. Recorded
when the OS starts to take a virtual disk offline.

Table 7.10 – ISO file mount Windows events

As can be seen, some of these event IDs overlap with those we’ve seen in Sysmon but are associated
with very different activities. It is important to understand the context of the events you are looking
at when determining what the event ID means.

Testing the mounting of an ISO file from a ZIP file generated for our testing gives the event shown
in Table 7.11:

Attribute Value

Event ID 25

User.name devuser

VhdFileName
C:\Users\devuser.DELAB\AppData\
Local\Temp\Temp2_qakbot_test.zip\
fake_qbot.iso

Message

Beginning to bring the VHD C:\Users\
devuser.DELAB\AppData\Local\Temp\
Temp2_qbot_test.zip\fake_qbot.
iso online (surface).

Table 7.11 – Event ID 25 for ISO extraction from ZIP

Note that the path of the ISO file is in the user’s temporary directory. This is because opening and
interacting with .zip files on a Windows system extracts the contents to a temporary directory.

The Sysmon documentation shows that it has the capability to record the FileCreateStreamHash
event type, which gets recorded when a browser downloads a file. To record these events, we need to
make some more modifications to our Sysmon configuration file. As shown in the previous section,
we can add an additional rule group to capture these events:

<RuleGroup name="zip file created or downloaded" groupRelation="or">
 <FileCreateStreamHash onmatch="include">
 <TargetFilename condition="end with">.zip</TargetFilename>
 </FileCreateStreamHash>
</RuleGroup>

Developing Detections Using Behavioral Indicators164

This rule will now record an event when .zip files are downloaded. If a user clicks a link that
downloads a .zip file, we now have an event that shows when it happens. Table 7.12 shows a sample
of this event, generated by downloading Sysinternals’ RootkitRevealer.zip:

Attribute Value

Event ID 15

event.action File stream created (rule: FileCreateStreamHash)
TargetFilename C:\Users\devuser.DELAB\Downloads\RootkitRevealer.

zip

User DELAB\devuser

Message File stream created:

RuleName: zip file created or downloaded

UtcTime: 2023-01-15 23:30:15.409

ProcessGuid:
{71ccf5f5-8c87-63c4-3302-000000001f00}

ProcessId: 2288

Image: C:\Program Files (x86)\Microsoft\Edge\
Application\msedge.exe

TargetFilename:
C:\Users\devuser.DELAB\Downloads\RootkitRe-
vealer.zip

CreationUtcTime: 2023-01-15 23:30:13.607

Hash: SHA256=
E43CDDA38B9D3BA1BCCA25049
60FA921CDF071DA9A046F1

Contents: -

User: DELAB\devuser

Table 7.12 – Event ID 14 for ZIP archive download

Detecting tactice, techniques, and procedures (TTPs) 165

Following the infection, Qakbot processes and then initiates reconnaissance commands, after injecting
itself into the innocent-looking Windows error reporting binary, wermgr.exe. Thanks to our
Sysmon process events, these should be easy to spot. We would need to look for process events where
the parent process is wermgr.exe and the subject process is one of the reconnaissance commands
listed in the article.

Now that we understand how the attack technique works and the data that will be generated, we can
move on to the Develop phase, during which we will actually build a detection for the activity.

Develop

From what we discovered in the previous section, we can build queries to identify the following activity:

• The download of ZIP files

• The mounting of .ISO files

• Reconnaissance commands being executed from wermgr.exe

Each of the following subsections will provide queries for these purposes that, when put together, can
help identify this attack technique.

ZIP file download

An EQL query to detect ZIP files being downloaded looks like the following:

any where event.code=="15" and winlog.channel=="Microsoft-Windows-
Sysmon/Operational" and winlog.event_data.TargetFilename like~ "*.zip"

Currently, our Sysmon configuration only captures FileCreateStreamHash events for files ending
with .zip, so our inclusion of the TargetFilename restriction might seem unnecessary. However,
this restriction might become relevant later on, in the event we modify our Sysmon configuration
to capture any additional FileCreateStreamHash events. We may find in profiling our events
that downloading .zip files might occur frequently, making this a low-value query. It is very likely
this query will generate many events with minimal security relevance.

Mounting of ISO files

An EQL query to detect ISO files being mounted from a ZIP file looks like the following:

any where event.code=="1" and winlog.channel=="Microsoft-Windows-
VHDMP-Operational" and winlog.event_data.VhdFileName like~
("*Temp*","*.zip*","*.iso")

Developing Detections Using Behavioral Indicators166

Similarly, this could be done via KQL using the following query:

event.code: 1 and winlog.channel :"Microsoft-Windows-VHDMP-
Operational" and winlog.event_data.VhdFileName: (*Temp* AND *zip* AND
iso)

This should capture any successful mounting of virtual disks, where the path contains both .zip and
Temp, indicating that the disk is possibly being mounted from a .zip file.

Reconnaissance commands executed via wermgr.exe

To detect the execution of reconnaissance commands via wermgr.exe, the following EQL query
can be used:

any where event.code=="1" and winlog.channel=="Microsoft-Windows-
Sysmon/Operational" and winlog.event_data.ParentImage like~ "*wermgr.
exe" and winlog.event_data.CommandLine like~ ("*arp -a*","*ipconfig*",
"*nslookup*", "*route*","*net view*","*whoami*","*net
localgroup*","*netstat -nao*","*route print*","*net share*")

If preferred, the same search can be done via KQL using this query:

event.code: 1 and winlog.channel :"Microsoft-Windows-Sysmon/
Operational" and winlog.event_data.ParentImage: *wermgr.exe and
winlog.event_data.CommandLine: (*arp -a* OR *ipconfig* OR *nslookup*
OR *route* OR *net view* OR *whoami* OR *net localgroup* OR *netstat
-nao* OR *route print* OR *net share*)

This captures events where the parent image is wermgr.exe, and the subject process command-
line attribute is one of the reconnaissance commands we know Qakbot executes following execution.

At a minimum, we can use two of these queries. We can attempt to use a sequence as we did in the
PsExec example; however, the timing is less reliable. Between mounting the ISO file and Qakbot getting
invoked, the user still needs to double-click the .lnk file on the ISO file. This can happen immediately
or much more slowly. The implementation of the detections can instead be a combination of rules,
with different severities. This will communicate to the analyst the fact that something suspicious
happened, and the urgency with which it should be addressed.

Testing the queries

As with the testing phase for our PsExec detection, we need to test our queries to determine whether
they perform as expected. Ideally, they should return only events related to the behavior we are trying
to identify. In our detection lab, we can run our developed queries via Analytics | Discover from
the Kibana navigation menu and examine the events returned. Keep track of the number of events
returned, the fidelity of those events, and the time taken for the query to complete. This will help us
tune the queries to improve their performance and fidelity and determine how often the rule should
be executed.

Detecting tactice, techniques, and procedures (TTPs) 167

If a query returns too much data, this could indicate that we are missing a restriction in our query.
If a query returns no data at all, this could indicate that there is not enough sample data to test the
behaviors we’re looking for, or there is a restriction that is filtering out the events we want to see. Be
sure to also check your time filters.

Implementing the detection

Like the previous scenario, we can navigate to Security | Alerts | Manage Rules | Create new rule
from the Kibana navigation menu to create the rules shown in Table 7.13. Configure them to run
every 15 minutes and perform no actions:

Rule Name Rule Type Query

ISO mounted from .zip
temporary directory Custom query

event.code: 1 and winlog.channel
:”Microsoft-Windows-VHDMP-
Operational” and winlog.event_data.
VhdFileName: (*Temp* AND *zip* AND
iso)

Wermgr running
reconnaissance commands Custom query

event.code: 1 and winlog.channel
:”Microsoft-Windows-Sysmon/
Operational” and winlog.event_data.
ParentImage: *wermgr.exe and winlog.
event_data.CommandLine: (*arp -a* OR
ipconfig OR *nslookup* OR *route*
OR *net view* OR *whoami* OR *net
localgroup* OR *netstat -nao* OR *route
print* OR *net share*)

Table 7.13 – Scenario 3 rule creation parameters

As can be seen, we’re using the Custom Query rule type and specifically leveraging our KQL queries,
not EQL. Previously, we used the Event Correlation rule type, which only understands EQL.
Therefore, it’s important to understand what technologies support what query languages to properly
prepare for deployment.

With both these rules in place, we will now receive an alert when the behavior we defined is detected,
and have done so from a technique-level perspective so that if a hash or filename, or other static
indicator, changes, the technique can still be detected.

Developing Detections Using Behavioral Indicators168

Summary
This chapter continued from the previous chapter in introducing the practical implementation of the
first phases of the detection engineering life cycle, following the identification of detection requirements,
this time focused on behavior-based detections. We discussed how to take a detection requirement
associated with a tool or TTP and perform research into how the requirement can be met.

After performing research into each requirement, we performed hands-on exercises to show how
the information gathered can be used to implement detections in your lab environment, including
performing additional logging configurations to capture the events needed.

Now that we’ve seen how the detection engineering life cycle can get you from a detection requirement
to an implemented detection, Chapter 8 will look at how we can document detections in a way that
will allow for easier tracking and organization. Additionally, we will discuss how detection pipelines
and detection-as-code can lead to a more efficient method of testing and deploying detections.

8
Documentation and
Detection Pipelines

In Chapters 6 and 7 of the book, we learned how to create a set of detections. As your team begins to
build out your detection repository, it is important to maintain quality by enforcing standards upon
the team, and yourself.

In this chapter, we will begin by looking at how to document detections. Proper documentation
standards are key to maintaining knowledge within your detection team and supporting SOC analysts
reviewing alerts created by the detections. We will demonstrate the type of information that should
be documented and methods to standardize and keep the documentation.

Another way to enforce quality is through the use of a detection pipeline. Leveraging a detection
pipeline is a good way to implement and automate processes within your team. We’ll show what it
looks like to leverage detection-as-code and continuous deployment to take code through various
stages of texting. We’ll also introduce the concept of building blocks and composite detections.

Through the various concepts learned in this chapter, you should have a starting point to build out your
team’s own operating procedures and standards in order to keep a consistent and high level of quality.

The following main topics will be covered in the chapter:

• Documenting a detection

• The detection repository

Documenting a detection
In the previous chapter, we designed detections to identify indicators of compromise (IoCs), lateral
movement, and a mark of the web (MOTW) bypass. While these rules work successfully, they are
incomplete because they are not accompanied by documentation supporting the security operation
center (SOC) analyst’s ability to understand the resulting alert, respond to it, or maintain the detection.

Documentation and Detection Pipelines170

In this chapter, we will review how a detection should be documented, and what information it may
be valuable to include to properly document a rule developed in Chapter 7 for the mark of the web
bypass technique.

Properly documenting a detection can be as important as the detection rule itself. If the analyst does
not understand why the detection fired, what it was detecting, or what steps to take when the detection
does fire, the alert may not be properly actioned or actioned at all. If an alert fires and no one is there to
review it, does it make a sound? How much documentation is required should be determined by your
team and it will evolve as your SOC identifies new pain points or identifies extraneous information
not leveraged by your team. We will break down the detection file information into four categories:

• Information used to maintain the detection: This can typically be thought of as the detection’s
metadata and should encompass anything your team requires to track the detection. Some of
this information may overlap with what is captured by your repository, such as Git, but it may
be useful to have the information stored with the detection itself. The SOC analyst using your
detection may not have access to your source repository but may have access to the detection
rule itself or the information may be included in the alert created by the detection. Here are
examples of some of the information you may gather for maintaining the detection:

 � Author: That’s you.

 � Creation Date and Revision History: When the detection was first created and the date of
any updates, along with a short description of what was updated.

 � Maturity: Your SOC can define what maturity levels to use. In this book, we will use
Experimental, Test, and Stable, which will be defined later in this chapter.

 � License: If this detection will be released beyond your organization, a license is required so
recipients know of any restrictions you may have. If possible, use an open source license, so
the recipient isn’t forced to send it on to their legal team. As an example, the MIT License
is great if you’re fine with people reusing your work.

 � Ticket: The issue or ticket number that the detection was created in response to.

 � References: Sources such as threat intelligence, blogs, or other analysis the detection was
based upon.

• Information about what the detection is alerting on: This is the primary information that
should be displayed when an alert from the detection fires:

 � Name: A descriptive name of what activity is being detected.

 � Description: A couple of sentences or a paragraph on what is being detected.

 � MITRE Tactics, Techniques, and Procedures (TTPs): The tactics and techniques that
categorize what is being detected.

Documenting a detection 171

 � Tags: Any other keywords about the detection that should be easily searchable.

 � The Detection: The file should include the detection rule, along with any other information
required to run it.

 � The Rule: The actual thing you want to run. See the previous chapter for more details.

 � Rule Format: Some devices may support multiple detection formats, which must then
be specified.

 � Data Sources / Indexes: Log files or events the rule runs against and what log sources
produce them.

• Information used to analyze the alert: This section should include anything that would support
the SOC analyst in quickly triaging, analyzing, and responding to the alert. In some systems,
much of this information will be grouped together in a notes section but it is still useful to
address each separately:

 � Related Detections: Any additional alerts the analyst should look for that would confirm
the detection as being a true positive.

 � Investigation Suggestions: Notes explaining to the SOC analyst what additional activity
should be examined when reviewing this alert.

 � Responses or Remediations: A description or list of responses that should be taken in the
event of a true positive. What actions should be taken to clean up this activity and remove
the adversary?

 � False Positives: What legitimate activity would result in a false positive when the alert fires?

 � Severity: Describes how high of an impact a true positive would have.

 � Confidence: Describes the probability of an alert firing from the detection being a true positive.

Including this information within the detection documentation will allow for easier tracking of coverage
as well as the ability to understand the context of where a rule came from when tuning is required.

Lab – documenting a detection

In this exercise, we will take one of the detections developed in the previous chapter and identify the
required properties to document it. We will then use that information to create a fully documented
detection. In Chapter 7, we developed detections to identify activity that could be indicative of a
MOTW bypass used by Qakbot. These detections did not identify the MOTW bypass directly but
instead identified unusual activity that commonly would occur with this technique. Take a moment
to review that detection exercise and attempt to fill out Table 8.1 below for the ISO being mounted
from a ZIP file in a temporary directory procedure. Your primary audience for this information should

Documentation and Detection Pipelines172

be SOC analysts attempting to review alerts created by this detection or other detection engineers
updating or reusing the detection:

Property Value

Author

Creation Date

Revision History

Maturity

License

Ticket

References

Name

Description

MITRE TTPs

Tags

Rule

Rule Format

Data Sources

Related Detections

Investigation Suggestions

Responses or Remediations

False Positives

Severity

Confidence

Table 8.1 – Detection documentation template

Now compare your inputs to those captured below in Table 8.2. Were there areas that you missed that
are listed below, or data that you captured more completely than what we identified? One thing to
note is the MITRE TTPs. In Chapter 7, we discussed identifying technique T1553.005: Mark of the
Web Bypass. Our actual rule though indirectly identifies this activity through two other techniques,
T1027: Obfuscated Files or Information and potentially T1204.002: User Execution of a Malicious

Documenting a detection 173

File. Taking the time to properly research and identify the correct techniques is important in ensuring
SOC analysts properly triage and understand the threat:

Property Value

Author Jason Deyalsingh

Creation Date 1/30/2023

Revision History Initial Release

Maturity Test

License MIT

Ticket N/A

References
https://www.trendmicro.com/en_us/research/22/j/
black-basta-infiltrates-networks-via-qakbot-brute-
ratel-and-coba.html

Name ISO mounted from ZIP file in temporary directory

Description

Mark of the web tags exist on Windows operating systems, to inform the
user and system when certain files were downloaded from the internet.
These tags attempt to block or otherwise subvert certain potentially unsafe
actions from being performed. Mark of the web bypass techniques attempt
to deliver files to the end user without this tag set, allowing potentially
unsafe actions to be taken. This detection identifies an ISO mounted from
a ZIP file existing in a temporary directory, which is a procedure used by
Qakbot after performing a MOTW bypass.

MITRE TTPs T1027, T1204.002, T1553.005

Tags Qakbot, MOTW Bypass

Rule

any where event.code=="1" and winlog.
channel=="Microsoft-Windows-VHDMP-Operational" and
winlog.event_data.VhdFileName like~ ("*Temp*","*.
zip*","*.iso")

Rule Format EQL

Data Sources winlog.*

Related Detections Wermgr running reconnaissance commands

Documentation and Detection Pipelines174

Investigation
Suggestions

The ISO run within the temporary directory should be investigated as
possible malware. Attempt to identify and evaluate the carrier email
message that delivered the ISO as a possible phishing email or investigate
the domain or website the ISO was downloaded from. Continue to monitor
the endpoint for the Wermgr running reconnaissance commands alert,
which identifies suspicious activity that has been seen occurring after this
activity and can be used to confirm the threat as a true positive.

Responses
or Remediations

If confirmed as malicious activity, contain the endpoint before remediating.
Check all outgoing network connections from the endpoint to identify
possible C2. This activity has been associated with ransomware activity and
lateral movement using Brute Ratel and Cobalt Strike.

False Positives Users can legitimately download a zipped ISO file as a developer or network
admin role.

Severity Medium

Confidence Medium

Table 8.2 – Detection documentation example

This data can now be used to populate your alert file. The format of the file and whether certain fields
are required or optional may change based on your internal processes or which detection system you are
using. It can be difficult to enforce quality detections and processes within your organization to ensure
detection engineers are documenting their work as shown above. In the remainder of the chapter, we
will show how detection pipelines can be used to provide rigor in your detection engineering processes,
review some advanced multi-stage pipelines to illustrate how pipelines can be adapted to maintain
quality and velocity in more complex use cases, and we will use an open source repository framework
to use the skills learned in the preceding example to document, test, and deploy a detection in Elastic.

Exploring the detection repository
A detection pipeline should support the rapid creation, testing, maintenance, and deployment of
new detections in your environment. While the pipeline should be customized to your own usage,
forking an existing pipeline is a good way to start. Multiple organizations have open-sourced their
detections and associated pipelines for the broader community. Some examples of this are included
in this book’s Appendix. As a starting point, you may wish to see if your chosen product vendor(s) has
open-sourced their detections and pipeline, providing a natural starting point. If this does not exist,
the Sigma repository and engine is an open source library of detections and a compiler to convert the
rules to run in multiple detection environments.

Exploring the detection repository 175

Your detections should be organized to support easy creation and maintenance as your repository
continues to evolve. The project layout outlined in Figure 8.1 aims to provide common software
development conventions that have been adapted for use by detection engineering teams. The project
will contain rules, support scripts, tests, test data, documentation, and anything else your team needs
to maintain their detections.

Figure 8.1 – Detection repository layout

The ./rules directory contains a set of subdirectories with the raw detection rules created by your
team. Each subdirectory should be organized based upon the platform the rule supports, such as
windows, macos, linux, network, and so on. Additional subdirectories should be added as the
team supports new platforms.

Each rule should follow a predefined naming convention allowing team members to easily identify
the rule without opening the file. For this book, we will use the approach of the technique followed
by the procedure: technique_name_procedure_name.yml.

 The ./tests directory contains any test files and scripts used to check the validity of specific rules
or general tests applied across the ruleset. The ./tests directory sub-structure should mimic the
./rules directory containing individual unit tests. Additional subdirectories can contain general
test scripts that are used as broader tests. When implementing your automated tests within the build
process, be specific about which tests should fail the build and which should fail an individual rule.
The failure of a single rule should not affect the build process of the remaining rules within the
repository. Python is our tool of choice due to its wide availability and ease of use. Testing suites such
as Groovy or other language-specific suites should be evaluated if your environment is a heavy user
of one of those languages.

Documentation and Detection Pipelines176

The ./targets directory contains the built rules. The Sigma compiler can be used to convert
rules to a specific target. Each target type is a subdirectory within the ./targets directory using
the same naming convention as the Sigma compiler. This allows multiple appliances to be supported
within your detection project.

The Sigma compiler
Sigma is an open source project focused on creating a common signature format for expressing
a detection rule. Sigma rules can be compiled into the detection format required for a specific
appliance, such as a SIEM or EDR. The Sigma project includes a wide variety of publicly sourced
detections in addition to tests and other support utilities. You can download or browse the
repository at https://github.com/SigmaHQ.

While almost all detection platforms contain a user interface for deploying new detections, using them
can result in issues with larger teams. If your team is implementing detection-as-code processes, rules
should only be deployed into their respective environment using an automation pipeline. This creates
repeatable tests and processes and ensures that the detection project contains the source of truth for
all rules. An orchestrator or deployment tool can be used to manage your deployments.

Later in the chapter, we will discuss allowing your branching methodology to enforce where new
detections are deployed and who reviews them. This allows for partial deployment to low-risk
environments or testing new rules against live data without concern that the detection will flood your
analysts with false positives.

Since Sigma compiles each rule specific to a target detection platform, your team may wish to have a child
pipeline that validates the compiled rule for that specific environment and deploys it to the appliance.
You can also have your pipeline directly deploy the compiled detection rules to the environment.
Child pipelines can be valuable if your team is supporting multiple detection platforms or if you wish
to leverage tools or capabilities specific to that platform as part of the deployment process. Figure 8.2
shows the pipeline for a Sigma rule being deployed through a continuous deployment pipeline.

Figure 8.2 – Continuous deployment pipeline for Sigma rules

Exploring the detection repository 177

Let’s look at the different stages of this pipeline:

1. Lint: Linting is used to perform stylistic and programmatic tests that provide early identification
of errors as well as enforcing naming conventions and other coding style properties through
static analysis. Since Sigma rules are written as YAML files, a YAML linter can be used to
perform this static analysis of the rules and enforce the quality of the writing style of the rules.

2. CompiIe: We are using Sigma to compile Sigma rules in their native format. The Sigma-cli
command will convert rules from a common language over to the specific format required by
individual appliances.

3. Test: The testing phase can be used to perform broad tests that run against all rules or tests
that are specific to the individual functionality of that rule. By adhering to the same directory
structure and naming format in both the rules and tests directories, we can write a general
automation script that identifies which tests should run against which rules.

4. Publish: The publish phase outputs the rule or rules in the native format required by the appliance.
You may wish to have an artifact repository that stores these outputs. An artifact repository
provides a single source of truth for what was deployed for each version of the rules deployed to
an appliance and allows the easy rollback of versions of a rule to a previously known good state.

5. Deploy: The deploy stage takes the published artifacts and deploys them to the appliance. At
this stage, the rules are actually running within the environment.

The use of these various stages allows us to ensure that a detection being deployed to production has
undergone thorough testing and reduce the risk of bad code being introduced into the environment.

Detection-as-code

Detection-as-code is a set of processes and capabilities focused on applying software development
best practices to those used to build and maintain detections within your security environment. These
processes will continue to evolve (as software development processes do). We will start by identifying
principles within software development that we would like to emulate or avoid, identify the tools and
practices to implement them, and then look at how we can evolve our test bed to support these practices.

Software engineering has evolved over time to improve reliability, the velocity of development,
collaboration, testing, and deployment. While this seems to mirror our own detection engineering
needs, it is important to recognize some key differences between software development and detection
engineering that may affect the processes we choose to adopt. Most prominently, software development
is focused on the creation and maintenance of large software systems, with hundreds of thousands of
lines of code, that may continue to exist and evolve for decades. Detections though can sometimes be
represented in a single line, or perhaps a dozen lines, and can be replaced more quickly as adversaries
change their attacks and detection capabilities continue to evolve. It is rare for us to create a detection
that is anywhere near the size of a software development project, without it becoming a software
development project itself. Software development projects also have interdependencies that interact
between the subsystems. Detections, in contrast, are smaller and more atomic. Changing one detection,

Documentation and Detection Pipelines178

in many cases, does not impact others. The size and complexities of software systems can result in
processes that are necessary to maintain quality software systems but may be overly cumbersome
for detections.

These differences are useful to remember. An individual developer, in many cases, will not stand up
a CI/CD pipeline for a small script and likewise, a smaller security organization with shared analyst
responsibilities may not want to take on the overhead of detection as code processes if the number of
custom detections or analysts with detection engineering responsibilities is small. With these caveats
in mind, let’s review some of the benefits of detection-as-code processes.

Quality maintenance

It can be difficult to keep good documentation and clean code hygiene when there is no enforcement
mechanism. Common branching and check-in processes allow the enforcement of peer review of new
detections. By adopting code check-in processes within your detection engineering environment, your
team becomes each other’s detection repository guards for quality enforcement.

Code repositories, such as Git, provide mechanisms for implementing a branching strategy. By
implementing a branching strategy for your detections, you can maintain the quality of your detection
repository while enabling team collaboration. A typical code repository will have multiple types of
branches. The Main or Master branch is the central repository where all production-level (stable)
detections will reside. On the opposite end of the spectrum are the Feature branches. These are
created by individuals to work on new detections or updates to existing detections without impacting
the production detection repository used by your organization to detect adversaries. Your branching
strategy is how your detection engineering team creates Feature branches and the steps or additional
branches required to merge those features into production.

In order to support our detection engineering workflow, we will introduce additional types of branches
to support our detection engineering branching strategy. These additional branch types allow us to
enforce gates and processes associated with those types. This branching strategy is provided as a
starting point. Your organization should review and customize these processes to best support the
team’s workflows.

The feature branch

As mentioned above, our Feature branch is where new work by the detection engineer is performed.
A detection, associated test data, tests, and documentation are developed or updated in this branch.
Once these artifacts are developed or updated and the detection is working against the test dataset, it
is migrated to the Experimental branch.

Exploring the detection repository 179

The Experimental branch

The Experimental branch allows the detection engineer to test the detection within the production
environment with the associated alerts tagged for experimental use. You may wish to have the
Experimental branch only deploy to a subset of the environment. For example, deploying an
Endpoint Detection and Response (EDR) detection to a subset of systems that have been identified
as non-critical systems.

The test branch

Once the detection has been additionally tuned and meets an appropriate false-positive rate in the
production environment, it is migrated to the Test branch. While there should not be a peer review
gate to migrate to the test phase, the detection engineer should have all appropriate documentation
in place and the detection should have a production-level (stable) quality level. When the detection
has migrated to the Test branch, the detection and its associated alerts are reviewed by the broader
organization. After the detection has been peer reviewed, it is then migrated to the Main or Master
branch and considered to be stable.

Table 8.3 defines the purpose, requirements (gates), and reviewers at each branch:

Branch Purpose Gates Reviewed By

Feature

Individual or
collaborative work
to build or update
a detection

Detection passes against
known good datasets and
test datasets specific to the
activity being detected.

Detection
engineer(s)
building
the detection

Experimental
Test the detection
within a
production environment

Detection performs
appropriately
against production
data. Detection
passes automated
linting and contains
appropriate documentation.

Detection
engineer(s)
building
the detection

Test
Detection is peer
reviewed in the
production environment

Detection performs
appropriately against
production data.
Detection documentation
and resulting alerts
are peer-reviewed.

Full detection
engineering team

Documentation and Detection Pipelines180

Stable

Production
environment detections

Peer-reviewed.

Fully documented.

Passed quality
review checks.

Correct false/positive
rate associated with
the confidence/criticality.

SOC analysts

Table 8.3 – Repository branches

Now that we understand the process of how code goes from creation to production, let’s look at how
we can improve the overall performance of our detections by leveraging concepts such as building
blocks and composite detections.

Building blocks and composite detections

Many detection platforms have the concept of building blocks or reusable libraries. Some may
require repeatably embedding this information within each detection or may have other limitations on
how detections may be developed. Building block detections can also be useful to generate low-level
alerts that can be used as the basis for other alerts. Let’s look at a couple of examples of more complex
composite detections and how our detection pipeline can help support the maintenance of these
detections within our environment. The purpose of this section is to examine some complex detection
pipelines, but more importantly, to review the processes and tools required to create or adapt these
pipelines to meet your team’s unique circumstances.

Composite alerting

We will define composite alerting as one alert that is based upon one or more other alerts. These
alerts may be low-level alerts that on their own would not be reviewed by an analyst but become the
basis for more high-fidelity reporting. In this circumstance, we have one or more detections that can
generate a low-level alert for a type of activity. These detections are expected to generate alerts with
certain properties that can be used in composite detections.

These dependencies could break as your detections continue to evolve. For example, suppose a detection
is updated to provide better fidelity or account for a new procedure used by the adversary. Our
detection engineer may test that the detection is firing when appropriate but their updated detection
is not producing all the necessary properties for the composite detection, or those properties may
not be formatted correctly. In this circumstance, the tests for that individual detection would pass,
and the standalone tests for the composite detection would pass, but in production, our composite
detection would fail because the building block detection no longer produces all the correct properties.
Implementing a detection-as-code pipeline allows us to test that these dependencies are met. This use

Exploring the detection repository 181

case is demonstrated in Figure 8.3. As a note, the label LL1-Tag is an arbitrary tag assigned to associate
the two low-level detections as a composite detection.

Figure 8.3 – Building Blocks and Composite Detections – Example 1

In our second example, illustrated in Figure 8.4, a new composite detection is created that requires
new properties to be captured within our low-level building block detection. The detection engineer
identifies a low-level detection creating that building block but fails to identify other detections that
also create similar building blocks and therefore fails to update these detections with the additional
required properties.

Figure 8.4 – Building Blocks and Composite Detections – Example 2

Documentation and Detection Pipelines182

How can we update our detection engineering pipeline to identify these issues?

We could have our low-level detection tests feed into our composite-level tests. This would seem like
a practical solution. Unfortunately, not all low-level detection results would result in a composite
detection being generated and therefore our tests would not automatically identify this issue.

In both circumstances, there is an expectation of data that one detection was expected to produce
or receive. In some circumstances, your rules engine will identify a missing property and provide an
error message that can be identified during the experimental or test phases, when the new or updated
detection is tested in the live environment. By including these error checks either directly within your
CI/CD pipeline or through your processes, these incorrect configurations can be detected.

If your detection appliance does not provide error messages for these conditions or if your team would
like to proactively identify such issues, there are solutions. Data quality tools are a useful mechanism,
primarily deployed within data engineering enterprises, for creating checks on how data should be
formatted. There are many solutions available but one popular open source option is Great Expectations
[greatexpectations.io]. Expectations are ways to monitor your data for the existence of properties
within messages, expected types of data (for example, this property should always be non-zero), or
other ways to categorize your data. Great Expectations is designed to work on a data pipeline, which
allows us to identify issues with our data as it flows into our SIEM or other data lake. This capability
can be leveraged in responding to the above issues or can be applied to identify issues with the logs or
other data sources used by our detections. For example, if a log source changes its format, rendering
our detections ineffective, expectations can be used to identify these changes proactively and respond.

Embedding tools within detections

Detection engineers may depend upon other parts of their organization to help build more complex
detections. For example, the detection engineering team may wish to leverage YARA signatures
created by the malware analysis team of the organization within their own detections. After all,
your malware team has created these signatures to detect malicious executables or detect potentially
malicious activity. The malware analysis team may have its own pipeline where they are testing new
and updated malware signatures that evolve as new variants are identified. Unless these signatures
are directly designed for detection, there may be issues with embedding the signatures within your
detections. Some of the potential issues are provided in the following list:

• The malware analysis team has only tested the signatures against malware. They have not
tested the signatures against known good files, resulting in large false positive rates in a
non-malicious environment.

• The YARA signatures may depend upon modules that make them impractical to run on an
endpoint for detection.

• The YARA signatures may not be optimized to run in a live environment. The signatures may
be appropriate for the malware analysis pipeline but the speed and efficiency of the signature
may not align with the needs of the detection environment.

Exploring the detection repository 183

• The YARA signature may not detect badness. Malware analysis teams can use YARA signatures
to identify certain capabilities or behaviors of a file that are not necessarily malicious but are
helpful in speeding up their analysis.

The detection pipeline can be used to optimize and automate these processes. We strongly suggest
not automatically deploying to production detections containing capabilities from other teams
without a manual quality check from the detection team. The issues identified above can be used as
requirements for our ideal detection pipeline. Our malware analysis team creates and updates new
YARA signatures. Our detection engineering team has created a detection template where we can
embed YARA signatures within the detection. This signature is dependent upon the YARA signature
matching our malware analysis team’s defined output format.

This workflow creates a detection for each YARA signature within our malware analysis team’s
repository. It does not, though, account for the issues we identified above. Let’s continue to evolve our
detection pipeline to account for these issues. Table 8.4 provides an overview of the aforementioned
issues along with potential solutions.

Issue Potential Resolution

Signature Testing /
Efficacy

New signatures are manually tested by the detection team for efficacy or
are tagged by the malware analysis team as potential detection signatures.

New signatures are automatically tested for false positive rates against a
known good dataset.

YARA Signature
module dependency

Signatures are dynamically tested for success or failure within the
detection pipeline, mirroring the production environment.

The pipeline script statically checks signatures for the inclusion
of modules.

Speed and
Resource efficiency

Signatures are dynamically checked for runtime efficiency within the
detection pipeline.

Detections embedding the signature are dynamically checked for runtime
efficiency within the detection pipeline.

Signature Purpose

The malware analysis team tags signatures that could potentially be used
for detection.

The detection engineering team whitelists YARA signatures identified as
valuable for detection.

Table 8.4 – Potential YARA usage issues

Documentation and Detection Pipelines184

With these issues and solutions in mind, let’s look at what a pipeline with YARA signatures embedded
might look like. Figure 8.5 shows a sample detection as a code pipeline for embedding YARA signatures
within the detections for deployment. The pipeline assumes the malware analysis team has its own
CI/CD pipeline for deploying new signatures for their own usage or into automated malware analysis
infrastructure. By implementing the detection engineering pipeline as a child pipeline to the malware
analysis team’s pipeline, we can decrease the time between when the signatures are updated by the
malware analysis team and when the signatures are available for use as detections. Without the pipeline,
breakdowns in communicating new updates or risks with testing new updates would likely prohibit
the signatures from quickly becoming utilized.

Figure 8.5 – Sample Detection-as-Code Pipeline with YARA Signature Embedding

Exploring the detection repository 185

The pipeline is started based on a trigger created by the parent pipeline. New signatures are either
checked for a tag maintained by the malware analysis team or from a whitelist maintained by the
detection team signaling its usage for detection. A speed test is performed, checking the time taken to
execute the signature. If this passes, a script embeds the signature within the detection “code” creating
a new detection. The error testing phase checks the detection against known malware associated with
the signature (this repository is usually maintained by the malware analysis team). This phase would
also check for any issues with included modules or incompatibility between the signature and the
embedding script that would cause the detection to fail. Once the signature passes this phase, it is
tested against known good files (this can also be combined with the deploy stage by deploying the
signature to a test endpoint). Notice that the pipeline ends with deploying as a test or experimental
update. As a detection engineering team, you should not automatically deploy signatures to production
that have not been reviewed by a team member.

Challenges creating a detection pipeline

Standing up and maintaining a CI/CD pipeline within a software development team is not a simple
task. Duplicating these software processes within a detection engineering team, while beneficial,
comes with its own set of complications. It is something that the leadership needs to buy into and be
willing to invest in. This can be difficult considering that detection tools contain user interfaces and
tooling within their application to allow new detections to be created and deployed. Devoting precious
resources to implement custom capabilities for managing detection deployment when someone can add
a new detection through a user interface can be a tough sell. It will take time before the advantages of a
detection engineering pipeline are noticeable to leadership. Issues with quality control or understanding
and managing a detection repository may be good drivers for teams to take this leap.

Many of the tools discussed in this section were not designed to support detection engineering. They
were designed to support software development or data engineering. While these tools should continue
to work well for detection engineering workflows, their new features and roadmap will focus on serving
their primary user base. These tools require integrating with your security platforms, which may lack
the correct API functions to support detection as code processes. Prior to investing in researching
these techniques, make sure to check that your security tools support the necessary integrations.

Managed service teams and product detection engineering teams have their own set of unique
challenges. While these teams will usually have a lower risk tolerance and thus would gravitate to
some of the processes documented in this chapter, they may be missing some important features that
would benefit from implementing a full detection-as-code pipeline. Specifically, the security tools
they are supporting may lack the ability to release silent detections. While a detection engineering
team within a SOC can simply tag a detection as “experimental” or “test,” a third-party team usually
will not want to deploy “test” detections into a customer’s environment, clogging up the customer’s
alert list. Silent detections are a way to deploy detections in a customer environment that are never
sent to the customer’s alert panel. Instead, they are only viewed by the managed services or product
team that created them. This allows the team to test new detections against their customer’s real-world
situations without adverse effects.

Documentation and Detection Pipelines186

Product detection engineering teams may also lack the ability to see the results of their detections
within customer environments. On-premise installations or customer agreements may prevent product
detection engineering teams from receiving feedback on the performance or false positive rates of
their detections. This lack of visibility can make it difficult to automatically roll back detections with
high false positive rates or check the performance in customer environments.

One partial solution to these issues is to use the managed service or product company’s own network as
the test environment. This approach provides the necessary visibility to test and deploy new detections
and receive the associated feedback. This only partially addresses the issue since there will always
be deviations between the customer environment and the internal team’s network. One example of
this approach is Facebook. Prior to releasing new features within the Facebook app, the features are
released on the app instances used by their employees. Employees sometimes joke that your first day
at Facebook is the last day the Facebook app will work on your phone. There may be some truth there,
but it’s a great way to catch bugs prior to releasing features to the general public.

Lab – Publishing a rule using Elastic’s detection-rules project

In this lab, we will review Elastic Search’s detection-rules project to leverage a set of capabilities that
would be valuable to a detection pipeline. This exercise builds upon your work in previous chapters. In
this exercise, we will take the detection we documented in Chapter 7 and commit it to the repository
using some of the tools and processes we examined earlier. We will use the Elasticsearch and
Kibana instances instantiated in Chapter 3.

The detection-rules project is maintained by Elastic’s detection engineering team. The project aligns
with many of the detection-as-code principles that were discussed earlier in this chapter. It contains
both the tools for maintaining the repository and Elastic’s detection signatures as well. In previous
labs, we used Elastic’s user interface to write and test new detections. This lab will use command-
line interfaces to implement many of the stages we discuss within the CI/CD pipeline. The lab will
also introduce Git and GitHub. Git is a command-line tool for maintaining code and collaborating
with other developers. The public GitHub website is the repository for most open source software, in
addition to working examples of many exploits and detections as well. Most software organizations
host their own GitHub or GitLab instances within their network.

The detection-rules project can be found at https://github.com/elastic/detection-
rules. It contains the open source rule repository created by Elastic’s detection team along with the
functionality they have built to manage and maintain their repository. We will use the repository as a
way to examine working examples of some of the concepts we discussed in this chapter.

Installing detection-rules from the command line

Here are the steps for installing the contents of the detection-rules repo via the command line:

Exploring the detection repository 187

1. The detection-rules repository requires python 3.8 or higher installed in your environment.
Check your Python version and upgrade or install as needed. You can check your Python
version with the following command: python --version.

2. The detection-rules repository is hosted on GitHub. To use the package, we need to first fork it
so that any changes we make are not inadvertently pushed back to Elastic’s copy. First sign into
https://github.com/. If you do not have an account, you will need to create one. Visit
https://github.com/elastic/detection-rules and then click the Fork button
at the upper right of the screen and fork a copy to your GitHub account, as shown in Figure 8.6.

Figure 8.6 – Forking the detection-rules repository

3. To get the repository on our desktop, we need to clone it from the GitHub site. In your terminal,
migrate to the parent directory where you would like to install the detection-rules repository
and then type the following command, where <ACCOUNT> is your GitHub account hosting
the forked repository. You can get this URL by clicking the green Code button in your forked
version of the detection_rules repository:

git clone https://github.com/<ACCOUNT>/detection-rules.git

At this point, your fork of the repository should now be downloaded to your system.

If you got stuck...
If you do not have Git already installed within your environment or your credentials are not
already installed at github.com, first install Git for your operating system (a quick web search
will take you through the instructions). Once installed, create an account at github.com (it’s
free) and then upload your SSH tokens to github.com. This can be the most complicated
step. To proceed, click on your user icon in the upper-right corner of the github.com site.
From there, click Settings, and then on the left-hand panel click SSH and GPG keys. This page
is where you can upload your SSH keys from your device to github.com. It also contains a
guide for generating your keys and troubleshooting.

Documentation and Detection Pipelines188

A note about GitHub repositories
Prior to reviewing what we downloaded, let’s start by visiting the GitHub page for the repository
at https://github.com/elastic/detection-rules. At the top of the page, we
see icons for Watch, Fork, and Star. These statistics can be valuable in determining whether
to use a GitHub project. A higher number can be indicative that more people trust and use
the project. You can also look at how often and how recently the project was updated to see if
development is still active. GitHub contains a tremendous amount of open source repositories,
many of which are inactive or unmaintained and therefore should probably not be used as the
basis for your production environment. If you click on the green Code button in the upper-right
corner, you will get the URL we used to clone the Git repository to our computer.

Working with the detection-rules package

Within any Python project, we want to create our own virtual environment for the project. A virtual
environment is used to keep the packages and versions of those packages consistent for that project so
two projects do not conflict with each other. A virtual environment can be created with the command
that follows in step 1. For this project, the detection-rules make file depends upon your environment
being called env. We’ll go through the steps for working with a virtual environment for this project
here. You can also refer to the README.md Getting Started section for instructions:

1. Create the virtual environment by executing this command: python –m venv env.

2. Activate the virtual environment by executing the applicable command:

 � On Windows: .\env\Scripts\activate.bat

 � On Linux: source env/bin/activate

Important note
To deactivate the environment when you are done, type deactivate. Then reuse the preceding
command to re-activate it for future use.

3. Install the requirements by executing this command: pip3 install ".[env]".

4. Validate the install by executing this command: python -m detection_rules --help.

If the installation was successful, you should see an output similar to that in Figure 8.7.

Exploring the detection repository 189

Figure 8.7 – Detection rules package help

Reviewing the tool’s functionality

Before diving into leveraging the detection_rules library, let’s look at some cool features. The
team at Elastic included a lot of capabilities, so take some time to explore by reading the CLI.md
file on GitHub. The package mostly contains rule management, linting, validation, and deployment
capabilities. Typosquat relates to a specific type of detection, while the dev option is a folder for a
wide range of capabilities. Many of the other capabilities listed here are headers for sets of additional
capabilities as well, so make sure to explore what is available:

• Rule Management:

 � create-rule

 � import-rules

 � rule-search

Documentation and Detection Pipelines190

 � mass-update

 � export-rules

 � generate-rules-index

 � view-rule

• Linting:

 � toml-lint

 � normalize-data

• Testing and Validation:

 � rta (red team automation)

 � validate-all

 � validate-rule

 � test

• Deployment:

 � es

 � Kibana

Earlier in the chapter, we identified some capabilities that we wanted to perform, such as linting,
testing, validating, and deploying our rules. We can map these steps in our pipeline to the capabilities
within the detection_rules repository to illustrate how a team implements these steps. Based
upon the implementation of the detection-rules library, we have moved the compile stage ahead of
the linting stage in the pipeline shown in Figure 8.8.

Figure 8.8 – Pipeline with detection-rules implementation

To simulate our detection-engineering team we will assume the following configuration. Our detection
engineering team is using the detection-rules packages capabilities to implement our internal pipeline.
We have forked the package for our internal repository. Each team member has a local copy of the
repository on their own computer. We have also implemented the Elasticsearch infrastructure as
documented in Chapter 3. Figure 8.9 shows how the GitHub repository should be forked for use.

Exploring the detection repository 191

Figure 8.9 – Pipeline with detection-rules implementation

Let’s use the detection_rules package to implement each of these steps:

1. We’ll start by creating a new branch of our repository. This should always be completed when
building new functionality:

git checkout -b defense_evasion_iso_mounted_from_zip_temp_
directory

2. Next, we will import a rule using the detection_rules import-rule command. Since
we already designed this detection in Chapter 7 and we documented the detection at the start
of this chapter, we can use this combined information to create the detection rule file listed
here. The information listed within the file should directly match the documentation fields we
identified earlier. Some of the field names have changed slightly to match the schema used by
Elastic. The start of the rule document looks as follows:

[metadata]
creation_date = "2023/01/30"
maturity = "development"
updated_date = "2023/01/30"

[rule]
author = ["Jason Deyalsingh"]
description = """
This detection identifies an ISO mounted from a zip existing in
a temp directory, which is a procedure used by Qakbot
to perform MOTW bypass. Mark of the web tags exist on Windows
operating systems, to inform the user and system
when certain files were downloaded from the internet. This tag
attempts to block or otherwise subvert certain
potentially unsafe actions from being performed. Mark of the web
bypass techniques attempt to deliver files to the end
user without this tag set, allowing potentially unsafe actions
to be taken.

Documentation and Detection Pipelines192

The rest of the contents of this file can be found in the book’s GitHub repository here: https://
github.com/PacktPublishing/Practical-Threat-Detection-Engineering/
blob/main/Chapter%208/Possible-MOTW-bypass-ISO.yaml.

Note
Within the Git repository, we use a .yaml extension since it is a YAML file. The detection_
rules project will expect the file to be renamed to a .toml file, as it is referenced in step 3.

3. Now that we have our rule, we can load it into the detection_rules repository. Copy the
file into the ./rules/windows folder. Since our rule has already been written, we will use
the import-rule command. The import-rule command will still check for syntactical
errors similar to a compiler. Execute the following command:

python -m detection_rules import-rules ./rules/windows/defense_
evasion_iso_mounted_from_zip_temp_directory.toml

If you are running a version of the detection_rules project similar to our own, you may get
an error that ends like the one shown in Figure 8.10. This is because the detection_rules
project checks the names and types of all events used within the rules and yet does not have
full knowledge of all possible events. These checks are valuable, mimicking the syntax analysis
of a compiler, to prevent detections being created with mistyped events. In order to resolve
this error, we need to update a definition list for our rule to compile.

Figure 8.10 – EqlSchemaError

4. Open the file called non-ecs-schema.json in the detection_rules/etc folder.
In this file, we can see that the winlogbeat winlog event data properties do not include
VhdFileName as an allowable event type. We can add the following line to the list of allowable
events. After saving the file, the preceding command should now work.

Add the following line to non-ecs.schema.json under winlogbeat-* -> winlog
-> event_data:

"VhdFileName": "keyword"

Successful execution of the import-rules command should result in an output similar to
that in Figure 8.11.

Exploring the detection repository 193

Figure 8.11 – import-rules command output

Linting our rule

The next step after importing the rule is to run the linter against it. We can run the linter using the
following command. Linting, as we discussed earlier, uses static analysis to identify syntax or stylistic
issues with your rule:

python -m detection_rules toml-lint -f ./rules/windows/ defense_
evasion_iso_mounted_from_zip_temp_directory.toml

If successful, a message that says TOML file linting complete will be displayed.

Testing our rule

The detection-rules package has a variety of general tests it will perform against the rule, such
as checking that the MITRE tactic and technique tags make sense, that the tactic is included in the
tags for the alert, schema checks, and many others.

In addition to these general tests, specific unit tests checking the rule efficacy should also be developed.
Earlier in the chapter, we discussed using test-driven development to first create the tests and then
use them in the development of our rule. The rta folder contains red team automation scripts that
can be used to generate test data for the associated rules. The red team scripts can then be run in a
monitored environment to generate events for your SIEM or other detection engines. In Chapter 9,
we will examine the use of testing to facilitate your detection engineering processes.

To execute the test scripts against all the rules, we can run the following command in the detection-
rules folder:

python -m detection_rules test

The lists of tests are shown in the command output. If you want to see what a rule failure looks like,
attempt changing the data in the file in an incorrect way. For example, remove Defense Evasion
from the tags list. This will cause a quality check failure because the MITRE tactic is not included as a tag.

Documentation and Detection Pipelines194

Publishing our rule

As we work on our rule, we add our files to a branch, commit them, and then push them to the
repository. When our work on the branch is complete, we merge our changes into the main branch
and push our results to the main branch. Traditionally, this would start our CI/CD process, which
would kick off the pipeline on a container that would execute our tests, called a runner. If the previous
stages of our pipeline passed, the pipeline would then let the git push command succeed and
add our rule to the Git repository. If it failed, we could review the errors and resolve the associated
issues. Since we are manually simulating our pipeline, the git push command does not kick off
a pipeline and simply results in our new rule being added to our pipeline. The following commands
will perform these steps:

1. Add our file to the current branch:

git add ./rules/windows/defense_evasion_iso_mounted_from_zip_
temp_directory.toml

2. Commit to the current branch:

git commit -m “adding rule for defense evasion iso mounted from zip

temp directory”

3. Merge the current branch with the main branch:

a. git checkout main
b. git fetch
c. git pull
d. git merge defense_evasion_iso_mounted_from_zip_temp_
directory
e. git branch -d defense_evasion_iso_mounted_from_zip_temp_
directory

4. Push to the GitHub repository:

git push

Now our new rule should be in the main branch of our GitHub repository.

Deploying our rule

The last stage of our simulated pipeline is to send our rule to the Elastic/Kibana instance. In a continuous
deployment scenario, this would publish our rule to the production instance of our security information
and event management (SIEM), after it had succeeded in the other stages of our pipeline. In this
example, we will use the Elasticsearch cluster we created in Chapter 3.

Summary 195

To configure the detection-rules package to work with your cluster, you must first create a configuration
file. The configuration file must be placed in the root directory of the project and is called .detection-
rules-cfg.json. The CLI.md document provides information on the full set of configuration
properties. For our usage, we only need to set the Kibana user, URL, and password. Replace the values
in the following example with your actual username and password and update the URL if necessary:

.detection-rules-cfg.json:

{
 "kibana_url": "http://localhost:5601",
 "kibana_user": "MY_USER_NAME",
 "kibana_password": "MY_PASSWORD"
}

Once the configuration file has been created, we can now call the following command to upload our
rule to the Kibana instance:

python -m detection_rules kibana upload-rule --rule-file ./rules/
windows/defense_evasion_iso_mounted_from_zip_temp_directory

Our detection rule is now imported into our Elastic Stack instance.

Summary
In this chapter, we looked at how a detection pipeline can be used to automate and enforce your detection
team’s processes. We examined the steps of a standard detection engineering pipeline and looked at
some more complex examples to see how a pipeline can be modified based on individual use cases.

The Publishing a rule using Elastic’s detection-rules project lab was used to demonstrate how a team can
build and leverage a set of capabilities to add structure and process to the creation of their detections.
In this example, we performed the steps of our pipeline manually. These steps can be automated
using a tool such as Jenkins, or a source repository site such as GitHub or GitLab can manage the
pipeline as well.

The detection_rules package was built to support Elastic’s internal detection team. While
this package can be used and modified to support your own team’s processes, you should choose the
processes that align with your individual team. A common practice when building a CI/CD pipeline
is to examine your current manual processes, identify what currently takes the longest in those
processes and then force yourself to do it all the time. If testing is currently the bottleneck, set a goal
to test every day. This approach forces you to automate your pain points and becomes the driver for
how your pipeline and support infrastructure should evolve.

Now that we know how to deploy detections, in Chapter 9 we will discuss how we can validate detections
from different perspectives and evaluate some of the open source tools available to perform validation.

Part 3:
Detection Validation

This part starts by looking at how we can validate the detections we create to ensure they are functioning
as expected. It will introduce a couple of tools that can be used to perform validation and labs to
work hands-on with those tools. The section will then end with an introduction to threat intelligence,
specifically as it relates to detection engineering.

This section has the following chapters:

• Chapter 9, Detection Validation

• Chapter 10, Leveraging Threat Intelligence

9
Detection Validation

Cyber security defenses are designed to protect a company’s information assets. This amalgamation
of trained personnel, specialized technology, and underlying processes can be designed based on
security best practices, threat modeling outputs, technical knowledge, available threat intelligence,
and expert judgment. Once implemented, we need assurance that controls work as expected, under
realistic conditions. Cyber security validation aims to create these conditions, that is, the techniques,
tactics, and procedures used by threat actors, to measure the effectiveness of defensive control.

Cyber security validation has the goal of producing tangible measurements of how well a security
program is performing. For detection engineering, well-executed validations give us the opportunity
to find weaknesses or blind spots in our detection environment and remediate them before they can
create an advantage for threat actors.

The process and techniques used to execute validation fall under the broader topic of security testing
and assessment. This process comprises technical and non-technical steps, from documentation
reviews to detonating command and control malware. Within the context of detection engineering,
validation helps us understand which detections work well, what gaps exist in our current detections
(where a procedure was executed and no detections were raised), and produces telemetry we can use
to make any existing detections more precise or effective.

In this chapter, we’ll discuss validating detections in order to assess a cyber security program. First,
we’ll provide an introduction to the validation process. We’ll then demonstrate open source tools that
can be used to perform the validation by simulating adversary activity as well as providing hands-on
opportunities to test these tools within your own detection lab. Finally, we’ll finish the chapter with
guidance on how to use the results from validation to improve your program’s effectiveness.

We will cover the following main topics in the chapter:

• Understanding the validation process

• Understanding purple team exercises

• Simulating adversary activity

• Using validation data

Detection Validation200

Technical requirements
The exercises in this chapter require the following:

• The Elastic Stack (as configured in Chapter 3)

• A Windows VM:

 � Minimum RAM: 4 GB

 � Minimum disk space: 80 GB

• A Linux VM:

 � Minimum RAM: 8 GB

 � Minimum disk space: 10 GB

An important note on the tools in this chapter
Most of the tools in this chapter are adversary emulation tools, meaning that they are designed
to perform activities similar to those of a real attacker. As such, be mindful of the systems and
networks on which you are running the tools as if not used properly, you could impact systems
accidentally. They should also be used after a proper review of the documentation and at the
user’s own risk.

Understanding the validation process
The execution of cyber security validation is very similar to typical adversary simulation exercises. The
emphasis, however, is on producing data that can be compared against a set of performance criteria
defined for each defensive control. In broad terms, validation can be executed in three phases:

1. Planning: This is easily the most important phase. During this phase, the objectives of the validation
exercise are defined, along with the scope, timelines, and stakeholders. The specific defensive
capabilities targeted for validation and the criteria for determining their effectiveness are rigidly
defined during this phase. Each validation needs to be mapped to a specific defensive control
or controls, expected outcomes, and criteria for measuring the performance of the control(s).
It is important at this time to also understand the possible limitations of each validation. For
example, an organization may want to test T1048: Exfiltration over Alternative Protocol. In an
ideal world, we would want to be able to test every possible way data can be moved out of the
organization, using non-standard protocols. It goes without saying that this is difficult, if not
impossible, to achieve. It can be more practical to test known techniques and accept the risk
that the organization might not be able to detect yet-undiscovered T1048 procedures.

Understanding the validation process 201

Even within the scope of known procedures, the organization may not have the capability to
execute a technique they determine is relevant. At this point, they can either omit the validation
entirely or design reasonable substitutions that capture the core functionality of the procedure.

It follows that this phase requires significant research of TTPs, to understand how best to
approach validating the detections in scope. Threat intelligence plays an important role during
this phase. For example, if the objective is to test the effectiveness of defensive controls against
a specific threat group or campaign, threat intelligence maps those objectives to specific TTPs
that will need to be executed to accurately simulate the threat group or campaign.

2. Execution and data collection: This phase is where the TTPs are executed against the target
environment. Telemetry is gathered to show the performance of defensive controls in response
to these TTPs.

3. Analysis and reporting: The output of the validation exercise is analyzed to identify which
defensive controls performed well, which require further development, and what gaps exist across
the defensive landscape. The results are formally documented, and the required improvements
are tasked to the relevant teams for planning and implementation.

Validation can be designed for multiple levels of granularity. At the highest level, we can emulate all
the tactics, techniques, and procedures (TTPs) used by a known threat actor, simulating a real-world
attack by that threat actor. At the most granular level, we can design validations to test a very specific
technical procedure used by threat actors as part of a larger operation. For detection engineering,
we focus specifically on the response of the detection environment to the TTPs executed during the
validation exercise.

Successful validations indicate that our detection environment raised alerts for the procedures being
executed, with reasonable severity labels, and minimal false positives. If false positives are raised, alerts
with inaccurate TTP labels are raised, or no alerts are raised at all following validation execution, then
this indicates a deficiency in the detection environment.

Validations can be either automated or manually executed. With automated validations, a set of
predefined scripts and programs are executed against an environment, with no manual intervention.
These tests are useful for smaller environments or organizations, where there is limited access to red
team resources. With automated validations, you trade agility and creativity for speed and scalability.
When running manual validations, you have the ability to adapt and respond to defensive controls in
real time, but the process takes considerably longer to both plan and execute.

Detection Validation202

The difference between detection testing and validation
While the execution of a test within the detection engineering process can at times resemble
the execution of validation, the goals are slightly different.

The testing sub-process of the detection engineering life cycle is primarily concerned with
ensuring a detection definition is properly implemented in code and accurately reflects the
intent in production. This includes ensuring the rule returns the expected data, minimizes false
positives, and is performant. The output of a successful test is a detection rule that is ready for
implementation in production.

Validation, on the other hand, is specifically concerned with examining how the detection
environment behaves in response to threat actor techniques. The output of validation is a tactic
and technique-oriented report of how a subset of the detection environment responded to the
techniques executed.

Additionally, validation does not need to be executed in-band with the detection engineering life
cycle and can be used to validate a very broad set of adversarial tactics, or granular procedures,
which may rely on the output of one or combinations of implemented detections.

Now that we understand the purpose of validation from a high level, we can look at how validations
can be performed.

Understanding purple team exercises
Security functions can be broadly organized into two categories: the blue team, which focuses on
defending an organization against cyber security threats, and the red team, which has the goal of
emulating real-world adversaries. When the red and blue teams work together, collaboratively, to
emulate an adversary, execute tactical defensive activity (where relevant), observe the performance
of security controls, and execute responses in real time, this is referred to as a purple team exercise.
While developed detections do get tested during a purple team exercise, the central focus of the exercise
is not just the detection environment but rather the interactions between the red and blue teams. The
exercises aim to help the blue team develop and improve response techniques while simultaneously
helping the red team develop adversarial techniques.

Both teams work together to plan a simulated cyber-attack, comprising several tactics, within a
predefined environment. The red team executes tactics transparently, observed by the blue team.
The blue team reviews available telemetry to determine whether the red team activity was correctly
handled by any automated defensive systems. At the same time, the blue team will execute tactical
defensive responses as guided by their existing playbooks or cyber security incident response plans.
This collaborative approach results in a rich, realistic, high-value experience. The red team receives
immediate feedback on which techniques are less effective than others and can use that feedback to
research and develop new adversary techniques. The blue team receives information and data about
what specific techniques were executed by the red team, how technical and non-technical defensive
components responded, where improvements can be made, and how to test the implementation of
those improvements.

Simulating adversary activity 203

Let’s look at how we can perform the role of the red team by simulating adversary activity.

Simulating adversary activity
For our detection lab, we may not have a red team readily available, but we still need to track how
well our detections respond to realistic threat actor techniques. Fortunately, there are some free and
publicly-available breach and attack simulation (BAS) resources we can use to emulate adversary
behavior. We cover some noteworthy, freely available options in this section.

An important note on impairing security tools
Some validation tools and techniques can get blocked by different security controls, which is
normally a good thing. However, this might prevent the validation exercise from being run as
required. A preventative control on an endpoint can in some cases limit our ability to validate
detective controls.

For example, consider the scenario where we need to validate detections for the creation of
the log file associated with executing the mimikatz misc::memssp module. If we run
mimikatz, but it immediately gets blocked and removed by Microsoft Defender, then we
never create the telemetry needed to validate detections for the misc::memssp log file.

The common workaround for this issue is simply disabling controls as needed to create an ideal
environment for the goals of your validation exercise. Impairing defenses is also a common
technique used by threat actors to evade defenses. It can be valuable to understand how the
different security controls behave once others are impaired.

Atomic Red Team

When it comes to adversary emulation, we recommend starting with Atomic Red Team. The Atomic
Red Team repo is the easiest way to get started with emulating adversary activity for detection validation.
Not technically a single, unified tool, Atomic Red Team is rather a collection of scripts that enable
validation at the technique level. This collection is hosted on Red Canary’s GitHub repository and is
conveniently organized by MITRE ATT&CK technique. It’s easy to see how using MITRE ATT&CK
tags across detection and validation can make the outputs of validation more valuable. Validations
executed for a specific collection of tactics, which produced ineffective or partial detection outputs,
inform you which specific areas require further development, and which specific tactics you are
most exposed to. You can view the repository at the following link: https://github.com/
redcanaryco/atomic-red-team.

The requirements for working with Atomic Red Team are comparatively simple. You only need your
detection environment, and a single test system to run tests on. To get started, clone the GitHub
repository, or, alternatively, if you plan to test a specific technique, you can navigate directly to the
relevant subfolder in the atomics directory, read the available technique documentation file, and
execute the tests as instructed. Once complete, you can examine telemetry and any developed detections
to determine whether they behaved as expected. If detections were raised, then the detection can be
considered effective.

Detection Validation204

For example, we can look at a common persistence technique, Windows Registry Run key modification
(T1547.001: Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder).

Windows can be configured to automatically execute programs automatically when a user logs in.
This has tremendous utility for a threat actor. One common problem threat actors need to overcome
is maintaining remote access to a compromised system beyond network or power interruptions. Using
this technique, the adversary can simply instruct the system to rebuild lost network connections when
a user logs in. This technique can also be used to escalate privileges under the right conditions. The
technical modification needed to make this procedure work is made in the Windows Registry.

Navigating to the relevant Atomic Red Team test (located here: https://github.com/
redcanaryco/atomic-red-team/blob/master/atomics/T1547.001/T1547.001.
md), we see that the writeup provides a detailed description of the technique and the specific registry
modifications associated with it. Scroll down to the section labeled Atomic Test #1 and review
Attack Commands. The command provided uses the built-in Reg command to add a sub-key
named Atomic Red Team in the current user hive, under the Run key HKCU\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run. For our test, we will make a modification to
invoke the execution of the Windows calculator:

REG ADD "HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /V
"Atomic Red Team" /t REG_SZ /F /D "c:\windows\system32\calc.exe"

This should simply run the Windows calculator the next time the currently logged-in user performs
a login. In this specific case, we know launching calc.exe automatically at login is not a malicious
operation, however, nearly every other attribute involved in this activity is consistent with MITRE
ATT&CK technique T1547.001. In a real-world execution of this technique, calc.exe would likely
be replaced with some kind of nefarious executable or script that advances the adversary’s objectives.
This execution of a known malicious tactic, with benign payloads, gives us a way to safely test our
detection of T1547.001. After launching this command, we can check to see whether appropriate
alerts were generated by our detection systems.

CALDERA

CALDERA from MITRE (https://caldera.mitre.org/) provides an excellent interface
for designing and executing adversary simulations. It enables the automated or manual execution of
adversary simulations to help validate security controls.

CALDERA requires the installation of client software or agents on the systems that form part of the
validation test. The agent software connects to the CALDERA server to receive instructions sent by
the Caldera server. You can define a collection of tactics or abilities that get executed by the agents
from the server in an operation.

There are multiple ways to install CALDERA, including deploying to a server or via Docker. In the
CALDERA lab later in this chapter, we’ll provision the CALDERA server via a Linux virtual machine,
but the Docker method is an alternative you may choose to leverage instead since we also have

Simulating adversary activity 205

Docker deployed in our lab environment. The project’s GitHub repo provides excellent coverage of
the installation procedure (https://github.com/mitre/caldera#installation) and
help for the more commonly seen error messages is detailed in the project’s official documentation.
(https://caldera.readthedocs.io/en/latest/Troubleshooting.html). After
installation, you can reach the Caldera console using a web browser over port 8888.

CALDERA’s terminology is easy to understand, but important to review before getting started with
it. The key concepts are summarized here:

• Agents run on endpoints and check for instructions from the CALDERA server at intervals.

• Adversary profiles are a collection of abilities, which are mapped to MITRE ATT&CK
techniques. Adversary profiles let you design full validation tests comprising multiple techniques
that emulate real-world threat actor behavior.

• The execution of abilities can collect facts, which can be used to design additional operation steps.

• Operations are a collection of atomic procedures or steps. When creating a new operation, you
can define which adversary profiles are executed against which agent groups.

After installation, operations can be created for a number of pre-built adversary profiles or you can
create your own adversary profile. During the execution of an operation, outputs are saved and
made available in the interface. The interface also allows you to task the execution of manual ad hoc
commands, enabling highly customized and dynamic validation exercises.

CALDERA lets you export operation reports that show the executed steps, the ATT&CK-tagged
attack details, and the outputs of the operation steps. This data can be used to quickly identify which
techniques were executed and which were detected.

With the knowledge of Atomic Red Team and CALDERA in mind, let’s get some hands-on practice
using these tools in our detection engineering lab.

Exercise – validating detections for a single technique using
Atomic Red Team

In this section, we will execute some simple tests to review the effectiveness of implemented detections
in the Elastic Stack. First, we need to enable some prebuilt detection rules and enable an additional
Elastic agent integration. This will provide more complete coverage in our detection lab to more
realistically simulate an enterprise environment.

Setup

We will use a single Windows workstation and Elastic Stack for these labs. We will also make use
of Endpoint and Cloud Security integration since some of the prebuilt Elastic rules depend on it.

Detection Validation206

First, we need to enable Endpoint and Cloud Security integration for our fleet agents:

1. Navigate to Integrations from the main navigation menu or search for integrations from
the main search bar.

2. Search for Endpoint and Cloud Security Integration to find the integration
shown in Figure 9.1 and select Add Endpoint and Cloud Security.

Figure 9.1 – Endpoint and Cloud Security integration

3. For step 1 of the add integration wizard, shown in Figure 9.2, provide a name and description
for the integration. Leave the advanced settings as the default.

Figure 9.2 – Add integration wizard step 1

Simulating adversary activity 207

4. For step 2, shown in Figure 9.3, you can select Existing hosts to add the security integration
to an existing policy, or New hosts to create a new agent policy. If you have completed the labs
from the start of this book, you can use the existing Windows Policy.

Figure 9.3 – Add integration wizard step 2

5. If the Windows integration is not already added to the same policy, add that now following the
same steps but by searching for Windows integration instead.

The Endpoint Security integration enables the collection of additional security events. With the basic
license, you can enable basic malware protection and maintain custom application allow and block
lists. The best way to interact with the data from the Endpoint and Cloud Security integration is by
navigating to the Elastic Security app. From the sidebar menu, select Explore from the Security
section. You’ll see a screen similar to Figure 9.4.

Figure 9.4 – Elastic Security app

Detection Validation208

Click on Hosts, then Events to see the view shown in Figure 9.5.

Figure 9.5 – Events view in the Elastic Security app

This will show a neat histogram of the event types being captured and processed by the Endpoint and
Cloud Security integration.

The next step we need to take before getting into the Atomic Red Team part of the lab is enabling
the Elastic prebuilt detection rules. From the Kibana Security app, click Alerts, then Manage Rules,
and finally, if you see a message for updating Elastic prebuilt rules, similar to that in Figure 9.6, click
Update X Elastic prebuilt rules. If this message does not appear, your rules are already up to date.

Figure 9.6 – Manage Kibana Security rules

Simulating adversary activity 209

For the final setup step, we’ll enable a couple of rules. We’ll focus on OS Credential Dumping
techniques, specifically those that attempt to extract credential material from the LSASS process on
Windows (T1003.001). You can read more about this technique on the MITRE ATT&CK technique
page for OS Credential Dumping: LSASS Memory, here: https://attack.mitre.org/
techniques/T1003/001/. From the search bar on the Rules page, enter T1003.001 and press
Enter. This will return the prebuilt elastic rules for detecting T1003.001. You’ll notice that all of them
are disabled. In the real world, you will likely be using a detection environment with a large number
of detection rules enabled, tuned, and running. However, to keep our lab environment simple, we
will start by enabling just a few. Enable the rule named LSASS Memory Dump Creation by toggling
the control in the Enabled column.

Executing the validation via Atomic Red Team

Now that our environment is set up, we can look into executing the validation. For our lab, we’ll be
focused on validating the detections of the credential access technique T1003.001, using Red Canary’s
Atomic Red Team.

We can navigate over to the Atomic Red Team GitHub repository, look for the sub-folder T1003.001,
and open the technique MD file (https://github.com/redcanaryco/atomic-red-
team/blob/master/atomics/T1003.001/T1003.001.md). Review the description to
understand how the technique is used by threat actors, and you’ll eventually come across a set of links
in the Atomic Tests section. Click on the link for Atomic Test #1 - Dump LSASS.exe Memory using
ProcDump. The technique calls for the execution of the Sysinternals tool Procdump.

Log on to your test Windows workstation and download a copy of Procdump from Microsoft’s site:
https://learn.microsoft.com/en-us/sysinternals/downloads/procdump.
You’ll get a file named Procdump.zip. Extract the contents to a folder, then navigate to that folder
from an elevated PowerShell prompt by searching for Windows PowerShell in the start menu, right-
clicking, and selecting Run as Administrator. To change folders, or directories from the PowerShell
prompt, use the cd command:

PS C:\Windows\system32> cd c:\users\devuser\Downloads\Procdump\
PS C:\users\devuser\Downloads\Procdump>

The next step is typically ill-advised but necessary for our tests. Recall in earlier sections that we
mentioned it might be necessary to disable some defensive controls for the sake of testing others.
Windows Defender does an excellent job of preventing LSASS memory dumps, as this technique
is relatively well-known. For the relevant events to be visible to our Elastic environment, we need
to temporarily disable Windows Defender real-time protection. The easiest way to get this done is
by opening the Windows Security app, clicking on the Virus & threat protection tab, then turning
Real-time protection off, as shown in Figure 9.7.

Detection Validation210

Figure 9.7 – Disable Windows Defender Real-time protection

Finally, we can run the Attack command specified in the procedure. From the elevated PowerShell
prompt, enter the command as shown in the Atomic Red Team procedure, replacing the parameters
as required. The result should be something similar to that shown in Figure 9.8.

Figure 9.8 – Atomic Red Team test execution

Once the command executes successfully, we can go back to the Elastic Stack and check the Alerts
section of the Elastic Security app.

Simulating adversary activity 211

Figure 9.9 – Alerts in the Elastic Security app

You should see a single alert similar to the view shown in Figure 9.9. This shows a single alert was raised
for the activity we performed. Clicking the expand icon shows more details, as shown in Figure 9.10.

Figure 9.10 – LSASS Memory Dump Creation alert

Detection Validation212

Given that we received an alert that matches the technique that was executed, we can conclude this was
a successful test. The detection environment raised an appropriate alert in response to the execution
of technique T1003.001.

Additional exercises

During validation, it’s important to test as many permutations as possible of a technique that will still
achieve the technique objective. Attempt to rerun the technique with the following changes:

• Renamed versions of procdump.exe

• Change the output path and extension of the dump file

Check the alerts to see if the technique was detected after each run. Review the definition of the
detection rule and see if there is a way to execute the technique without raising the alert.

For the next exercise, we will look at an alternative to Atomic Red Team that provides the capability
to validate multiple techniques at once.

Exercise – validating detections for multiple techniques via
CALDERA

For this exercise, we’ll be adding an additional system to our lab environment and deploying CALDERA
on the host to simulate adversary activity:

1. Before we begin working with CALDERA, we will enable additional detection rules that we
want to validate. Navigate to Security | Alerts | Rules in the Elastic Stack. From the Tags
drop-down menu, select Windows and Discovery. You can select all rules that match these
criteria by clicking the checkbox next to the Rule column of the list, as shown in Figure 9.11.

Figure 9.11 – Windows and Discovery rules

2. Next, enable all rules by clicking Bulk actions, then Enable. This will enable all available Elastic
Windows rules tagged as relevant for discovery tactics.

Simulating adversary activity 213

3. For the next set of preparations, we’ll provision our CALDERA server. We recommend provisioning
a Linux virtual machine with 8 GB of RAM. The instructions for installing CALDERA can
be found on the documentation site here: https://caldera.readthedocs.io/en/
latest/Installing-CALDERA.html.

4. Once installed, you should be able to navigate to the server by browsing to the URL http://
[IP address of caldera server]:8888. Log in using the default credentials
(username: admin, password: admin) or the credentials you set during installation.

Deploying the CALDERA agent

To issue validation commands to our target system, we need to create a CALDERA agent and execute
it on our target system. This will simulate the use of command and control tools used by threat actors
to remotely control victim systems:

1. From CALDERA, in the Campaigns menu section, click agents, then Deploy an agent. We
will use the default Sandcat agent.

2. Click Windows under Platform. You will be asked to fill in some additional options, as shown
in Figure 9.12. For app.contact.http, replace the default IP address with the address of your
CALDERA server. For agents.implant_name, you can leave the default value or replace it
with your own value.

Figure 9.12 – CALDERA agent deployment

Detection Validation214

3. Copy the PowerShell commands listed, then save them to a file named deploy.ps1.

4. From the victim workstation, open the Windows Security app. As with the previous tests, we
need to disable Microsoft Defender momentarily to conduct our tests. Click on Virus & threat
protection, then under Virus & threat protection settings, click Mange settings. Ensure real-
time detection is turned off.

5. Next, scroll down to Exclusions and add the path to our CALDERA executable. In our case,
as seen in the deployment script, the Caldera executable will be downloaded to the path C:\
Users\Public\. Click on Add an Exclusion, select Folder, then enter C:\Users\Public.

6. Once those changes have been made to Windows Defender, you can execute the contents of
deploy.ps1 – either by calling it directly from an elevated PowerShell prompt or by executing
the commands individually from an elevated PowerShell prompt. If the agent was deployed
successfully, you will see a new row for the agent appear on the Caldera Agents screen.

Starting a new operation

Once your agent is deployed successfully, perform the following steps:

1. Select operations from the navigation menu and then Create Operation.

2. Use any value for Operation name.

3. Select Alice 2.0 for Adversary.

4. Select basic for Fact source.

5. Select Start and allow the operation to run.

After starting the operation, you will see a page similar to that in Figure 9.13.

Figure 9.13 – Operations in CALDERA

Simulating adversary activity 215

You’ll notice quite a few discovery commands were automatically executed as part of this automated
operation for the Alice 2.0 adversary. For our validation, we’ll focus on these discovery commands.

In addition to the automated commands packaged with the Alice 2.0 adversary, we’ll add one of
our own. Click the Manual Command button at the top right of the Operations page. Ensure the
powershell or psh executor is selected and enter the (invoke-webrequest ifconfig.
me -usebasicparsing).content command, as shown in Figure 9.14.

Figure 9.14 – Manual commands in CALDERA

This command uses the ifconfig.me service to get the public IP address of your test system. If the
command is run successfully, you should get a result similar to that shown in Figure 9.15.

Figure 9.15 – CALDERA Manual Command output

We can review the results of the operation using the Debrief plugin. Navigate to this view by clicking
Debrief in the Plugins section of the navigation bar. You’ll see a screen similar to that in Figure 9.16.
This plugin shows details of selected operations, including the agents in use, steps executed, MITRE
ATT&CK tactics and techniques, and any facts that were collected during the operation.

Detection Validation216

Figure 9.16 – CALDERA Debrief plugin

In the Tactics & Techniques section, shown in Figure 9.17, you will see the MITRE ATT&CK tactics
and techniques executed as part of this operation. We’ll focus on the techniques executed in the
discovery tactic section.

Figure 9.17 – Discovery techniques used in CALDERA operation

Simulating adversary activity 217

To highlight another feature of CALDERA, the debrief plugin provides a Download PDF Report
button, which presents the same results in a convenient document format, similar to that shown in
Figure 9.18.

Figure 9.18 – CALDERA operation debrief PDF report

Reviewing detections in the Elastic Stack

Let’s go over to the Elastic Stack and see whether the built-in detections for these techniques were
triggered. Keep the time frames in which each technique was executed in mind. This will help us
correlate the detection outputs with the validations being executed – which is important in production
or generally busier environments.

Navigate to the Elastic Security app, then click on Alerts. To make results easier to compare and
interpret, change the Group by value to kibana.alert.rule.threat.technique.id. This
will cause the default graph to show the MITRE technique IDs instead of the default alert name. The
following table, below the graph, can also be tweaked to show the technique IDs. To do this, first, click
on Fields and search for technique.id. Select the checkbox next to the field, then click Close. If
done correctly, you should have a new Alerts view that looks like the one in Figure 9.19.

Figure 9.19 – Modified Alerts view in Elastic Security

Detection Validation218

This view makes it easier to see which techniques were successfully detected as part of the
validation exercise.

It’s usually not enough to compare the technique IDs for the alerts generated to the technique IDs
CALDERA reported as being executed. We need to look at the individual alerts and ensure they map
to individual steps executed as part of the CALDERA operation. As an example, we can take a look at
the manual command we executed as part of the operation. The report shows that the command was
executed successfully, so ideally we should have an alert for the execution of that command, around
the same time. In our case, our public IP discovery command was executed at 20:34:40 UTC. You will
need to review your operations debrief for the timestamp relevant to your test case.

Searching for the properties related to that command execution, we should be able to find an event
similar to the one in Figure 9.20. It triggered within several minutes of the time we executed the
command, validating our detection coverage.

Figure 9.20 – External IP Lookup from Non-Browser Process alert

Using validation results 219

To continue this exercise, repeat this check for all executed CALDERA steps and identify the detections
that were raised for each step. Record the CALDERA step details and MITRE ATT&CK technique ID
for all instances where an alert was not raised in response to the step execution. These are visibility
gaps that need to be addressed.

Now that we’ve practiced a few methods of generating validation results, let’s look at how such results
can be used to improve our security posture.

Using validation results
After performing validations, we will walk away with some understanding of coverage. In the simplest
form, validation results identify whether a detection is triggered for a given behavior. If we run a
command to set persistence via a Registry Run key during validation, and we expect a detection to
be triggered by that activity, we can record the result as either failed or successful by reviewing our
triggered detections. Validation results, however, can also operate on more of a scale. For example,
maybe a detection triggered but it was not the specific rule we expected. Or maybe we have variations
of Registry Run key persistence and some were detected but others weren’t, in which case we might
have partial coverage. Therefore, validation results are not always black-and-white, but they will provide
some level of guidance as to what happens when a chosen test is executed, which can be leveraged to
improve our detection engineering program.

With the validation results in hand, we must decide how to leverage the findings in order to improve
our detection engineering program. In Chapter 2, when discussing the requirements discovery stage, we
mentioned how continuous activities can become a source of detection requirements. If our validation
results highlight a gap in coverage, then it may result in the creation of a detection requirement. Before
immediately taking a failed validation result and turning it into a detection requirement though, we
must understand why the validation failed.

When reviewing validation results, begin by extracting the results that are potentially going to
require the creation of a detection requirement. This means narrowing down the results to those
that specifically failed. Furthermore, we care about validations where the simulation ran successfully
but there was no detection, so remove any validations that failed because the simulation itself didn’t
execute as expected. Once we know what simulations ran successfully but were not detected, we have
a list of potential detection requirements.

The next stage of analysis involves understanding the visibility we had of activity related to a validation.
When developing detections, we must have something to detect against, so we need to understand
the telemetry and data sources available to us with regard to a specific activity. In some cases, our
architecture may not support a given detection. For example, if a validation failed in detecting a large
outbound file transfer over File Transfer Protocol (FTP), but we do not have any network logging
implemented that records data transfer sizes of FTP flows, then it is not really a detection gap as
much as it is a limitation of our current security architecture. At this point, a decision would need to
be made about whether the value of the detection is worth also implementing the additional logging
requirements, whether a workaround exists, or whether the risk should be accepted. Either way, it is

Detection Validation220

important to understand whether the visibility required to develop a detection exists before assuming
a detection gap should immediately result in a detection requirement.

Assuming the visibility is present, the final question to ask is whether the behavior should have been
detected given our existing tool set. By this, we mean, did the validation fail because there was no
detection in place or because an existing detection failed? For example, let’s say we run a validation
for T1053 (Scheduled Task/Job) and it fails but we know that we have a detection rule developed for
scheduled tasks. In this case, we’ve not uncovered a need for a new detection, but rather a shortcoming
of an existing detection. This could range from an error in the syntax of the rule that was not observed
via testing, or a sign the rule is too narrow and missed certain types of scheduled task activity. Either
way, we do not want to report this as a need for a new detection, but instead should properly identify
the issue with the existing rule and use that as the basis for a detection requirement for an update to
an existing detection rather than the creation of a new one.

It is important to understand when reviewing validation results that there is never going to be such a
thing as 100% detection coverage. Technologies evolve and so do threat actors. As we begin to become
adept at detecting techniques, threat actors will find new ways to evade those detections. It truly is a
game of whack-a-mole. That is why we have methods of triaging detection requirements. We want to
focus our efforts on the detections that will have the biggest impact on our defenses. As such, we must
also approach deciding how validation results should feed into detection requirements with a similar
mindset. We are not looking to take every failed validation and provide coverage; we are looking to
use it as additional guidance for our future development efforts.

Measuring detection coverage

In this section, we will review how to quantify your detection coverage using validation. The purpose
of validation is to prove that your detections will identify the adversary. It is not to prove how well
you can detect the validation tool. The topic gets a little meta, so apologies in advance. We’re going
to attempt to keep it grounded and focused on how we can practically define and understand the
detection coverage for a technique to make sure your validations are providing metrics that accurately
quantify the expected performance of your detections.

To start, we need to refer to our Chapter 1 definitions. In Chapter 1, we talked about the durability of a
detection, which identifies how long we expect a detection to be effective. If a detection is identifying
an indicator on the lower echelons of the pyramid of pain, or anywhere there is an almost infinite
number of variations that the adversary can change to execute the attack, the durability is limited
to the ops-tempo of the adversary changing that part of the attack. As an example, if your detection
is limited to an IP address or domain, there are almost unlimited variations of the IPs or domains
used by the adversary. The durability is thereby associated with how often the adversary changes this
infrastructure. Similarly, if we look at the open source tool Remcom, mentioned in Chapter 7, we notice
that the tool creates the RemComSvc_Logs.log log file. This may seem like a good indicator. It is
fairly unique in name and is a constant artifact of the tool. Unfortunately, since the file is created by
an open source tool, the adversary can easily change the filename (or not produce a log file entirely).

Using validation results 221

The durability of the detection is limited only by the laziness of the adversary. Our goal, therefore,
is to create detections that are based upon a set of features (indicators) that have a definable set of
variations and that our detection encompasses that definition.

Ideally, we want to identify not just a feature with a defined set of variability but the feature with the
least amount of variability. If we were to think about this on an X/Y graph (visualized in Figure 9.21),
we have a set of indicators that can be used to identify a procedure on one axis, and on the other axis,
the variability of each indicator. The indicator with the least amount of variability is the choke point
for that procedure. It is the thing that the adversary can’t get around doing and yet has a well-defined
way for us to identify the artifact or action as being associated with the malicious activity. Our goal,
therefore, is to write a rule around that indicator, or indicators, to accurately detect malicious activity.

Figure 9.21 – Indicators and potential variability

As we have discussed earlier in the book, a procedure is a set of steps that the adversary takes to
implement a technique. We can capture telemetry about that procedure at varying levels of fidelity.
This is similar to describing a user’s interaction with a website. We could capture a video of the user
clicking on buttons. We could capture the button clicks as events, or the network traffic between the
website server and the web browser. We could look at the API calls made between the web browser and
the server or look at the functions called within the web browser itself. Depending on what procedures
we were looking at tracking, different types of telemetry would be useful in tracking that activity. The
same is true for the telemetry and indicators used to identify malicious procedures.

Detection Validation222

This means the choke point may not be consistent across the procedures used to accomplish a
technique. During the detection development’s discovery phase, we identify the multiple procedures
and their choke points that could be used to achieve the technique. This information defines our
detection space – how the adversary can vary their attack across those choke point parameters and
how close our detections can be defined to include that variation without being so broad as to include
an unacceptable rate of false positives. Figure 9.22 demonstrates detection space and how detections
can result in differing levels of coverage of an attack procedure with varying false positive rates.

Figure 9.22 – Detection space

In order for our validation tests to provide accurate coverage metrics of a procedure, they must
consider what we are detecting. The variance of the tests should occur at the same level as the detection
indicators. Misalignment can result in validation tests showing greater detection coverage than is in
place. As an extreme example, visualized in Figure 9.23, consider a tool that can implement three
separate procedures to perform the same attack. A single detection could be written to detect the
tool The underlying implementation of the procedures could vary greatly, and yet the validation tests
would show complete coverage.

Figure 9.23 – Validating tools versus procedures

Using validation results 223

As a real-world example, consider a SOC that actually performed this approach to skew the validation
results of a red team. The SOC successfully identified the red team by researching the red team’s C2
prior to the test and creating a detection for that C2. The red team was thwarted at every turn. The
SOC detected whatever was thrown at it. If we look at the validation results, the SOC’s detection
capability against the techniques attempted by the red team was perfect. They detected everything.

The SOC correctly identified a high-fidelity indicator of the red team, a C2 which they were not
updating. From a black-box validation test perspective, the red team could attempt any procedure they
wished and the SOC’s detections would be successful in identifying the attack. Their actual detection
coverage, though, was completely unknown, despite these results. This is because the variability of
change performed by the red team was at the technique, procedure, and tool level. The detection
logic performed by the SOC was at the network C2 level. While the SOC passed the red team test
with flying colors, the results showed nothing about their ability to detect an actual adversarial attack.

We could possibly claim that only the C2 technique was discovered and not the individual procedures
executed on the infrastructure. While technically true, the point can be re-emphasized by including
a hypothetical network traffic decoder providing a list of commands executed by the red team. The
impact is the same, just with greater fidelity in detecting the red team’s actions.

We can use our detections and the attack space to identify what we need to validate. Our validation
tests should ideally encompass the entire attack space of a technique. The attack space can be defined
by the procedures that can be executed to achieve that technique. The variance in a procedure can
be defined by how much the values of the set of indicators used by the detection can change while
still achieving the objective of the technique. Therefore, we only need a single validation test using a
procedure not covered by our detections to identify that procedure-level gap in coverage, while we
need a set of validation tests that vary across the allowable values of the indicator(s) to confirm our
detection will identify all variations of an individual procedure covered by our detection rules.

While a single rule can be written to detect multiple procedures (or vice versa), we will equate one
detection to one procedure to simplify our explanations. The approach, though, holds true under
either circumstance.

Pseudocode example of one rule detecting multiple procedures of a technique
If detection_of_procedureA OR detection_of_procedureB OR detection_
of_procedureC ALERT ON TechniqueXYZ.

Detection Validation224

The definitions in Table 9.1 allow us to identify four types of procedure coverage that can exist when
validating a technique:

State Test result Test variance

Fully detected

Procedures that are fully
identified by our detections

All tests for the
procedure must pass

Tests vary across all bounds
of valid values for detection
indicators that would achieve the
technique’s objective

Partially detected

Procedures partially identified
by our detections

A subset of tests pass

Tests vary across all bounds
of valid values for detection
indicators that would achieve the
technique’s objective

Missed coverage

Known procedures not covered
by our detections

All tests fail A single test of a procedure would
identify failure

Zero days

Unknown procedures not
covered by our detections

N/A No known test exists. Not possible
to test.

Table 9.1 – Types of procedure coverage

Figure 9.24 visualizes coverage across the attack space and detection space broken up by procedures.

Figure 9.24 – Attack and detection space of multiple procedures

Using validation results 225

By definition, if a detection fails to identify a validation test, the test must either be testing a procedure
that is uncovered by your detections or testing a variation of the procedure that your detection,
incorrectly, does not cover. This means that third-party (black-box) validation will identify missed
coverage for any procedure they test but we do not have a detection for it. There is no guarantee third-
party validation would identify partial coverage (unless the validation suite is varying their tests along
the same parameters at which your detections are working).

Validation can therefore be approached with the following processes:

1. Validate whether detections exist for at least one variation of a procedure:

 � Unit Tests: Map the procedures identified during the discovery phase to existing validation
tests or create new validation tests for each procedure.

 � Third-Party Validation: Leverage third-party validation to either implement any of the above
unit tests or to identify procedures not identified by research. Third-party validation tests
that do not result in a successful detection would be indicative of either partial detection
coverage for a procedure or missed coverage.

2. Validate whether procedures for a detection are fully covered:

 � Edge Cases: Test the edge cases of procedures by altering the value of the indicator artifacts
across a representative set of allowable values that would still achieve the adversary’s goals.
If the technique can be achieved without resulting in that artifact being created or changed,
that is, by definition, a different procedure and should be captured by its own detection.

 � Peer Review: If it is not practical to write validation tests across the allowable values, a peer
review system can be used by documenting, based on research, how the adversary could
alter their attack and having another detection engineer check that the detection would
encompass the possible adversary evasions.

This process can result in two types of metrics:

• Test or validation coverage metrics: These metrics are defined by how many techniques have unit
tests for each procedure identified and how many procedures have edge case tests implemented.
Third-party validation tools may be useful in providing unit test coverage for procedures.

• Test or validation pass-rate metrics: These metrics are defined by how many unit tests and
edge case tests our detections successfully detected for each technique.

Detection Validation226

There are some limitations to this approach that can impact a detection engineering team’s ability to
fully implement the above processes. As noted at the start of this section, the goal of these processes
is to help quantify your detection coverage versus necessarily resulting in complete coverage for a
technique. Here are some common roadblocks that teams may encounter:

• Requires mature processes and resources: Implementing a validation process like the one
mentioned previously requires a large enough team to support both detection creation and
validation. If a team is simply attempting to put in place a base level of detection, it would be
impractical for them to have the resources to fully investigate a technique and iterate through
a detection and validation workflow. Even with a reasonably large detection engineering
team, it is still necessary to choose where to focus resources. Every technique cannot be fully
investigated and validated.

• False positive acceptance: Fully encompassing a procedure may result in an unacceptable number
of false positives, especially if implementing behavioral detections that overlap with acceptable
actions from network administrators or other users within your environment. Therefore, while
it may be possible to fully validate that all variations of a technique are detected, the detections
may result in unacceptable noisiness.

• Identifiable choke points: There is an implicit assumption that a technique has a set of choke
points that can be identified to constrain how an attack can be implemented. There is no guarantee
this is the case. It may take a significant amount of time and skill during the investigation phase
to perform this analysis. In identifying a definable scope for the choke point(s), we may increase
the number of procedures to an unacceptable number.

• A limited set of procedures: The approach assumes that the ways to execute the technique can
be captured in a “reasonable” set of procedures. Similar to the issue with choke points, if the
detection engineer is unable to group the variations of a technique into a limited scope, they
will be unable to create validation rules to encompass those procedures.

• Available telemetry: The approach assumes that once the procedures and choke points are
identified, there is sufficient telemetry to provide the necessary visibility for writing detections
to identify the choke points.

The information in this section should provide a methodology for taking the results of validation
attempts, interpreting the results, and using them to improve your overall security.

Summary
In this chapter, we provided an overview of validation as it relates to assessing the maturity of a detection
engineering program. We then introduced a series of open source tools that can be leveraged by
organizations without purple teams to perform validation tests easily and effectively. The exercises in
the chapter leveraged some of these tools to simulate adversary activity in order to validate detections.
Finally, we concluded the chapter by explaining how the results of validation tests can be leveraged
to improve your detection posture.

Further reading 227

In the next chapter, we will take a look at the topic of threat intelligence. We’ll discuss the different
types of threat intelligence and the roles they can play in detection engineering.

Further reading
While we focused on Atomic Red Team and CALDERA during our discussion of breach and attack
simulation (BAS) tools, there are many commercial and open source solutions out there that can be
used as alternatives. Let’s highlight two popular open source options:

• Infection Monkey:

Infection Monkey is an open source platform that can be used for launching realistic attacks
against a specified set of target endpoints: https://www.akamai.com/infectionmonkey

• Network Flight Simulator (flightsim):

AlphaSOC’s Network Flight Simulator (flightsim), focuses instead on generating malicious-
looking network traffic, specifically for testing detections built for network telemetry: https://
github.com/alphasoc/flightsim

10
Leveraging Threat Intelligence

When discussing detection requirement sources in Chapter 2, we introduced the topic of threat
intelligence as it relates to detection engineering. In this chapter, we will take a deeper dive into the
topic and, specifically, the role it plays within detection engineering. First, we’ll provide a very brief
overview of the types of threat intelligence we will be looking at. After the brief introduction to the
topic, we’ll focus on its role in the Requirements Discovery, Triage, and Investigate phases of the detection
engineering life cycle. The final topic in this chapter is threat assessments and how they can be used
as a source of detection requirements. These concepts will be illustrated through the use of a variety
of examples of leveraging real threat intelligence to develop detections.

In this chapter, we will cover the following main topics:

• Threat intelligence overview

• Threat intelligence in the detection engineering lifecycle

• Threat intelligence for detection engineering in practice

• Threat assessments

Technical requirements
Since going into further depth on threat intelligence is beyond the scope of this book, we won’t go
heavily into the topic except as it relates to detection engineering. We encourage you to read more
into the topic from dedicated threat intelligence learning resources if you want to gain a deeper
understanding. We’ve provided some additional resources at the end of this chapter.

Threat intelligence overview
Before we look at its role in detection engineering, we must understand what threat intelligence is.
Cyber-threat intelligence is data collected and analyzed in order to understand the context related
to emerging or existing threats. It can help us understand a threat actor’s motives; targets; tactics,

Leveraging Threat Intelligence230

techniques, and procedures (TTPs); and more. This in turn can help us understand how we can
detect such threats. At the simplest level, threat intelligence may be provided in the form of indicators.
For example, URLHaus by AbuseDB includes lists of malicious URLs that can be accessed by API:
https://urlhaus.abuse.ch/downloads/text/. There are many open source feeds
that will provide a list of known malicious indicators without context. Even at this level, we have the
potential to use our intel to develop detections, even if it’s just a simple detection for the presence of
a value from the list. The major downside to using indicators from threat intel for detection is that
often threat intel is published after the attack has occurred. This is much less effective at detecting
real-time attacks and becomes stale quickly, as threat actors modify their tools and infrastructure
to evade detection. Threat intel, however, can extend to include much more useful data. Along with
indicators, we also can find intelligence that provides us with detailed context and guidance that will
result in more robust detections. In order to understand what types of threat intel we have available
to us, let’s first understand the two key sources of intel: open source and internal (or proprietary).

Open source intelligence

When we talk about threat intel, many people immediately envision open source reporting, and
justifiably so. Most organizations are not large enough to have a dedicated threat intelligence team to
produce proprietary intel and, thus, rely on open source reporting to provide actionable information
to be used when setting up detection. Open source intelligence (OSINT) is distributed in a variety
of formats containing varying amounts of detail. Some common sources include the following:

• Indicator feeds

• Scanners and sandboxing platforms (such as VirusTotal)

• Social media, blog posts, and whitepapers

The quality and type of data you can get from OSINT are going to vary greatly between sources. It is
important that from a quality perspective, you are leveraging trusted sources, such as blog posts from
established companies or well-known and widely used intel feeds. Indiscriminately pulling intelligence
from any source increases the risk of introducing bad forms of detection into your environment.

Many organizations identify numerous threat feeds and pipe them into their environment for indicator-
based detection without determining the fidelity and context of the content. It’s important to identify
the feeds likely to provide indicators with a high likelihood of being malicious. Additionally, the context
of the feeds needs to be analyzed in depth. For example, there are feeds that provide a list of spam IP
addresses, which will likely produce a large quantity of low-severity results in your environment. How
you leverage the threat feeds can also affect the false positive rate. For example, if you use a list of IP
addresses and try to alert on the presence of that IP address in any situation, such as firewall block
events, the value of detections is reduced. If you instead focus your implementation on activity that
is active on the network (allowed connections instead of all connections), the activity becomes more
valuable without overwhelming the analyst. All of this is to say, ensure that you are evaluating threat
feeds in depth and understand how you can leverage them in a way to avoid a high false positive rate,
which can overwhelm analysts.

Threat intelligence overview 231

The type of data is also going to be dependent on the source. From the list of common sources
just given, for example, you are likely to receive less context from the sources at the top than at the
bottom. As mentioned before, threat intel feeds provide a list of indicators, usually without significant
context. They may simply be a generic feed of known malicious but unrelated indicators, or the list
may contain related indicators, such as a feed of spam IPs or Emotet payload hashes. In the latter
case, the context will likely be indicated in the feed title or description while the content of the feed
itself is still a simple list of indicators.

The second source we mention is scanners and sandboxing platforms. These tools go beyond intel
feeds and involve some sort of automated analysis, which will ultimately return further context. Once
again, even within this source category, we will see variations based on the capabilities of the tool. For
more mature platforms, such as VirusTotal, there are many integrations that generate a large amount
of context. Later in this chapter, we will look at how VirusTotal can be leveraged during the Investigate
phase to improve detections.

Lastly are social media, blog posts, and whitepapers. Social media varies in value and is based on
the ability to filter through the noise to find information worth leveraging. This involves finding
accounts that publish valuable content, such as those associated with reputable organizations and
threat researchers. Most social media platforms have a concept such as tags or word lists. Which you
can leverage to find relevant posts based on a topic rather than a specific author. For example, if you
are concerned about ransomware attacks, search based on the hashtag or keyword ransomware or,
even more narrowly, a specific ransomware family, such as Maze ransomware. The results, if tuned
properly, should provide insights from industry organizations and researchers. Many researchers share
indicators of compromise and in-the-wild TTPs. Finding the right accounts and keywords to follow
can leave a treasure trove of intelligence.

Whitepapers and blog posts from established sources can provide a wealth of information. Many
vendors publish whitepapers or blog posts based on attacks actively observed in the wild and based
on their expert analysis of the activity. The benefit of these is that they typically provide much more
context than the previous sources. In particular, we can often use blog posts and whitepapers to
identify TTPs instead of just indicators of compromise. As you may recall, TTPs are at the top of the
pyramid of pain, as it is challenging for threat actors to change TTPs, so detections of this type are
harder for attackers to bypass.

Internal threat intelligence

Internal threat intelligence is going to heavily depend on an organization’s security processes and
capabilities. In larger organizations, you may have a dedicated threat intel team. Typically these teams
have various responsibilities related to using intelligence to secure a company’s posture. They may
be responsible for digesting OSINT to identify what is relevant to the organization; in which case,
detection engineers may not need to perform intel research for detection requirements, as the intel
team fills that role for them.

Leveraging Threat Intelligence232

In addition to processing OSINT, threat intel teams will often attempt to form structured intelligence,
whether developing reports or gathering indicators of compromise, related to internal incidents. This
internal intelligence may come from threat hunting if the tools and capabilities exist, or from the security
operations center (SOC) and incident response (IR) teams, who can provide data from incidents for
the threat intelligence team to research, substantiate with context, and disseminate information on.

In smaller organizations, there may not be a dedicated threat intelligence team. However, there is
still internal threat intelligence available from either the SOC or the IR team or available through
your own threat-hunting methods. In this case, though, the responsibility of uncovering this data
and ensuring it’s being collected for use may fall on the detection engineering team. An organization
needs to develop procedures that ensure that the communication and data sharing needed to leverage
internal threat intelligence for detection engineering are implemented.

Gathering threat intelligence

Prior to leveraging threat intelligence for detection engineering, we have to develop the processes
through which the detection engineering team will receive threat intelligence. This depends on the
responsibilities of teams in your organization and the intelligence sources being leveraged. If you
have a threat intel team, then you should establish a process by which the intelligence they produce
is fed to the detection engineering team. If you don’t have a threat intel team but have a SOC, then
you need to determine what type of data you would like to receive from that team and determine the
process for receiving it. If you are not relying on any internal teams and are solely gathering OSINT
within your own team, you need to determine what sources you will leverage, who is responsible for
processing intelligence, what findings should lead into detection requirements, and how they should be
documented. The processes you develop can include documentation, communication, and automation-
related aspects of data collection, depending on your organization’s capabilities and use cases. However
the intelligence is gathered, it should be done in a way that is standardized and easily digestible by
the time the requirements end up with the detection engineering team. With an understanding of
what threat intelligence is, we can look at how it applies to us in the context of detection engineering.

Threat intelligence in the detection engineering life cycle
Threat intelligence can play a role in multiple phases of the detection engineering life cycle. In this
section, we are going to look at how intelligence can be leveraged in the first three phases of the life
cycle: Requirements Discovery, Triage, and Investigate.

Requirements Discovery

The first stage of the detection engineering life cycle is Requirements Discovery and it’s the phase in
which various sources provide us guidance for what detections need to be developed. Either through
the DE team’s own research or a threat intel team’s reporting, intelligence can become a source for
detection requirements. For example, if a blog post comes out about a threat actor targeting organizations
in your industry, it might become a requirement to ensure coverage for detecting the TTPs used by

Threat intelligence in the detection engineering life cycle 233

that threat actor. Or from an internal threat intel perspective, if threat hunters observe patterns of
undetected malicious activity, their findings should be leveraged to improve detections.

The results of threat assessments are another key source for detection requirements. Later in this
chapter, we’ll discuss threat assessments further, specifically how we can take the results and turn
them into detection requirements.

Triage

When it comes to leveraging threat intel in the Triage phase, we are focused on using it to prioritize our
detection requirements. In Chapter 2, we discussed several criteria for prioritizing our requirements.
In this section, we’re going to look at how we can leverage threat intelligence when determining
organizational alignment and the risk of active exploits.

Organizational alignment

As a reminder, Chapter 2 gave the following perspective on organizational alignment:

“If the requested detection falls within the overlap of external threats and what is being internally protected,
it has organizational alignment.”

Threat intelligence is what allows us to identify external threats. When doing research into a threat,
we want to understand how relevant it is to our specific industry, organization, infrastructure, users,
and data. Let’s say, for example, we are deciding whether to prioritize a detection requirement for
FIN6 activity. Research via OSINT would reveal that FIN6 targets hospitality and retail organizations
with point-of-sales malware. If our organization is a software company that does not leverage point-
of-sales systems, we would want to de-prioritize that detection requirement since it is not likely to
target our organization. In another example, if we receive a detection requirement for the Bundlore
adware, OSINT would tell us that it is written to target macOS. If our organization primarily uses
macOS machines, then we would prioritize this over a Windows-focused detection.

Active exploits

In Chapter 2, we provided the following list of questions to consider when determining whether an
active exploit should play a role in the triage of a detection requirement:

• Is my organization affected by this exploit?

• What is the impact of this exploit?

• Does enough information exist for adversaries to implement the exploit or for a detection to
be created against it?

• How easy is it for an adversary to implement the exploit?

• Is the exploit being currently used in the wild, or by adversaries that target your organization?

• How quickly will the affected applications provide an update to patch this exploit?

Leveraging Threat Intelligence234

Threat intelligence will help us answer many of these questions. First, if a Common Vulnerabilities
and Exposures (CVE) ID has been assigned, we can look at the National Vulnerability Database
(NVD) to get details on the vulnerability, such as the impact that successful exploitation will have.
Social media is a good place to look for posts related to new zero-days as researchers will often post any
findings related to proof-of-concept (PoC) exploit code. With high-visibility vulnerabilities, it’s not
uncommon to see companies publish content discussing the technical details of an exploit, which can
provide insight into the likelihood an attacker could implement an exploit of their own. Furthermore,
for widely exploited vulnerabilities, we will often see open source reporting from various security
vendors detailing observations. As can be seen, various types of open source reporting (informational
databases, social media, and blogs) can be used in conjunction to help determine whether a detection
requirement related to a vulnerability is of high priority to the organization.

As can be seen, there are many ways to leverage threat intelligence for triaging detection requirements,
regardless of what criteria you are trying to validate.

Investigate

For many detection requirements, threat intelligence will be used heavily during the Investigate phase.
This is the phase in which we gather all of the information needed to write an efficient detection rule.
In order to do this, we need to carefully understand what conditions should trigger the detection and
what exclusions should be made to reduce false positives. Often, sufficient details will not be provided
as part of the detection requirement. In those cases, threat intel can provide the details necessary to
build a robust detection.

In the examples in the following sections, we’ll see how threat intelligence can be leveraged for creating
detection requirements. The examples will also demonstrate its value in the other phases such as triage
and investigation. The resources we use in these examples can be used across the phases to expand
our understanding of a threat and either broaden or narrow our detection criteria as needed.

Threat intelligence for detection engineering in practice
This section contains two examples demonstrating how we can use OSINT from different types of
sources to develop a detection. The first will take a blog post published by a reputable vendor and turn
the free-from text into detection criteria. The second example walks through leveraging VirusTotal, an
online sandbox, to take a static indicator and obtain contextual information for more robust detection.

Example – leveraging threat intel blog posts for detection
engineering

In this example, we will take a blog post about an attack campaign and see how we can use it to develop
a detection. We performed an exercise in Chapter 6 similar to this but focused on indicators. Now, we
are going to look at all levels of the Pyramid of Pain in an attempt to create more robust detections.

Threat intelligence for detection engineering in practice 235

For this exercise, we will use a report from Trend Micro about a threat actor delivering a backdoor
via a watering hole attack: https://www.trendmicro.com/en_us/research/23/b/
earth-kitsune-delivers-new-whiskerspy-backdoor.html.

The flow chart at the start of the blog post gives us an outline of all the places for which we could
detect the attack. The key events in this attack chain are as follows:

1. The user visits a compromised website.

2. The compromised website delivers an installer via a malicious script.

3. The installer executes two loaders.

4. The loaders execute the final stage backdoor.

For each of these steps, we can identify different correlation criteria (the Investigate phase) and create
detection logic (the Develop phase). We can combine the detection logic of multiple phases or, for
broader detections, create individual rules for each stage. For example, we could create a rule that
looks for a user visiting a site, followed by an installer download, followed by two files being created,
followed by the payload being executed. That will detect the exact chain of events shown in the blog
post. The benefit of this is there is a lower likelihood of false positives, but it also means that if an
attacker modifies their attack chain, the detection will no longer work. Alternatively, we can create a
detection code for each of the four stages. This will detect the activity even if the attack chain is modified,
and it has a chance of detecting the activity earlier before the final payload is executed; however, this
method also increases the risk of false positives since it will result in much broader detection logic.
For the purpose of this example, we are going to create the detection logic separately. During the Test
phase, we can identify the likelihood of false positives for each rule and combine rules if needed.

Optional exercise
If you want to use this example as an additional exercise, pause here. Review the blog post
linked to earlier and for each of the stages, write down possible methods of detection, as well
as the data sources that can be leveraged for visibility.

The attack begins with a targeted user visiting the compromised website. Unfortunately, we are not
given enough context to be able to distinguish this activity from a user visiting legitimate websites.
For this reason, we will ignore creating detection logic for this first step.

After the user visits the site, they are presented with a popup, which leads to an injected script that
will download a malicious installer. Table 10.1 provides a summary of the associated facts from the
blog post related to this stage, possible detection logic, and relevant data sources.

Leveraging Threat Intelligence236

Report Detail Detection Logic Data Sources

popup.js redirects
to Codec-AVC1.msi

Network connection to the URL
ending with popup.js followed by
the network connection to the URL
ending with Codec-AVC1.msi

Next-generation
firewall logs

Codec-AVC1.msi is
downloaded to the system

Creation of a file named Codec-
AVC1.msi on the system, most
likely in the Downloads folder
.Network connection to the URL
ending with Codec-AVC1.msi

Endpoint logs

AV/EDR alerts

Next-generation
firewall logs

Table 10.1 – Installer delivery detection development

If we look back at the Pyramid of Pain, the detection log here relies on network/host artifacts rather
than TTPs or tools, which are closer to the top of the pyramid as they are hard to change. At this stage,
however, this is the approach available to us since URL redirection and file downloads are too broad
to detect on without more narrowed criteria. However, this means that if the threat actor changes
the filenames they use (Codec-AVC1.msi and popup.js), the detection will no longer work.
This is why we will continue to create detections for each phase so that if this detection fails, we have
additional chances to catch the threat actor.

The next stage is the execution of the installer to drop two loaders on the system. Table 10.2 provides the
same details as before but this time focused on the subset of activity related to the installer’s execution.

Report Detail Detection Logic Data Sources

A malicious installer
calls the Invoke-
WebRequest
PowerShell
command four
times to download
additional files

Execution of
powershell -c
"Invoke-WebRequest
<url> -OutFile"

PowerShell spawning
from MSI

PowerShell script block logging (if
enabled) – EventCode 4104 in
the Windows-PowerShell/
Operational event log, see the
Message field

Sysmon logs (if enabled) – Event ID
1 in the Sysmon/Operational
event log, see the Image and Parent
Image fields

Download binary is
saved to a OneDrive
folder for persistence

vcruntime140.
dll created in the
\microsoft\
onedrive path

Endpoint logs

AV/EDR alerts

Table 10.2 – Installer execution detection development

Threat intelligence for detection engineering in practice 237

PowerShell Script Block logging is disabled by default, so that additional prerequisites must be met
prior to implementing such a detection. Sysmon is also not installed by default and must be configured
prior to its use for detection. Additionally, the PowerShell activity is relatively broad as Invoke-
WebRequest as well as PowerShell spawning from MSI can both occur in legitimate use cases.
You’d need to evaluate how common such activity is in your environment as it might cause too high
a false positive rate. The OneDrive folder and binary are less broad but, once again, rely on specific
host artifacts.

The final stage to evaluate is the backdoor installation and execution by the loader. Table 10.3 presents
the assessment of this activity.

Report Detail Detection Logic Data Sources

The loader connects to a
hardcoded URL to download,
decode, and execute the
main payload

Network connection to a
URL ending with help.
jpg

Next-generation firewall logs

The backdoor establishes
C2 communication

Network connections to
known related C2 servers

Next-generation firewall logs

Sysmon Event ID 3

Table 10.3 – Installer execution detection development

Similar to the first stage, we can look at network connections to URLs hosting payloads with unique
names. The last piece of detection logic returns to the use of indicators. As we’ve mentioned multiple
times, while not as resilient as detections for TTPs, detections for indicators still serve their purpose.
Trend Micro provides a list of indicators of compromise at the end of the article. This list can be used
for detecting known bad hashes and domains at various points of visibility.

Unfortunately, this attack involves a lot of behaviors that would be observed in legitimate cases, so we
must find the balance between creating a detection that will lead to high false positives and a detection
that will become stale quickly with attacker modifications. Part of finding the balance relies on an
understanding of your environment and testing. If you determine that it is unlikely anyone or any
applications in your environment will run the Invoke-WebRequest PowerShell command, then
detecting all usage of that module might provide value. If you test the detection and you find out that
there is a legitimate use of that PowerShell command in your organization, it might need to be tuned.
This could be done by either setting stricter criteria (specific parameters or parent processes) or creating
exclusions for the known good activity (if it is limited enough not to cause too much overhead).

Let’s summarize the steps you would take to extract detection opportunities from a blog post:

1. Extract a list of indicators of compromise (hashes, IPs, etc.).

2. Extract a list of each behavior mentioned in the article.

Leveraging Threat Intelligence238

3. For each behavior in the list, do the following:

 � Identify relevant context (associated commands, file paths, etc.)

 � Define the associated detection logic (something unique that you can alert on with high fidelity)

 � Determine the relevant data sources that will capture the behavior

Whenever you’re reading threat reports, approach them with a detection engineering mindset,
identifying how such behaviors would appear in logs and what criteria would be unique enough to
not cause false positives.

Example – leveraging VirusTotal for detection engineering

As mentioned at the beginning of this chapter, another source of OSINT is public scanners and
sandboxes. These platforms provide tools for analyzing files, URLs, domains, and IP addresses. Most
often, in exchange for the free use of these tools, any findings are shared with the public, allowing for
a treasure trove of information. One of the most popular examples of this is VirusTotal. VirusTotal
allows you to analyze files and URLs, or search for information on hashes, domains, and IP addresses.
When analyzing files, the samples are run through multiple sandboxes, and the results of both static
and dynamic analysis are provided. These results are then stored in its database and can be found by
searching for the file hash. This is valuable when you are provided with a hash but not the file and
want to see whether there is any publicly available information about it. To demonstrate its value,
let’s look at an example.

In the previous example, a list of indicators was provided, including the hashes of the backdoor. Let’s
say we received those hashes but the article did not provide us with enough context to write an effective
detection, so we want to have a more thorough analysis of the payload. In this case, we’ll look at the
3D4107C738B46F75C5B1B88EF06F82A5779DDD830527C9BECC951080A5491F13
hash, which Trend Micro says is tied to the WhiskerSpy backdoor. Searching for this hash from the
main page will lead us to the file’s overview page here: https://www.virustotal.com/gui/
file/3d4107c738b46f75c5b1b88ef06f82a5779ddd830527c9becc951080a5491f13.
Visit this link to reference the views that will be discussed shortly.

Detection details

Within the Detection page of the hash we are examining, the following sections are present:

• Detection rate – The number of security vendors that have detections for this file.

• Tags – Various automatically applied tags based on static and dynamic analysis.

• Submission time – The date and time that the file was originally submitted for analysis.

• Navigation – Various tabs providing different types of information related to the file.

Threat intelligence for detection engineering in practice 239

• Threat category/family – Identified malware category and families, if applicable. In this case,
VirusTotal reports that it is a Trojan named WhiskerSpy, which aligns with Trend Micro’s analysis.

• Security vendor detections – Specific detection names assigned by security vendors.

This provides a good high overview to help determine whether a file is malicious, and if so, what
kind of threat it is, but from a detection perspective, we are more interested in the details, relations,
and behavior tabs.

File details

The Details tab is primarily made up of static analysis information, such as various hashes, the file
type, and the file size. As a brief overview, the following sections are provided on this page:

• Basic properties – File properties such as hashes, type, and size

• History – A file creation timestamp along with VirusTotal-related timestamps

• Names – Any identified filenames associated with the hash through file metadata or
submission names

• Portable Executable Information – For executable files, details about the compilers, headers,
sections, imports, and exports

This will be most helpful from a detection engineering perspective if you have systems that only
support a specific type of hash. For example, Trend Micro only provided the SHA 256 hash, so if you
have systems that only report the MD5 hash, this is a method of getting that hash.

Relations

The Relations tab provides details of related indicators based on static and behavioral analysis. For
network relations, some examples of potential indicators are as follows:

• Contacted URLs

• Contacted domains

• Contact IP addresses

For file relations, some examples of potential indicators are as follows:

• Execution parents

• Bundled files

• Dropped files

• PE resource children

Leveraging Threat Intelligence240

This information can help with expanding your static indicator-based detections. In our example, we
see that VirusTotal’s analysis identified that an IP address and domain were contacted in the course
of the malware execution, as well as an execution parent. We can now detect these observables too if
we find them to be high-fidelity, and we can also pivot to the analysis of those indicators of VirusTotal
to gain even more context.

Behavior

Lastly, we have the Behavior tab, which provides dynamic analysis results. This page provides a wealth
of information that is particularly useful from a detection engineering perspective. At the top of the
page, we see a list of sandboxes that the samples were run in and an overview of the resulting findings.
Below that, an activity summary outlines the highlights of what information is provided in the rest of
the report. The first section maps the sandbox analysis to MITRE ATT&CK Tactics and Techniques.
Broken up by tactic, it provides the technique observed, along with the behavior or property that
resulted in the identification of that technique, and a severity symbol.

The bottom part of the page provides the behavioral findings from the sandboxes broken up by
category. We can see network, registry, process, and service activity. All of these can provide additional
detection opportunities. The Trend Micro report did not go into detail about the process tree or registry
actions, so this is an opportunity to create more narrowed detections based on such properties. It is
important to do research into any behaviors you want to detect to ensure that they are in fact unique
instances of behavior associated with malicious activity and not just system activity captured during
sandbox execution.

As can be seen throughout the previous example, public scanners and sandboxes such as VirusTotal
can be leveraged to take a simple hash, the lowest level in the Pyramid of Pain, and start building
TTP-based detections, at the top of the Pyramid of Pain. These can be valuable tools for the Investigate
phase of the detection engineering life cycle. In the Resources and further reading section, we will
provide links to resources that provide lists of popular online scanners and sandboxes.

Threat assessments
As mentioned in the Threat intelligence in the detection engineering life cycle section of this chapter,
threat assessments are a source of valuable detection requirements. Threat assessments define a
process for evaluating threats to an organization and its information systems and describing those
threats, providing a report detailing organization-specific risks. Organizations often leverage threat
assessments to identify areas for improvement of detection and prevention coverage. Sometimes, this
can be the identification of vulnerabilities or misconfigurations that should be changed to prevent
certain threats. It can also include information about the types of threats and attack vectors that are
the greatest risk to your organization. This is where most of the value, for detection engineers, comes
from, as the identification of these risks allows us to determine what coverage is most applicable to
our organization.

Threat assessments 241

Since performing threat assessments and details of reports are outside the scope of this book, if
you would like to learn more about what assessments contain and how they are performed, see the
following resources:

• https://www.cisa.gov/sites/default/files/video/22_1201_safecom_
guide_to_cybersecurity_risk_assessment_508-r1.pdf

• https://www.sans.org/blog/tips-for-creating-a-strong-
cybersecurity-assessment-report/

To understand how threat assessment findings can result in detection requirements, we are going to
look at a few examples of threat assessment findings and how we can use them to develop relevant
detections. If you’ve performed a technique coverage validation using the methods discussed in
Chapter 8, it is a good idea to have the results present when processing threat assessments and
developing detection requirements, as you can figure out quickly which detections may already exist
that meet the requirements.

Example – leveraging threat assessments for detection
engineering

Let’s look at an example of how findings from a threat assessment can lead to detection requirements
and how we can leverage threat intel to gather all the necessary information to create a detection. A
threat assessment may include a variety of types of findings. For the sake of this example, we are going
to look at three possible findings that may be seen in a threat assessment. We’ll look at each one and
how we can leverage the information to generate a detection strategy:

• Finding 1: The organization may become a target of Winnti Group, which is known to target
gaming companies.

• Finding 2: Ransomware attacks are becoming increasingly popular and targeting various
industries and geographies. The organization should be prepared for these attack attempts.

• Finding 3: The organization stores files that contain sensitive data, which may become a valuable
target for threat actors and present a major risk to the organization.

For each of these findings, we will map them to associated techniques in order to develop a better
detection requirement.

Threat group-based finding

Starting with Finding 1, we are provided with the intelligence that there is a threat group targeting
organizations in our industry. The threat group’s name, Winnti Group, is our starting point for
investigating how we could detect any associated activity. In Chapter 1, we introduced MITRE
ATT&CK, primarily focusing on Techniques and Tactics, but we also mentioned that MITRE has a
knowledge base of threat actors. Not all threat actors are included, but for those that are, it provides a

Leveraging Threat Intelligence242

great starting point for mapping the name of a threat group to detection opportunities. Winnti Group
falls under group ID G0044 in the MITRE ATT&CK knowledge base. The information page for the
group can be found here: https://attack.mitre.org/groups/G0044/. From a detection
engineering perspective, the three sections of most interest to us are Techniques Used, Software, and
References. Let’s start with the Techniques Used section, as shown in Figure 10.1.

Figure 10.1 – Winnti Group – Techniques Used

This is a list of known techniques implemented by the threat actor based on public reporting. The first
columns have the ID and name of the technique, which are hyperlinked to the associated ATT&CK
technique pages. The last column contains context specific to how the technique is leveraged by the
threat actor. This can help in creating more narrowed detections for the techniques if desired. For
example, for T1083, we might not want to create a broad detection that detects any attempts to search
for files, as that might result in a high number of false positives. The details provided, however, tell
us that Winnti Group uses a program named ff.exe to do this, so if we look for file and directory
discovery by a program named ff.exe, we can greatly reduce the number of false positives while
still detecting this threat actor. The [1] number seen at the end of this column points to the link in the
References section (which we’ll look at later in this section) from which the technique was extracted.

Below the Techniques Used section, we have the Software section (see Figure 10.2).

Threat assessments 243

Figure 10.2 – Winnti Group – Software

This section provides information regarding the software leveraged by the threat actor. Similar to
the group knowledge base, MITRE ATT&CK also has a software knowledge base that provides data
for both malicious and legitimate software seen in use by threat actors. The first column lists the
MITRE-assigned ID for the software and the second column is the name of the software. The third
column points to the links within the References section from which the context was gathered. The
last column is a list of the techniques the software is capable of performing.

To discover more detection opportunities, we can look at the associated Software pages and see the
details of the technique used. For example, if we were to visit the software page for Winnti for Windows
(https://attack.mitre.org/software/S0141/), we would see that for the technique
T1547, it says Winnti for Windows can add a service named wind0ws to the Registry to achieve
persistence after reboot. We can leverage that knowledge to detect any services named wind0ws
(a unique and unusual string) being added to the Registry.

Leveraging Threat Intelligence244

The last section on the Winnti Group page is the References section. This section provides links to
articles about the threat actor from various cyber security organizations and researchers. These links
are valuable to detection engineers, as the source reports will likely contain more detail than MITRE
provides in its overviews. For example, the first link points to a Kaspersky blog post and whitepaper
that provide an in-depth analysis of the malware and network infrastructure used by the attacker. It also
provides dozens of hashes, domains, and other indicators that could be leveraged for detection. While
MITRE ATT&CK can act as a starting point and provide high-level information, we talked earlier in
this chapter about the value that can be found in whitepapers and blog posts for detection engineering,
so it is wise to dive into the related reports when researching a threat actor via ATT&CK groups.

Using MITRE ATT&CK’s knowledge bases and the associated references, we can build a list of TTPs,
tools, and indicators tied to the attacker. We can then take validation results, as discussed in Chapter 8,
and determine which of the techniques leveraged by this threat actor and their software we already
have coverage for and which we should prioritize creating detections for. For the detections that aren’t
yet covered, we can use the techniques shown in Chapter 6 to develop detections. In that chapter, we
demonstrated developing detections for TTPs, tools, and indicators, all of which are relevant to use
for this use case. Any detections that need to be created should become requirements and go through
the detection engineering life cycle.

Threat type-based finding

Moving onto Finding 2 from our example, we are warned about the increasing number of ransomware
attacks targeting a variety of organizations. This is a much broader assessment than focusing on a
specific threat actor or malware family. We won’t go into depth here on specific detections to be
created, but we will show some methods of using OSINT to find possible detection opportunities.
Approaching a broad requirement such as this is going to require leveraging your personal expertise
along with online resources to find detection criteria. As we’ve talked about with the Pyramid of Pain,
ideally, we will create detections for TTPs rather than tools or indicators. This is especially preferable
in this case due to the number of ransomware families and operators in existence. Attempting to create
broad coverage for ransomware by analyzing every single ransomware family is unrealistic. Instead,
we want to identify common TTPs used by many ransomware actors and create detections for them.

With the wealth of information publicly published by security vendors related to almost every topic in
cyber security, performing a search via your favorite search engine is a great way to uncover potential
sources of information. In this case, we want to understand what TTPs are commonly associated with
ransomware attacks, so Ransomware TTPs would be an appropriate search query to start with.
Our results when performing this search led to articles from Kaspersky, Scythe, and other vendors
providing lists of the most common TTPs implemented by ransomware actors. Conveniently, many
of the articles map their observations to MITRE ATT&CK techniques. As mentioned in the previous
section, once we do the research that leads to a list of relevant techniques, we can use the strategies
from Chapter 6 to build detections by technique.

Also relevant to this specific example technique, the ultimate goal of ransomware is typically to encrypt
data. MITRE ATT&CK technique T1486 (Data Encrypted for Impact) details this exact final objective:

Threat assessments 245

https://attack.mitre.org/techniques/T1486/. The information and references
on this page would also prove a valuable starting point for understanding ransomware and further
investigating the different groups and software related to this technique.

This example shows that building detections of a category of threats first requires identifying the TTPs
relevant to that threat. A list of relevant techniques can be built based on a combination of security
expertise and the wealth of articles and other resources consistently being published as OSINT.
Once this list is established, previously mentioned methods for building TTPs based on techniques
can be implemented to design a detection. In terms of prioritizing the list of TTPs, we can use the
Triage phase criteria for identifying their priority while also taking into consideration which of the
techniques have the most overlap between threat actors and malware families. For example, your list
might contain T1555.003 (Credentials from Password Stores: Credentials from Web Browsers) as
well as T1490 (Inhibit System Recovery). When determining which detection requirement should
be prioritized, ideally, your research would reveal that while only some ransomware actors perform
credential theft from browsers, most ransomware families perform some sort of system recovery
prevention. Since this requirement came from the need to detect ransomware attacks in general and
not a specific ransomware family, T1490 would be the wiser technique to tackle first as it will defend
a larger percentage of ransomware attacks than a detection for T1555.003 will.

Threat objective-based finding

Finding 3 is focused on the fact the organization has sensitive files that would likely be of interest to
threat actors and are at risk of exfiltration. This maps to the behavior that we want to detect based on
the threat actor’s objective. Their goal is to exfiltrate sensitive data from our network, whether it be for
espionage or financial gain. With that goal in mind, we can think about the key tactics and techniques
involved in such an attack. Starting at the higher, tactic level, we can determine which tactics will aid
us most in identifying data theft. As a reminder, these are the tactics that MITRE uses to categorize
techniques for enterprise-focused attacks:

• Initial Access

• Execution

• Persistence

• Privilege Escalation

• Defense Evasion

• Credential Access

• Discovery

• Lateral Movement

• Collection

• Exfiltration

• Command and Control

Leveraging Threat Intelligence246

For data theft specifically, the attacker must perform a few key activities. They must discover the
data, collect the data, and then exfiltrate the data. This conveniently aligns with MITRE ATT&CK’s
Discovery, Collection, and Exfiltration tactics. Now that we know what tactics we are interested in, we
can review the techniques for each one and determine which are relevant to an attacker attempting
to steal sensitive data from the network.

First, we will look at the Discovery tactics page for a list of associated techniques: https://
attack.mitre.org/tactics/TA0007/. Since the finding is focused on files, we can narrow
down to a couple of specific techniques that are related to files, the primary one being T1083 (File and
Directory Discovery). The only other possibly relevant technique within this tactic is T1619 (Cloud
Storage Object Discovery), but as indicated by the Platforms attribute of the technique, this is only
relevant if you have a cloud environment. We repeat this process with the Collection (https://
attack.mitre.org/tactics/TA0009/) and Exfiltration (https://attack.mitre.
org/tactics/TA0010/) tactics. The following is a list of the techniques associated with each
tactic that would most likely be used by an attacker attempting to steal files:

• Collection:

 � T1560 - Archive Collected Data

 � T1119 - Automated Collection

 � T1530 - Data from Cloud Storage

 � T1213 - Data from Information Repositories

 � T1005 - Data from Local System

 � T1039 - Data from Network Shared Drive

 � T1074 - Data Staged

 � T1114 - Email Collection

• Exfiltration:

 � T1020 - Automated Exfiltration

 � T1048 - Exfiltration Over Alternative Protocol

 � T1041 - Exfiltration Over C2 Channel

 � T1052 - Exfiltration Over Physical Medium

 � T1567 - Exfiltration Over Web Service

 � T1029 - Scheduled Transfer

 � T1537 - Transfer Data to Cloud Account

Threat assessments 247

Not all of these techniques will be leveraged in every data theft attempt; different actors will use
different subsets of techniques. Furthermore, some of these techniques may not be relevant to your
organization or there may be additional techniques you feel are in scope. At this point, you would need
to use any additional context provided in the threat assessment (such as the type or location of the files
that present the greatest risk) and your knowledge of your organization to create a more specific list.

In all three examples, we follow a very similar process of taking a threat assessment finding and
brainstorming detections. Let’s summarize these examples in a series of steps:

1. Understand what the assessment finding means to you as a detection engineer.

Identify what threat actor or type of attacks and behaviors this finding is discussing.

2. Identify sources of intelligence to map our starting point (a threat type, attacker, or risk) to
techniques, tools, or indicators:

 � MITRE ATT&CK has a wealth of information, which will provide a great starting point.
Look at the group, software, or technique pages associated with the identified starting point.

 � Searching for blog posts or whitepapers discussing the threat you are investigating is another
useful method. For example, if the finding is related to APT1, search blogs such as CrowdStrike,
TrendMicro, Palo Alto, and more for articles detailing the threat actor’s behavior.

3. Gather detectable data from those sources.

This means creating a list of indicators for indicator-based detections or behaviors for more
mature TTP-based detections.

4. Create detection requirements out of the detectable behaviors from step 3.

Include any resources or information gathered from your investigation so that the source of
the detection criteria can be referenced if needed.

5. From the final list of detection requirements, perform a triage (as discussed in Chapter 5 in the
Triaging detection requirements section) to determine which requirements should be prioritized.

6. Develop detections based on the processes discussed in Chapter 6.

In brief, we take the threat assessment, identify the associated techniques and behaviors for a given
finding, and then apply the detection engineering life cycle, starting with Requirements discovery, to
develop associated detections. Be sure to document the resources leveraged to identify techniques and
behaviors as this information will also prove useful in the Triage and Investigate phases, as discussed
in the Threat intelligence in the detection engineering life cycle section of this chapter.

With the information in the above sections, you should understand how to leverage threat intelligence
to both create detection requirements and enhance existing detection requirements. Before closing out
the chapter, the next section provides some resources related to further learning about and leveraging
threat intelligence.

Leveraging Threat Intelligence248

Resources and further reading
The following resources provide lists of the sources discussed in this chapter, as well as further
informational material related to threat intelligence and MITRE ATT&CK.

Threat intelligence sources and concepts

https://github.com/hslatman/awesome-threat-intelligence

This GitHub repository contains a variety of types of resources related to threat intel including sources,
such as threat intel feeds, formats, frameworks, platforms, tools, research, standards, and books.

Online scanners and sandboxes

https://github.com/rshipp/awesome-malware-analysis#online-scanners-
and-sandboxes

The Online Scanners and Sandboxes section of this GitHub repository provides a
comprehensive listing of tools similar to VirusTotal that can be leveraged for the methods discussed
in this chapter.

MITRE ATT&CK

Here are the sources that you can refer to for MITRE ATT&CK:

• https://attack.mitre.org/resources/getting-started/

• https://attack.mitre.org/resources/

These pages from MITRE provide research papers, presentations, and other resources that will provide
in-depth information on all aspects of the MITRE ATT&CK framework.

Summary
In this chapter, we went into greater depth on the concept of threat intelligence and, specifically, its
role in detection engineering. First, we introduced the types of threat intelligence at a very high level.
We then looked at how we can leverage this threat intelligence during the Requirements Discovery,
Triage, and Investigate phases of the detection engineering life cycle, using examples to solidify the
concepts. Finally, we touched on threat assessments and how a threat assessment combined with threat
intelligence can lead to important detection requirements.

In the next chapter, we will discuss performance management. This chapter will look at leveraging
metrics to both identify the current state of your detection engineering program and road-map
improvements to your program.

Part 4:
Metrics and Management

In Part 4, we look at the management side of detection engineering. This includes understanding how
our current set of detection performs and being able to communicate that effectively. We’ll discuss
various metrics that can be used to calculate the effectiveness and efficiency of a detection engineering
program and how we can leverage those findings to improve our detections.

This section has the following chapter:

• Chapter 11, Performance Management

11
Performance Management

In previous chapters, we have explored the detection engineering life cycle, from creating a test lab
and building your first detection to testing and validating your detections. In this chapter, we will
discuss a seemingly simple yet difficult-to-answer question: how good are we doing? We will look at
this from multiple perspectives: the maturity of the detection engineering program and its associated
productivity or efficiency, how well we historically detected the adversary, and how well we can expect
to detect the adversary in the future.

We will cover the following main topics in this chapter:

• Introduction to performance management

• Assessing the maturity of your detection program

• Measuring the effectiveness of a detection engineering program

• Measuring the efficiency of a detection engineering program

• Calculating a detection’s efficacy

Introduction to performance management
We are using the term performance management in this chapter to describe the various knowledge and
techniques we can use to identify how to most effectively improve the performance of our detection
engineering program. In an ideal world, we’d detect all bad behavior and not flag any legitimate activity.
There is, however, no magic solution that allows for that. As such, we need to know how and where
our detection program and our detections are falling short.

This chapter will break down different aspects that we can assess to get a better idea of areas of
improvement. We’ll be able to identify where issues exist that are causing our detection program or
detection rules to underperform. With that knowledge in hand, we can slowly take steps to prioritize
changes that will lead to improved performance and, over time, increase the maturity of our program.

Performance Management252

We’ll start this chapter by giving you a way to assess the current maturity level of your program to
understand where you are and where you want to go. Then we’ll move on to looking at analysis techniques
for determining the performance of your detections both in their entirety and as individual rules. At
the end of that section, we’ll guide you to further reading on topics such as project management and
metrics that are out of the scope of this book but can assist in operationalizing lessons learned from
performance management.

Assessing the maturity of your detection program
Understanding the maturity of their detection engineering program allows leaders to set realistic
goals for the organization and identify where to focus next on their journey. In earlier chapters,
we introduced some basic concepts of detection engineering that are necessary for any detection
engineering program to master and discussed advanced processes and metrics that will not be used
by organizations until later in their maturity. Any article or book describing the maturity of a program
requires obligatory maturity levels aligned to Capability Maturity Model Integration (CMMI), and
we will not disappoint here. We will identify when to begin applying these more advanced concepts
through the maturity model, which is designed to help organizations track their journey and identify
where to focus next. The maturity model we have established is visualized in Figure 11.1.

Figure 11.1 – Detection engineering maturity model

Measuring the efficiency of a detection engineering program 253

The criteria for each level in the model align with the following:

• L1: Using third-party detections only: The organization mainly relies upon detections provided
by vendors such as their SIEM, EDR, cloud, or NDR appliance. The organization may tune these
detections and has processes in place to triage and review the associated alerts.

• L2: Creating detections from open source reporting: Organizations at level 2 have begun
creating their own detections, mainly driven by open source reporting of adversary behavior.

• L3: Creating/updating detections from internal feedback: The organization has processes
for analysts’ feedback and requests for updates or new detections. A team of analysts has the
responsibility of researching the requests and creating the detections.

• L4: Metrics-driven detection creation: Optimizing detection creation with metrics to understand
the efficiency and efficacy of the detection program. Despite this alignment with CMMI level
4, there are metrics that we will discuss within this chapter that can only be implemented once
teams are performing their own internal research.

• L5: Creating detections from internal research: At this level, teams are performing their own
active research into how techniques can be performed and identifying the optimal ways to
detect techniques and identify their relevance to the organization’s environment.

As your detection engineering team progress into levels 4 and 5 of the maturity model, additional
processes can be adapted to track the efficiency and effectiveness of the organization. Efficiency
can be evaluated in terms of the productivity of the detection engineering team and of the analysts
triaging and reviewing the alerts created by the associated detections. Efficiency metrics are used to
track the amount of time or personnel required to create detections or review associated alerts. We
can borrow from software development metrics, such as agile point velocity, to calculate the efficiency
of the organization. Similar to software development metrics, these can be easily manipulated and
therefore should only be used internally by the team for planning and trending purposes and not
by upper management for evaluating the organization’s performance. A high velocity creating large
numbers of detections with poor coverage and durability has less value than a much smaller number
of detections with high coverage and durability.

Measuring the efficiency of a detection engineering
program
The first metric related to efficiency to be discussed, velocity, is productivity over time. Productivity
can be defined as the number of detections but in an agile methodology should be measured in terms
of story points. Story points are a unit of measure that is defined by each team as a consistent way of
identifying how much work is required. Using points provides the added benefit of allowing team
members to consider the complexity and uniqueness of the work required to create the detection.

Performance Management254

Point estimation requires teams to first normalize the value of a story point by reviewing some
sample detections together and creating a consensus view of the points required to complete the
work. Once there is a common agreement on point values, team members can estimate the amount of
work required to complete a task, such as the creation of a new detection or the update of an existing
one. The velocity of the team can therefore be defined as the number of points worked over a period
of time (agile typically uses two-week sprints). Since points are self-defined, the number itself has
limited value, but when compared against the backlog, it is a valuable forecasting tool. The trending
of the velocity (change in velocity over time) can be used to track changes in efficiency or to identify
bottlenecks and issues. Additional information about agile methodologies and metrics has been
provided in the Further reading section of the chapter.

Equally important to the detection team’s efficiency is the impact it has on the efficiency of other teams
within the SOC. The quality of the detection and its documentation can greatly affect the performance
of the SOC analysts required to triage and review the associated alerts. The most basic metric we
can capture for SOC analyst efficiency is simple alert counts. How many alerts from this detection
resulted in something an analyst needed to review? Notice the caveat. We are not measuring every
alert created by a detection. A second layer of processing provided by a SIEM or XDR may reduce the
number of alerts created by the security device down to a lower number that an analyst must spend
time on. Since we are looking at the impact on the analyst, we should use this final number when
computing the metric.

The alert count over time is the time claimed per detection. How much time does it take an analyst
on average to review an alert fired from that detection? This metric can be used to identify whether
the detection is producing the correct evidence to easily disposition the alert, or whether it is properly
documented so the analyst understands why it is firing and how to respond. Too low of a value, in
conjunction with a high false positive rate, could indicate that analysts are not reviewing the detection
and simply marking it as a false positive each time it appears. We can identify circumstances where
this is partially true by looking at variance. A high variance in time claimed could indicate that some
analysts are reviewing the alert, while others are not. It could also indicate that some analysts inherently
know how to investigate that alert, but poor documentation or other factors have made investigating
that alert tedious for less knowledgeable analysts. Lastly, you can look at the change in time claimed
in the short time after an update until the detection was deployed. This value will provide the efficiency
impact of the update. Table 11.1 provides an overview of these metrics:

Metric Definition Value

Alert Count Number of alerts requiring analyst
review created by the detection Identify noisy detections.

Average Time Claimed
Per Detection

The average amount of time it takes
an analyst for disposing alerts created
from a detection

High values can indicate missing
evidence or documentation.

Low values can indicate analysts
are not reviewing the alerts.

Measuring the effectiveness of a detection engineering program 255

Variability in Time
Claimed Per Detection

The standard deviation of the time
claimed per detection

Can indicate that not all analysts
are reviewing the alerts.

Change in Time
Claimed Per Detection

Change in average time claimed per
detection, measured shortly after the
deployment of an update or other
factor change

Identify the change in efficiency
in triaging alerts created by
the detection.

Table 11.1 – SOC efficiency metrics for detecting engineering

These metrics allow an organization to identify bottlenecks in their workflows or how their products,
the detections, are affecting other teams and measure the impact of changes meant to address these
issues. The metrics are inward looking. The SOC’s purpose, though, is outward facing. Its impact on
the company it supports is measured by how well it can identify or stop an attack. The next set of
detection engineering metrics is designed to focus on this goal.

Measuring the effectiveness of a detection engineering
program
While efficiency is a measure of productiveness, effectiveness is a measure of success. How well is the
detection engineering team actually helping to achieve the SOC’s goals, which should have a direct
correlation to the value the organization provides? Quantifying the value of a cyber security program
is always difficult. The cost of a cyber-attack cannot be quantified until after it has occurred and the
damage has been assessed. It is therefore difficult to quantify how much stopping an attack has saved
the organization. Should the value of a cyber security organization be judged based on the number
of attacks performed by adversaries? Should an attack attempt to steal a random user’s credit card
number be counted the same as an advanced adversary attempting to steal the company’s intellectual
property or hold it for ransom? Stopping thousands of indiscriminate phishing attacks may not matter
as much to the company’s bottom line as stopping one determined adversary.

Rather than attempting to calculate the financial costs of successful attacks against an organization or the
more difficult task of calculating the potential cost of a prevented attack, we will evaluate effectiveness
in terms of how difficult it is for an adversary to evade our detection. We will first review one of the
most popular metrics in SOC effectiveness and understand its limitations. Then, we will build upon
the validation coverage metrics introduced in Chapter 8 to evaluate how well the detection engineering
program has supported the SOC in preventing future cyber-attacks against the organization.

Within this section, we will look at effectiveness from multiple perspectives:

• Historical detection effectiveness: How effective was the organization in detecting previous
historical attacks? This is primarily shown through the mean time to detect.

• Detection coverage: How effective is the organization’s detections in identifying different
attack techniques?

Performance Management256

• Detection drift: Automatically identifying false negatives to determine how much our detections
are becoming less effective.

• Detection volatility: How long are detections effective once they are deployed or updated?

The historical effectiveness of a SOC is a look at how well the organization was protected against
cyber-attacks. Traditionally, this is identified by looking at the MTTD, which is defined as the mean
time for the organization to detect an attack performed by an adversary. The metric has the benefit
of being easy to calculate. Take the duration of each attack (detection time minus start time) for each
attack and then take the average of those values. The metric is popular for good reason. The goal of the
SOC is to prevent an intrusion, and when one occurs, we need to quantify how quickly it identified
that attack. MTTD is an excellent way to depict that understanding. It is also easy to compute and is
well understood in the industry:

Where n is the number of attacks and i is the attack instance.

Despite its popularity, MTTD suffers from being a historical evaluation of effectiveness. You can only
calculate this metric after the adversary has performed an attack and it assumes the SOC has identified
the attack in the first place. If the adversary is fully successful, then the attack is not included in the
MTTD metric. MTTD only includes attacks you have stopped and does not include attacks that you
never detect. This doesn’t mean that mean-time-to-detect is not a valuable metric. It is. But if you are
attempting to provide metrics on the value of the work your team is doing to prevent the next attack,
MTTD does not describe that. It describes historical facts, not future ones.

Historical performance is only valuable within the context of understanding the adversary. The
adversary is lazy. They will use the same attack as long as it is successful. This means that either
the attack was successful on your network, and they believe it will be successful again (with some
minimal variation), or that the attack will be successful on someone else’s network and they’ll bother
those people and leave you alone. The attacker, though, will alter their procedures if they find it to be
unsuccessful within those parameters, which the preceding metric does not reflect. It says nothing
about how your SOC will perform against significantly new (relative to your organization) types of
attacks. The metric only defines how well the SOC performed in yesterday’s attacks.

MTTD is also defined by adversaries. Adversaries define the variation in the tests used for the
computation and there is no guarantee that their tests are complete. Instead, the opposite is true. The
test performed by the adversary is one attack for the technique that was detected. Forensic analysis
will identify additional techniques that the adversary performed successfully prior to detection. The
analysis can also be used to extrapolate further in the kill chain using the processes defined in Lockheed’s
Intelligence Driven Defense paper. This analysis, though, only identifies the attack procedures from
one attack, as illustrated in Figure 11.2.

Measuring the effectiveness of a detection engineering program 257

Figure 11.2 – MTTD detection testing

This distinction is a key issue limiting MTTD’s use as a metric for effectiveness for detection engineering.
The metric is basically the equivalent of a User Acceptance Test (UAT) performed on a software system.
The users play around, and the developers see whether anything breaks. Some feedback is provided on
the usability or performance of the system, but a development team would never use a UAT as their
primary test performance metric. Instead, software systems have test coverage and pass rate metrics
defined by testing teams identifying edge cases. Developers build unit tests to check nothing breaks
as updates are made to the code. Automated static and dynamic analysis of the system is used to test
the system for security vulnerabilities. Detection engineering effectiveness metrics should similarly
reflect the coverage and pass rates to detect or mitigate the full range of potential attacks rather than
only those seen in previous attacks.

Prioritizing detection efforts

To define and track true effectiveness metrics for detection engineering, we need to set some
limitations on what we track at what fidelity. There are over a dozen MITRE ATT&CK matrices for
various environments, each with techniques and sub-techniques numbering into the hundreds that
can then be executed using a range of procedures. It is therefore impractical to track effectiveness
metrics on each of these attack techniques and sub-techniques. Any organization needs to prioritize
where to focus their energy and these focus areas also define the fidelity at which our metrics are
tracked. MITRE has released some tools to support this effort, including the MITRE Top ATT&CK
Techniques (https://top-attack-techniques.mitre-engenuity.org/), which will
help propose the most impactful techniques a team should focus on detecting based upon a short
survey about the organization. Organizations can also use both internal and external threat intelligence
as well as knowledge about their organization’s infrastructure and assets to prioritize their detection
engineering efforts. This analysis should result in grouping techniques into one of three categories:

• Top 10 or 20 high-impact techniques: Techniques the organization has identified as high-
value to which they should dedicate a concentrated effort in detecting. These are techniques for
which we either have completed or plan to complete an in-depth investigation into the attack
procedures, resulting in high-coverage detections.

Performance Management258

• Medium or high impact: Important techniques that we want to track but have accepted the
risk that we will not be performing in-depth analysis. For these techniques, we will create
detections based on open source reporting and leverage third-party detections, but they are
not part of our backlog to perform an in-depth analysis of the techniques.

• Low impact or low fidelity/visibility: Low impact, not applicable, or rarely used techniques
(reconnaissance is low impact)

Let’s review each of these, starting with the least critical and working our way upward. Low-impact or
low-fidelity/visibility techniques are techniques that the organization has accepted as having minimal
detection. This may also include techniques that are not applicable based on the organization, such as
Industrial Control System (ICS) specific techniques in a Windows-only environment. Alerts from
these techniques will most likely be informational rather than reviewed by an analyst. Medium- to
low-maturity SOCs may ignore default alerting or put no effort into creating detections for these
techniques. For example, we may have tools that detect scanning of our network but only use this
information for forensic analysis. In these circumstances, coverage metrics do not make sense. We
have accepted the risk of not having visibility. Instead, we only want to capture efficiency metrics. This
allows us to identify whether SOC analysts are still triaging these alerts and how much valuable time
is being spent on them. Even though we are not building detections for these techniques, identifying
and categorizing them is still valuable so they are not included in our medium- and high-impact
technique metrics.

Medium- to high-impact techniques are those that the organization has identified as valuable but has
not identified for in-depth analysis. In these circumstances, we may be reliant upon detections included
within third-party tools or open source detections. The majority of techniques most likely will fall
within this category. In these circumstances, we may create some low-fidelity coverage metrics such
as the number of detections per technique, or efficacy metrics such as false-positive rates.

High-impact techniques are techniques the SOC has identified as commonly used by adversaries
that target their organization’s infrastructure and thus are marked for in-depth analysis. These are
techniques that the SOC is building custom detections for and should track metrics that answer the
difficult question How good are we doing? Tiering techniques allow a detection engineering team to
prioritize their resources and capture metrics that reflect those prioritizations. Figure 11.3 shows an
example of which metric types could be captured per tier.

Measuring the effectiveness of a detection engineering program 259

Figure 11.3 – Metrics by criticality

Precision, noisiness, and recall

Efficiency metrics were covered at the start of this chapter. Precision and recall metrics have been
mentioned throughout the book as well. In this section, we will review the data and equations required
to actually calculate these values. When we discuss these metrics, we need to distinguish between
the following:

• Did the detection create an alert for what it was supposed to detect?

• Did the detection create an alert for something malicious?

Consider a detection rule identifying multiple incorrect logins from a new location. If the rule
incorrectly checked whether the location was new, it would fail to detect what it was supposed to.
Even if the rule was written correctly though, such activity may or may not be indicative of malicious
activity. Calculating precision and recall metrics requires first defining false positive, true positive,
true negative, and false negative in relation to detection engineering:

• True positive: An alert fired for actual malicious activity

• False positive: An alert fired for non-malicious activity

• True negative: An alert did not fire for non-malicious activity

• False negative: An alert did not fire for malicious activity

Performance Management260

These four data points are useful for calculating many of the metrics we discuss in this chapter.
Unfortunately, you may need to look across multiple data sources to identify this information. Analysts
can disposition alerts as true or false positives within the native security device or a centralized event
and alert system, such as a SIEM. The organization may also have a ticket management, SOAR, or
case management system specifically used for managing the team’s processes. Even if such a system
exists, you should check that the internal processes of the SOC align with your expectations. Some
SOCs may only create a ticket for alerts they choose to investigate while others may choose not to
ingest all alerts within a centralized system even if one exists. These metrics support the overall
SOC management so it may be possible to convince leadership to alter processes in support of more
consistent metric gathering.

False negatives are more difficult to identify. Toward the end of the chapter, we will look at a metric
called detection drift, which helps automatically identify false negatives for a set of detections related to
similar activity, such as a specific technique. An organization can also identify false negatives manually
by forensically analyzing an attack to identify earlier stages or by reviewing artifacts that identify future
techniques of an attack. This information can be compared against the rules designed to detect these
portions of an attack. For example, an analyst could execute malware in a sandbox that was found in
a phishing attack to determine whether the C2 protocol would have been detected. A false negative
would be identified if detections designed to alert on that activity did not fire during the test.

Figure 11.4 visualizes these concepts in a quadrant format.

Figure 11.4 – Alert determinations

These definitions allow us to define the equation for the statistical accuracy of our detection program,
although we cannot easily calculate it. In statistics, accuracy is defined as the number of correct
predictions / total number of predictions:

Measuring the effectiveness of a detection engineering program 261

It is not practically possible to calculate the total accuracy of a detection program. For example,
we cannot easily calculate true negatives (i.e., the number of times that we did not fire an alert for
non-malicious activity). We can, though, calculate a detection’s precision. Precision refers to the
second question listed previously, What proportion of alerts created for a detection was for something
actually malicious?

Precision is the true positive rate for our detections, which is defined as follows:

The opposite of this is noisiness, or the false positive rate, which answers the question, What proportion
of alerts created for this detection was not malicious?

Recall answers the question, What proportion of malicious activity was detected by the detection that
it was supposed to detect?

Referring to Figure 11.4, we can see that false negatives are defined as malicious activity that did not fire
an alert. Like MTTD, this is a historical view of the problem. We can identify false negatives through
forensic analysis if an attack was detected at a different stage or if we layer detections for the same
activity, such as network and endpoint devices using separate telemetry to identify the same thing.
Usually, as we attempt to improve our recall, that is, detect more variations of an attack, we will also
increase the false positive rate, resulting in more alerts for our SOC analysts to review.

Plotting detection performance

ROC (short for receiver operating characteristic) curves are a common data analytics technique
that can be a useful construct in evaluating changes in your detection approach for a procedure or
technique. At its core, a ROC curve plots the true positive to false positive values for different thresholds
in machine learning or other types of analytics. In our case, we can use them to plot how changes
we make affect a detection’s performance. A standard ROC curve looks something like the one in
Figure 11.5. On the x axis, we plot the false positive values, and on the y axis, the true positive values.
As we change the threshold of the analytic, more stuff will be caught, increasing the true positives,
but usually the noisiness increases as well, increasing the false positives.

Performance Management262

Figure 11.5 – Standard ROC curve

Adapting ROC curves to our use case, we can evaluate multiple variations of detection or overlapping
detections of the same activity to identify whether the changes provide sufficient performance
improvements to justify additional work by the SOC analysts to triage false positives. Consider an
example where we have four approaches to detection. Each approach adds conditions to catch additional
variations of the attack that we wish to detect (i.e., increasing the threshold):

• Approach 1 (A1): Condition 1

• Approach 2 (A2): Condition 1, condition 2

• Approach 3 (A3): Condition 1, condition 2, and condition 3

• Approach 4 (A4): Condition 1, condition 2, condition 3, and condition 4

During our testing phase, we would like to determine which of these approaches should be deployed
within our environment. We retrieve the true positives and false positives after each test. Any tests
against data identified specifically for this detection would be categorized as a true positive detection.
Tests against our known good dataset, either previously curated or from live environment tests that
resulted in a false detection, would be tagged as false positives. By plotting their true positive and false
positive values, as shown in Figure 11.6, we can create a ROC curve to help our analysis.

Figure 11.6 – Evaluating detection approaches using a ROC curve

Calculating a detection’s efficacy 263

Looking at the graph, we can see that our initial detection had few false positives but also was insufficient
in detecting a decent portion of the malicious activity. Adding in rules for conditions 2 and 3 greatly
improved our true positive rate while increasing the false positive rate as well. The fourth approach
provided a minimal increase in detection while greatly increasing the noise. As detection engineers,
we might decide that approach 4 did not have sufficient value over approach 3 to justify the false
positives created.

Now that we’ve looked at how to assess how the detection program is operating as a whole, let’s step
back down to the detection level so we can understand how certain detections may be affecting our
performance at the program level.

Calculating a detection’s efficacy
Mean time to detect, discussed earlier in this chapter, provides a historical view of the effectiveness
against attacks performed against the organization. We will group additional efficacy metrics into
three areas: low-fidelity coverage, automated validations, and high-fidelity coverage. When we refer to
coverage, we are talking about a measure of how much of the potential attack space can be detected.
The attack space is defined by what you are trying to measure. It could be a single technique or multiple
MITRE ATT&CK matrixes. We’ll start by looking at some low-fidelity methods of determining coverage.

Low-fidelity coverage metrics

A common low-fidelity coverage visualization is mapping your detections to a MITRE ATT&CK
matrix, as shown in Figure 11.7. Each technique is colored according to the number of detections
that have been created for it. This visualization is easy to produce, and many tools will automatically
provide some form of the matrix. The number of detections, though, is a poor representation of
coverage. One well-crafted detection may have higher coverage of the technique than 10 detections
and 10 detections of individual procedures may provide little value if the adversary can choose from
hundreds of variations. If a leader has trust in the quality of the detections created by their organization,
the visualization does have value, especially when paired with intelligence.

Performance Management264

Figure 11.7 – MITRE ATT&CK matrix example

Comparing your detection attack matrix to other matrixes can help prioritize new detection creation,
support gap analysis, and identify which techniques should be included in your coverage calculations.

Comparing organization attack surfaces and visibility

At the start of any detection coverage process, we can identify which techniques are applicable based on
the organization’s network. For example, if the organization does not host external websites, techniques
attacking those surfaces would not be applicable to the organization. Patching or removing vulnerable
infrastructure are also ways to mitigate potential threats and reduce the need for detection in those
areas. In addition, we can map the visibility available to the organization to the techniques that can
leverage that visibility. Gaps in what cannot be detected can help prioritize adding additional sources
of telemetry but also accurately represent what is possible to identify.

Comparing threat intelligence

Many threat intelligence providers will document techniques used by an adversary, as well as objectives,
industries, and geographical interests the adversary commonly targets. This intelligence can be
represented within a MITRE ATT&CK matrix. By identifying which adversaries commonly target your
organization and mapping their techniques to MITRE ATT&ACK, you can overlay the information
against your detection ATT&CK matrix to identify potential gaps. If a technique is leveraged by
adversaries but is not within your detection coverage, this can signify a gap in detection that can be
addressed by the team. The opposite does not hold true. Techniques leveraged by an adversary but with

Calculating a detection’s efficacy 265

detection coverage may not signify that you are protected. A more careful examination of the adversary’s
procedures and how your organization detects them would be necessary to truly validate coverage.

Automated validation

Commercial or open source validation tools provide a quick method to identify gaps in detection. The
ability to quickly test hundreds of attack procedures against your detections allows an organization
to rapidly identify coverage gaps without requiring a large amount of effort. Chapter 9 introduced
these capabilities, so we will not go into detail here. It is important to remember that validation tools
do not confirm that a technique or procedure is fully detected. It may be possible to alter a procedure
used by the validation tool to evade the associated detection.

High-fidelity coverage metrics

The last metric group we’ll look at includes high-fidelity coverage metrics. The goal of high-fidelity
coverage metrics is to quantify how well the organization detects specific techniques. Some of
these metrics are more labor-intensive, making them difficult to adopt broadly across a detection
engineering program.

Validation coverage

In Chapter 8, we discussed the first of these metrics with high-fidelity validation coverage. Validation
coverage, especially when implemented using the approaches in Chapter 8, is one of the best ways to
measure effectiveness. It is defined based upon the work performed by the detection engineering team
and it directly correlates to the team’s ability to detect the adversary for the validated techniques. This
approach requires an in-depth analysis of known procedures for a technique and validation tests that
are based on how the detections were implemented.

As a quick refresher, the approach works by grouping procedures that implement a technique into four
categories: fully covered, partially covered, missed coverage, and zero days. This is visually represented
in Figure 11.8. Specific test requirements are used to identify each category and migrate a procedure’s
detection from one category to another.

Figure 11.8 – Categories of detection validation results

Performance Management266

Our goal is obviously to maximize the detections categorized as fully covered and have no procedures
identified as missed coverage. Unfortunately, this may not always be practical, resulting in some
procedures being partially covered or missed, and there is always the possibility of zero days. It
takes significant effort to thoroughly analyze variations in how a technique can be executed, and
even then, new procedures are identified over time as adversaries change their behaviors. It may be
possible that the analysis was complete when it was performed, but since that time new information
has become available. How often should an organization revisit its analysis and how can it identify
when its detections are starting to be less effective? The next two metrics are used to identify when
that coverage has changed and how quickly it is changing.

Tracking detection drift

Detection drift occurs when a set of detections, designed to identify an adversary or TTP, begin to
be less effective as the adversary adapts their procedures. These missed alerts are false negatives of
detections that did not fire when they should have. Identifying when this happens and by how much
allows an organization to track the quality of their detections related to a specific adversary or TTP,
where those detections are now failing, and patch the holes in their detection strategy. The approach
allows an organization to create metrics that track this drift and proactively patch their detections as
adversaries begin to evade them.

To track detection drift, we need a way to identify that the adversary has evaded a subset of our detections.
Defense in depth is a common industry term and practice where multiple layers of detections or other
defenses (such as restricting access control, reducing the attack surface, patch management, etc.) force
the adversary to evade multiple layers of defenses to achieve their objective. By employing multiple
detection strategies, we raise the cost of an attack. An adversary must change all parts of their tooling
and infrastructure, or risk being identified. This was first widely documented in Lockheed Martin’s
Intelligence Driven Defense paper, which outlined the Cyber Kill Chain but also demonstrated how
to use the kill chain to forensically analyze an attack, identifying earlier stages of the kill chain and
artifacts that could be used to identify later stages of activity, as shown in Figure 11.9. By creating or
updating detections, a SOC could continue to detect an adversary who had only partially changed
its tools and infrastructure.

Figure 11.9 – Cyber Kill Chain analysis to identify missed activity

Calculating a detection’s efficacy 267

The kill chain analysis can be used to evaluate the defensive performance in moving horizontally
across the MITRE ATT&CK matrix. We can also evaluate our drift vertically across multiple layers
of detections for the same technique. A single technique could be detected by multiple detections at
one or more stages, as shown in the pyramid of pain. For example, we may have network signatures
identifying the C2 protocol of a malware family, file signatures identifying the tooling, and behavioral
rules to identify the activity performed with those tools.

Figure 11.10 – Pyramid of pain and detection types

Whether analyzing the procedures used by an adversary across the phases of a kill chain or creating
multiple detections for the same technique, it is important to remember that this analysis has occurred
at a point in time. As an adversary attempts to evolve their procedures to evade defenders, not all
detections continue to be effective. Ideally, we’d like a way to track not just what TTP a rule is detecting,
but also how many alerts should fire together. This would track the continued effectiveness of our
detections and prioritize future work for the detection engineering team. Detection drift is the difference
between detections that should have detected the activity and those that did detect the activity:

This is not as simple as it seems. Despite creating multiple detections based on our understanding of
the adversary or technique, we would not expect all detections to hit each time. For example, if we
identified two tools that are used by adversaries when performing a particular technique, we could
write yara signatures to identify those tools in the future. We would only expect one of these tools to
be used in an attack and thus only one signature to hit if the adversary deployed this technique. If the
adversary used a new tool though, which did not hit against either signature, we would have a gap
in coverage and our detections will have drifted from current adversary methods. This coverage gap
might be difficult to detect. Suppose, for example, the adversary’s new tool continued to use a shared
library employed by tool number 2, which we also had built a detection for. The SOC analyst would
still receive an alert for the shared library but might not recognize that a second expected detection
at the tool level did not occur, requiring an update by the detection engineer.

Performance Management268

Figure 11.11 – Detection drift for mulitple attacker tools

In the example shown in Figure 11.11, detection 1 should only alert on its own, while detections 2
and 3 should always alert together. Detection 3 alerting without detection 2 shows a detection drift.

These variations can be broken into three categories, visualized in Figure 11.12: either a group has its
own detection for that category, a detection spans across multiple groups, or no detection exists for
a subset of groups. A group can be defined based on your needs. Each procedure for a technique can
be its own group, or a common or necessary attack path taken by an adversary identified using the
kill chain analysis. A group is just a representation of the set of detections that should fire together
where you want to track detection drift.

Figure 11.12 – Variations in detection coverage

During the Investigate phase of the detection engineering life cycle, we can map capabilities to their
associated groups. An abstraction map, introduced in the SpecterOps Capability Abstraction blog,
is a tool that can be used to track these relationships and will help demonstrate how we can track
detection drift. The blog is linked in the Further reading section and is an excellent way to understand
abstraction maps. We will provide a short explanation of the concept as follows, but the blog reviews
a detailed example if you are interested.

Calculating a detection’s efficacy 269

Figure 11.13 – Abstraction map with five layers

The abstraction map, an example of which is shown in Figure 11.13, works by breaking the capability
into a subset of groups and peeling back the capability to identify different layers of abstraction. As
each layer is investigated, the associated artifacts are captured and mapped across the groups that
they apply to. These artifacts can then be used to create the associated detections. An artifact detail
can be missing because it is not applicable or because the investigation did not uncover that detail or
was incomplete. A generalized version of the abstraction map is shown in Figure 11.14.

Figure 11.14 – A generalized abstraction map

An abstraction map can be useful in the investigation phase of the detection engineering life cycle.
To identify detection drift, that is, false negatives, we are using it to easily determine the minimum
number of detections that should fire under different circumstances. In the preceding example, if a
detection was created for each artifact detail, the abstraction map can be broken into 12 detections
with anywhere from three to five detections alerting based upon the attacker’s approach. Not only that
but for the same detection, such as Network Protocol 1, in some circumstances, there are four other
detections that would alert and in other cases, only two other detections would alert.

Performance Management270

To calculate the detection drift, we can add a tag to each of these detections with the Minimum
Detections (MDs) that should occur with that detection for the associated capability grouping (in
this example, the capability grouping is Technique T1234). When any new alerting occurs related to
one or more of these detections, we can use these tags to calculate the detection drift. An example of
an abstraction map with tags applied is shown in Figure 11.15.

Figure 11.15 - MD tagging example

To calculate the MD drift, we take the maximum of the MD tags for the associated alerts. The formula
for this is shown in Figure 11.16.

Figure 11.16 – MD drift formula

These tags can be added as part of the details of an alert when it fires. The capability grouping name is
used to identify alerts that should be included within the same calculation. Let’s look at some examples.

Example 1

For our first example, we will look at the set of detections identified in the Group 1 column in
Figure 11.15. Group 1 has artifacts identified for each of the abstraction layers.

Calculating a detection’s efficacy 271

Example 1 without drift

This first example assumes that all detections are triggered at all abstraction layers for Group 1:

Detection Tag

RPC 1 T1234 MD:5

Tool 1 T1234 MD:5

Registry Key T1234 MD:5

Win API Function 1 T1234 MD:5

Network Protocol 1 T1234 MD:3

Table 11.2 – Group 1 without detection drift

Using the MD count in Table 11.2, we can calculate detection drift with the previously defined formula
for MD drift:

In this most basic example, there are a maximum of five potential detections and all five occurred,
resulting in zero detection drift.

Example 1 with drift

To observe what detection drift looks like, let’s assume that the RPC 1 and Win API Function 1
detections did not fire, resulting in the modified table shown in Table 11.3:

Detection Tag

Tool 1 T1234 MD:5

Registry Key T1234 MD:5

Network Protocol 1 T1234 MD:3

Table 11.3 – Group 1 with detection drift

Using the MD count in Table 11.3, we can calculate detection drift with the previously defined formula
for MD drift:

Re-performing the calculation identifies that a minimum of two detections did not result in alerts,
revealing how detection drift shows potential gaps in detection.

Performance Management272

Example 2

In example 2, we will use Group 4 from Figure 11.15, which contains a gap in coverage in the registry layer.

Example 2 without drift

Table 11.4 shows the detections that did fire and the associated tags in Group 4 without coverage for
the registry layer:

Detection Tag

RPC 2 T1234 MD:4

Tool 4 T1234 MD:4

Win API Function 3 T1234 MD:3

Network Protocol 2 T1234 MD:4

Table 11.4 – Group 4 without detection drift

Using the MD count in Table 11.4, we can calculate detection drift using the previously defined formula:

Once again, we observe no detection drift, meaning that our detections cover all possible layers of
abstraction of the capability group. Next, let’s see what happens if one of the previous detections
doesn’t fire.

Example 2 with drift

Table 11.5 assumes that the same Group 4 capabilities are being analyzed, but this time the Network
Protocol 2 detection does not trigger:

Detection Tag

Tool 4 T1234 MD:4

Win API Function 3 T1234 MD:3

Table 11.5 – Group 4 with detection drift

Using the MD count in Table 11.5, we can calculate detection drift with the previously defined formula
for MD drift:

Calculating a detection’s efficacy 273

In this second example, we don’t know whether two detections failed or there were more, but we do
know that something changed in the adversary behavior that caused at least a subset of our detections
that should have hit to not fire.

In summary, this section demonstrates how the concept of detection drift can highlight how and
where changes in adversary behavior can affect the coverage of your detections.

Adapting to account for an automated response

One complexity of this approach is that many detection devices now have the ability to also respond
to an attack in addition to detecting it. In these circumstances, detections occurring after the response
occurs need to be accounted for.

This is similar to the modified approach that would support kill chain analysis. In both circumstances,
detections that occur after the attack are expected to be stopped and would not be included within
the MD count.

In Figure 11.17, we assume that an EDR would stop the attack prior to seeing network activity. Notice
the updated MD values for detections occurring prior to the EDR response and that the value remains
unchanged for the network protocol detection.

Figure 11.17 – Abstraction map with EDR response

Tracking detection drift is one approach for identifying when an organization’s detections are becoming
less effective. These calculations provide the ability for an organization to repair its defenses by
automatically identifying changes in adversary behavior that are no longer detected. There are several
limitations in implementing detection drift that should be recognized:

• Many detection engineers will include multiple artifacts within the same detection rule. If
those artifacts have different MD scores, it becomes difficult to automatically output the MD
value from within the alert.

Performance Management274

• Mapping detections to an abstraction map or similar matrix is a time-consuming effort. This
limits the ability to calculate detection drift on high-impact techniques or attackers where
such analysis is justified.

• Not all alerts are sent to the SOC in the same instant, therefore this calculation cannot be
performed accurately in real time. Instead, it must be performed once all alerts have arrived.
This can be accomplished either as a scheduled or on-demand query against the alert data.

• A security device may send multiple alerts for the same detection. When building your query,
make sure that the detection IDs are distinct.

• The calculation does not distinguish between detections that are easy for the adversary to adjust
around (such as a hash) and detections that are more difficult to avoid. If the detections are
based upon artifacts lower in the pyramid of pain that are easy for the adversary to change,
detection drift may occur too commonly to action, and you may decide to purposefully ignore
those artifacts from the calculation.

Now that we know how to track detection drift, let’s move on to our second high-fidelity coverage
metric: volatility.

Calculating volatility

Our final metric for high-fidelity coverage addresses the last point in the list of limitations of detection
drift, calculating a detection’s volatility. Volatility measures how much the detection needs to change
over time to accommodate the evolution of the adversary’s attacks. The lower the volatility, the more
stable your detections are. Detections with high volatility may indicate that additional research should
be applied to identify better methods that detect the activity. The historical volatility is constant over
time – for example, the detection is usually effective for about six months – so we could be on the
lookout for changes in the adversary’s procedures both from our internal telemetry and external threat
intelligence. The volatility of a detection can also help identify when our confidence in its effectiveness
may have decreased, resulting in prioritizing a hunt to identify similar activity. The most common
use of this metric is to evaluate how the volatility is changing over time, or the volatility trend. As a
detection engineering program matures, the volatility of its detections should decrease, indicating
that the detections are more stable. If the detections created by the team have high volatility, it may
indicate that the team is chasing the adversary or building signatures that are easy for the adversary
to evade, requiring a large number of updates.

This metric should also only be calculated if an attack is caught or missed by a detection. It is not
calculated if the detection never fired or never had the opportunity to fire. An interesting byproduct
of this property is that detections with high numbers of data points in their volatility calculation are
also associated with the tools, infrastructure, techniques, procedures, and so on that are frequently
used by the adversary. Therefore, detections with high volatility may be good targets for additional
research since there is a lower confidence they will detect the next attack and a higher confidence that
the adversary will exploit what they are intended to detect.

Calculating a detection’s efficacy 275

Volatility suffers from some of the same constraints mentioned previously for MTTD. It is a metric
based on the adversary’s attacks. This limitation, though, aligns with what we are trying to measure.
Our goal is to understand how changes made by the adversary impact the effectiveness of our defenses.

As mentioned previously, the first step to calculating volatility is identifying the scope of detections you
are calculating the volatility for. Volatility can be calculated for an individual detection or for a set of
detections that may be used to identify variations of the same technique. It can also be calculated for
each detection across the entire detection repository. A valuable use case is calculating the volatility
of a particular abstraction layer in an abstraction map or the pyramid of pain. This answers the
question, “What is the volatility of detections based upon this abstraction layer?” High volatility for
that abstraction layer means the adversary changes their attack at that abstraction layer and therefore
the associated detections are not flexible enough to account for those changes. Simple examples would
be lower echelons of the pyramid of pain, such as adversaries constantly changing a malware’s hash,
making it an ineffective mechanism for detection over a long time period.

The second variable to identify is the period for which we are calculating the volatility. We can calculate
the volatility for a period of time, such as days or weeks. We can also calculate the volatility over a
period of campaigns. This can be an interesting distinction. Many adversaries will retool or change
their infrastructure between campaigns. Since different adversaries conduct campaigns at their own
op tempo, it may seem that one detection is more volatile than another when in reality, both detections
only last for a scope of a campaign, but the length of a campaign differs between the adversaries caught
by those detections. In Figure 11.18, detection 1 would be calculated as having lower volatility than
detection 2 when using days as the period for the calculation. If we use campaigns as the period,
detection 2 is shown to be more stable. This indicates that in the long run, detection 2 continues to be
effective as the adversary retools, while detection 1 has limited value once the campaign is complete.

Figure 11.18 – Effectiveness of detections over time

Once we have identified the level of fidelity/scope and we know how we wish to identify the period
(days, campaigns, etc.), we can capture the data necessary to calculate volatility. These data points
are as follows:

• Number of detection updates over the period of time

• Number of new detections over the period of time

• Days between False Negative (FN) and update (optional)

Performance Management276

For each detection within our defined scope, count the number of updates deployed for that detection
over the defined time period. If you are using detection as code processes, you can capture these
metrics as part of your CI/CD pipeline. If you are calculating the volatility of a technique’s detections,
capture the number of updates or new detections associated with the entire technique rather than
each individual detection.

Calculating the volatility for a set of detections is actually very easy. It is simply the sum of the number
of updates or new detections created over that time period. This is because if there was no volatility in
our detections, then zero updates would be required. Therefore, the average amount of change from
the ideal situation is the sum of the changes for the scope of activity:

If we wish to be conservative in our calculations, we can also add the days between a false negative
and an update to the overall update count for that detection. This change makes the assumption that
for every day there was no update, there was a potential change by the adversary. While this is an
overcorrection, it will result in detections that were not updated after failing as having a high volatility
instead of having a low volatility simply because their issues were unattended.

It can be valuable to also calculate the volatility of our detection volatility. For example, say you are
calculating the volatility for the set of detections identifying activity related to technique T1234.
When you calculate the volatility for that group of detections, it is high. This would seem to indicate
that a detection engineer should spend some effort better understanding T1234 so the adversary
cannot evade the detections as easily. Standard volatility calculations, though, will identify how much
“scatter” there is in our data. If the volatility of the number of updates is low, this would indicate that
our detections for technique T1234 are not stable and we should invest in identifying better ways to
identify the malicious activity. If the volatility is high, this could indicate that some of our detections
require frequent updates to be effective, while others do not. Therefore, we may wish to turn off the
unstable detections requiring frequent updates since we have more stable ways to detect the activity.
We could visually look at the scatter of data points to make this determination manually, but if we
wish to identify this condition across a large number of groups (such as every technique), it is easier to
automatically calculate the average number of updates and the volatility of that average for each group.

We start with the average number of updates (the mean) across the set of detections. In our example,
the set is all the detections for technique T1234. Next, we calculate the variance across the detections
with the following equation:

Where n is the number of detections, DetectionUpdates is the number of updates for each detection,
and the mean is the average number of updates across all of the detections, which is the first volatility
equation provided previously.

Calculating a detection’s efficacy 277

Last, we calculate the standard deviation, by taking the square root of the variance. The higher the
standard deviation, the more volatile the value of detection volatility is:

The following quadrant shows how we can use the volatility of a set of detections and the volatility of
that value to identify actions to take in an organization. Quadrant 1 identifies either stable detections
that do not require frequent updates or activity that was not seen by the organization (you can identify
which by the number of data points). The second quadrant identifies a high number of updates but
there is significant scatter in the data. This shows an inconsistency in the number of updates required
per detection in the group. This may indicate that some of the detections may not be worth maintaining
if what they are detecting overlaps with other detections within the group. If the detections identify
different activities (such as different procedures for implementing the same technique), the volatility
in the data may be indicative of a subset of the detections being exercised more than others. Lastly,
quadrant 3 identifies detection sets with a high number of updates across the group, indicating that
more effort should be focused on improving detection in this area.

Figure 11.19 – Plotting aspects of detection volatility

The hardest part of tracking volatility is identifying when a false negative has occurred, which is used
to alert the team that an update to a detection must be performed. False negatives, as defined earlier,
are when a detection should have created an alert but did not. These can be uncovered through
forensic analysis after an attack. A more consistent approach can be implemented by leveraging the
detection drift tagging to enable the calculation of volatility for an abstraction layer. If our detection
drift calculations identify no drift, then no update is needed. If our detection drift calculations identify
that a drift has occurred, we can map the alerts that did fire back to their associated abstraction layer
within the abstraction map and narrow our scope of which detection did not create an alert.

Performance Management278

Volatility can also be used for creating new detections. Ideally, we would like to identify choke points
in the adversary’s attack that cannot be evaded and thus are excellent choices to detect malicious
activity. This is not always possible. In many cases, the potential variations in the attack cannot be
fully accounted for in our detections. In these circumstances, we would like to identify indicators with
the least volatility to build our detections around. During our investigation, we will uncover multiple
attacks, either within our own alerting, threat intelligence, or other external sources. This information
can be represented within an abstraction map. The abstraction map, though, does not consider when
each of these variations occurred. Calculating the volatility of data within each abstraction layer will
identify which indicators vary the least over time and thus are best suited for creating detections.

When looking at volatility, be careful to first have a solid detection baseline. Volatility is only shown
when updates to a detection are performed. If an organization is missing detecting large portions
of adversary activity, then the only activity they are detecting may also be the focus of updates. The
activity they are entirely missing would obviously not show up in the volatility calculations and could
cause the organization to continuously focus on improving a subset of detections. Therefore, volatility
should only be one input used in determining the prioritization of effort.

Summary
This chapter provided metrics for calculating both the efficiency and effectiveness of an organization.
We started by reviewing a CMMI model to track the maturity of our organization and then identified
agile process metrics to track the efficiency of the organization. MTTD was introduced as a common
organization-wide effectiveness metric. Some limitations of MTTD were identified, which should be
understood when using this metric. Next, we categorized our detections into three tiers, allowing us
to identify metrics for each tier that reflect their importance to the organization. Low-fidelity coverage
using the MITRE ATT&CK matrix and high-fidelity coverage metrics through validation, detection
drift, and volatility were examined as ways to calculate coverage and track how coverage changes over
time. In the final chapter, Chapter 12, we’ll wrap up by discussing what a career in detection engineering
looks like, how you can progress your skill set, and the future of the field.

Further reading
Here are some resources to deepen your understanding of some of the concepts in this chapter:

• Agile metrics:

 � https://agilemanifesto.org/

 � https://www.atlassian.com/agile/project-management/metrics

 � https://www.atlassian.com/agile/project-management/estimation

 � https://www.wrike.com/agile-guide/story-points-estimation/

Further reading 279

• Capability abstraction:

https://medium.com/specter-ops-posts/capability-abstraction-
fbeaeeb26384

• MITRE Top ATT&CK Techniques:

https://top-attack-techniques.mitre-engenuity.org/

• Metrics definitions:

https://developers.google.com/machine-learning/crash-course

• Volatility:

Empirical Intelligence Valuation Through Indicator Volatility Analysis, Michael Cloppert. 2012
DoD Cybercrime Conference

Part 5:
Detection Engineering as a

Career

In the final part, we will close the book by discussing detection engineering as a career. We’ll provide
guidance for finding jobs in detection engineering, along with how to continue to improve your
skill sets and boost your resume. We’ll also touch on our insights regarding the future of detection
engineering. Finally, we will provide options for contributing to the community.

This section has the following chapter:

• Chapter 12, Career Guidance for Detection Engineers

12
Career Guidance for
Detection Engineers

As this book comes to a close, if you’re not yet working as a detection engineer, you may be interested
in pursuing such a job. This chapter will aim to help answer some questions you may have and provide
some guidance to assist in getting your first detection engineering position.

The chapter will cover the following main topics:

• Getting a job in detection engineering

• Detection engineering as a job

• The future of detection engineering

• Getting involved

The first section is focused on what to look for in job postings, training and certification opportunities,
and further ways to develop your detection engineering skills. We’ll then discuss what a day in the life
of a detection engineer looks like in terms of job responsibilities. Next, we’ll make some predictions
on how detection engineering will evolve over the coming years. Finally, we’ll wrap up with ideas on
how you can contribute to the field of detection engineering.

Getting a job in detection engineering
In this section, we discuss some information on preparing for and finding jobs in detection engineering,
starting with what to look for in job postings.

Career Guidance for Detection Engineers284

Job postings

The role of a detection engineer is a relatively new one compared to many security and tech positions.
As such, there’s not necessarily a standardized job title or description that you’ll find for roles related to
detection engineering. For that reason, we must be able to understand the roles and responsibilities of
a detection engineer to identify relevant job postings. In the most ideal scenario, the job position will
be titled something that clearly indicates it’s a detection engineering role, such as Threat Detection
Engineer. In some cases, however, you’ll find detection engineering roles categorized under the broader
job title of Security Engineer. This is where an understanding of what a detection engineer does is
required. Security engineering can cover a wide variety of positions related to the development of
security-related content or code. Looking at all security engineering positions will likely lead you to
postings for jobs more focused on the development of secure infrastructure rather than the development
of detections. The following is a list of examples of job responsibilities you might see for a detection
engineering-focused role based on actual job postings from companies hiring for such positions:

• Build security detections and detection frameworks

• Conduct tuning activities to mitigate false positive or noisy alerts

• Use big data and real-time streaming technologies to build and refine threat detections

• Investigate anomalous and suspicious behavior for new detection opportunities

• Conduct alert validation and triage within SIEM and EDR platforms

• Research, build, and maintain detection capabilities for the latest threats across SIEM correlations
and security tool signatures

• Research and innovate net new mitigation, detection, and response capabilities given input
from industry trends, customer feedback, and personal research

Another way to differentiate detection engineering positions from other security engineering roles is
based on the qualifications/requirements section of the job posting. Many security engineering roles
will be focused on programming and development abilities with security skills playing a background
role, but for detection engineers, there should be more of a focus on the security side of things with
the development skills being secondary. The postings targeted for detection engineering will often
look for knowledge of frameworks (such as MITRE ATT&CK), experience with SIEM and other
detection-related technologies, and an understanding of security concepts.

In summary, when looking at job postings, you don’t want to narrow yourself to just job titles with
Detection Engineer in the name as some companies leverage a broader Security Engineer role. To
determine whether the role aligns with what you are looking for, review the job responsibilities and
requirements to determine whether the position they are describing matches that of a detection engineer.

Getting a job in detection engineering 285

Developing skills

Part of the requirements for finding a job in detection engineering is to have and demonstrate the skills
necessary to fulfill such a role. In this section, we are going to discuss how to increase your chances
of landing a position in detection engineering. We’ll approach it in three parts:

1. Training and certifications

2. Relevant skill sets and learning recommendations

3. Getting involved

All three of these areas will help increase your skill set as a detection engineer as well as building your
resume for increased visibility when applying for job postings.

Training and certifications

Due to the relative newness of detection engineering as a career, the certifications and training available
specific to such a role are limited. Therefore, when it comes to specific training and certification
requirements associated with job positions, at the time of writing, there are not any detection engineering-
specific requirements for such roles. There are, however, a few options available for those interested in
getting additional training. The price of this training varies, with some being on the expensive side,
so if your employer provides a training budget, this is a great opportunity to leverage it. If you do not
have the ability to pay for these formal training and certification options at this time, the next section
provides additional ways to develop your skill set via free resources.

MITRE themselves offer training through their MITRE ATT&CK Defender program, focused on
threat hunting and detection engineering using the ATT&CK framework. This training leads to
the ATT&CK Threat Hunting Detection Engineering certification, one of several certifications the
program offers related to applying the ATT&CK framework to security operations. More information
on this certification can be found here: https://mad-certified.mitre-engenuity.org/
collection/9edbe772-c054-4004-bf4c-f5e7b09d2640.

Earlier in this book, we mentioned Sigma, an open standard language for writing detection queries.
Applied Network Defense offers a course, Detection Engineering with Sigma, that teaches you how to
write Sigma rules based on real-world examples of malicious activity in logs. For details on this training,
see https://www.networkdefense.io/library/detection-engineering-with-
sigma-58157/310172/about/.

Finally, GIAC offers the GIAC Certified Detection Analyst (GCDA) certification, details of which can
be found here: https://www.giac.org/certifications/certified-detection-
analyst-gcda/. The affiliated training for this certification is offered by SANS through their
course SEC555: SIEM with Tactical Analytics: https://www.sans.org/cyber-security-
courses/siem-with-tactical-analytics/. It is worth noting that while the name of the
certification indicates it is detection-focused, the content of the course is much broader and has a large
focus on SIEM maintenance and other SIEM operation topics, so the training is not solely focused on

Career Guidance for Detection Engineers286

detection engineering. We choose to mention it, however, due to the lack of formal training dedicated
to detection engineering.

As authors of this book, we have taken the MITRE training and certification and found immense
value in the content. With regard to the Applied Network Defense and SANS training, we have not
personally taken either of these courses, but both are reputable training providers in the industry. It
will not be surprising to see more training and certifications enter the market over the coming years
as the demand for dedicated detection engineers expands. As the options expand, we will see whether
any certifications arise as the standard employers expect from their prospective employees, but for the
time being there is no detection engineering-specific certification or training that is expected across
DE job postings. That being said, any training or certifications related to the skillset you do obtain are
worth highlighting on your resume as they may be the thing that sets you apart from other candidates.
Regardless, more knowledge from a reputable training provider is valuable in itself.

Outside of formal training and certifications, there is an abundance of blog posts, podcasts, and YouTube
videos available for free to continue your detection engineering education that can easily be found
with a quick internet search. Additionally, conferences often offer workshops, including those focused
on detection engineering. If not workshops, detection engineering is becoming a popular topic for
conference talks as well, often focused on specific sub-topics. Check out local and online conferences
or conferences you already planned on attending for any relevant content worth checking out.

Relevant skill sets and learning recommendations

Outside of formal training and conferences, there are many self-learning options available to current
and future detection engineers.

Detailed information about cyber adversaries used to be limited. Prior to the Mandiant APT-1
report, quality open source reporting about nation-state activities or specific threat actors was mostly
unavailable. Threat intelligence about adversaries was closely held secret by organizations. IOCs
identifying adversary infrastructure, such as IP addresses or domains, provided significant value that
allowed SOCs to stop attacks. Today, this information has limited use as adversaries can stand up and
break down infrastructure with little to no cost. These changes have forced detection engineers to focus
on more complex signatures and indicators of behavior. Analysts and organizations have opened up
to sharing this information on the internet through blogs, social media, or other mediums. Many top
security device providers share detection signatures they have created in open source repositories.

These changes provide significant opportunities for new detection engineers to learn from experienced
professionals and build their skills. The techniques taught in this book should be practiced beyond the
exercises within the chapters. As an aspiring detection engineer, you can identify detection signatures
within open source repositories and attempt to recreate them from associated open source intelligence.
Identify and follow popular blogs or analysts’ social media accounts and take the information they
provide as a starting point to investigate new adversary activity and build your own detections. Publish
those detections to open source repositories or social media to build your portfolio. These activities
will help improve your skills but also provide employers with examples of your capabilities.

Getting a job in detection engineering 287

Cyber defense and cyber offense are two sides of the same coin. If you want to understand how to
truly stop an adversary from performing an attack, it is necessary to understand how that attack is
performed and not just identify what telemetry about an attack is captured through your current
visibility. This is accomplished by studying the platforms you are protecting. If you are building
detections for a Windows environment, study how the internals of the operating system function, and
how common adversarial tasks can be performed such as creating a process or getting a handle on a
process. Attempt to dive deep into a single technique and learn everything about how it is performed.
This includes not just how an adversary executes it today but how the operating system or software
leveraged in the attack works internally as well. This may require increasing your skills to include
reverse engineering and exploit creation. While some courses are available in reverse engineering for
detection creation, most are focused on malware analysis or red teaming. These are still applicable.
The processes and tools used are similar, just the objective has changed.

One source to look at to begin further exploring detection engineering is the Awesome Detection
Engineering GitHub repository: https://github.com/infosecB/awesome-detection-
engineering. This repository contains both tools and resources related to detection engineering in
a variety of formats. First, it provides a list of frameworks and concepts, such as MITRE ATT&CK and
Pyramid of Pain, which were discussed in the book, as well as some we did not discuss specifically. On
the open source signature side of things discussed at the start of this sub-section, there is a list of sources
from various vendors in various formats that can be used to better understand what signatures look
like for different threats. Many of these repositories can be contributed to by the public also. Next, to
learn more about the data sources that we can leverage for detection, as well as ways to manage these
logs, there is a section on logging, monitoring, and data sources. The repository ends with general
resources and blog posts on various topics related to detection engineering.

Another great resource, mentioned in the Awesome Detection Engineering repository, is Zack Allen’s
Detection Engineering Weekly: https://www.detectionengineering.net/. This newsletter
is a high-quality weekly digest of recent blog posts and tweets related to detection engineering, blog
posts on new threat research, and open source tools that readers might be interested in checking out.
This provides a continuous, up-to-date feed of new material related to the field. We highly recommend
subscribing and using the content to continue learning as the field is constantly evolving.

Additional skills not directly tied to detection engineering but useful for the responsibilities included
in such a role are the following:

• Network, endpoint, and cloud security

• Scripting and/or programming skills

• Basic understanding of CI/CD frameworks and tools

• Reverse engineering

Career Guidance for Detection Engineers288

Spending time understanding and developing skills in these various areas of expertise will expand
your detection engineering capabilities, increase your chances of getting a job, and overall evolve
your expertise in the industry. All of these areas are widely developed concepts with extensive online
resources only a Google search away.

Getting involved

Throughout the book, we’ve referenced open source projects related directly or adjacently to detection
engineering, and many of these efforts are only as good as the community that contributes to them. As
such, we highly advocate using our skill sets as detection engineers to give back to the community as
able. Additionally, any contributions to the projects we discuss can be added to your resume in order
to demonstrate your skills and make yourself more appealing to potential employers. In this section,
we’ll look back at some of the projects we mentioned as well as some other ideas of how you can use
your newly developed detection engineering skills to get involved in the community.

As mentioned, open source projects rely on contributions from the users of their projects in order
to grow. This is especially true for projects such as Sigma. The more Sigma rules that exist, the more
coverage for threats that exist for those leveraging the project. While the creators and maintainers
of the repository are consistently publishing new rules, they are limited by their own time. If you
are practicing the detection engineering skills you learned in this book and building out detections,
consider submitting them in a pull request to the Sigma repository. As part of an organization, you
might face challenges trying to share internally developed content to a public space, but if the rules
don’t contain sensitive information, consider appealing to management about the value of giving
back to the community by releasing your rules. Sigma is just one example of a project that you can
contribute to. There are other rule standards that you could release rules for that the community would
benefit from, such as YARA and Snort/Suricata. If you have more in-depth development skills, there
are open source tools such as the Elastic Stack that can be contributed to.

MITRE ATT&CK was repeatedly mentioned over the course of the book. Since ATT&CK is based
on real-world threats, they rely on reporting from organizations on the front lines to inform their
data model. They are constantly looking for information on new techniques, tactics, and procedures
(TTPs), threat intelligence, data source information, and more. At the time of writing, their FAQ
page specifically mentions they are looking for contributions related to Linux and macOS. For any
accepted contributions, MITRE provides attribution to the contributor, which makes for great resume
fodder too. For more information about how to contribute, check out their guidance at the following
link: https://attack.mitre.org/resources/contribute/.

Lastly, there are plenty of opportunities to pass on the knowledge you’ve obtained to the public.
Regardless of your favorite method of spreading knowledge, there are opportunities for you. If you
prefer writing, blog posts are a great way to share information on a given topic. Blogging platforms,
such as Medium, provide a free avenue to quickly and easily publish content. If you prefer teaching in
person, look for conferences with calls for papers or training to submit talks and workshops to. Even
if you don’t create content, conferences are a great opportunity to network with others in the industry,
which can lead to collaboration and idea generation that can benefit everyone.

Detection engineering as a job 289

Regardless of how you approach it, there are many different options to give back to the community.
Detection engineering relies on an understanding of what we need to detect, and a single organization
cannot have visibility of all threats, especially proactively. This requires us to create a culture of
collaboration and sharing though, because most people won’t be as motivated to put effort into
generating content and sharing information unless they are also receiving the same from their peers.
Furthermore, any public contributions you make should be added to your resume to show the work
you’ve done as well as to show that you value that community connection.

Now that you now understand how to get into a detection engineering role, let’s look at what your
day-to-day job may look like once you’re in such a position.

Detection engineering as a job
In a previous section, we mentioned some examples of responsibilities listed in job postings for
detection engineers, which gave a high-level idea of the types of work you’d be performing as a detection
engineer. Before we look in more detail at the roles and responsibilities of a detection engineer, we’re
first going to discuss some related job roles and how they differ, as well as how those jobs can be used
to show your experience in detection engineering when applying for jobs. While there are many
sub-specialties in cyber security, we’re going to focus on a few roles that are most closely related to
detection engineering in terms of the skills used:

• Security Operations Center (SOC) analyst

• Incident responder

• Threat hunter

• Threat intelligence analyst/threat researcher

All of these roles, while much different from a full-time engineering position, involve responsibilities
that will either directly align with or help with understanding some of the responsibilities of
detection engineering.

Starting with SOC analysts, this role is common for those new to the industry as a stepping stone to
other sub-specialties, including detection engineering. The SOC analyst role is much broader than
detection engineering and typically involves a mixture of monitoring and triage or response. Working
in a SOC, you will likely be responsible for day-to-day security monitoring using either dedicated
security tools or reviewing logs. The ability to review security alerts and triage them to understand
whether they are true or false positives is valuable when it comes to detection engineering. In detection
engineering, this skill set can be used to review the performance of created detections and fine-tune
them to reduce false positives. Depending on the tooling used in the SOC you work in, you may have
the responsibility of creating detections for your organization’s platforms or tuning a SIEM. These skills
should be highlighted when applying for detection engineering roles as it shows an understanding of
how to take data from an environment, provide meaning to it, and use the interpretation to improve
the organization’s security posture.

Career Guidance for Detection Engineers290

Incident responders are brought in to handle security threats that require an increased level of expertise
over SOC analysts or where the organization does not have a SOC to handle incidents. Incident responders
are less proactive and more reactive, but their involvement in active attacks provides experience that
can be drawn upon as a detection engineer. Incident responders understand how to look at a variety of
data sources during an attack and put together a story of how the attacker carried out their activities.
Similar to SOC analysts with monitoring experience, this maps to detection engineering in the sense
that it shows an understanding of being able to form a meaningful interpretation of activity from
large amounts of data. Incident response is more of an erratic job position in terms of its schedule and
tasking, so if you’re an incident responder looking to apply your analytical skills in more of a proactive
rather than reactive position, consider detection engineering as a possibility.

Threat hunters require a very similar mindset and approach to detection engineers. Just like detection
engineers, they must understand a specific threat and how to identify activity related to that threat.
The primary difference between the two is that threat hunters look for the activity occurring in the
environment already rather than developing a mechanism to protect the environment if it occurs.
The findings from threat hunters, however, can be used to develop detections to mitigate future risks.

Threat intelligence analysts primarily focus on more of a research role than the technical and
implementation side of things. It is a very relevant position to detection engineering though, as we
discussed in Chapter 10. The skills a threat intelligence analyst can bring to a detection engineering
role are immensely valuable, as being able to research a threat in depth results in the understanding
required to, in turn, know how to detect that activity. There is also value in the ability to understand
what threats are most relevant to an organization based on industry, geography, and the current
threat landscape.

If you’re in one of the aforementioned roles and looking to pivot to detection engineering, these skills
are highly adaptable to the responsibilities of a detection engineer. The same is true in reverse. If you
are in detection engineering and looking for a new challenge, many of the preceding roles will have
similar aspects to your current role.

Detection engineering roles and responsibilities

In general, you’ll be performing the work we’ve described throughout this book, the tasks associated
with each stage of the detection engineering life cycle, as well as continuous activities. This section will
briefly summarize the associated responsibilities you might encounter in such job positions, although
it’ll vary depending on the size of the team and your specific assignments.

At the start of the detection engineering life cycle, we have requirements discovery. This responsibility is
partially going to depend on the organization you’re in. If you have a security operation center (SOC),
threat intel team, and/or red team, then you might be able to rely on those sources of requirements.
Your primary role here might then come down to communication with those teams, as cross-team
collaboration is vital in such an organizational structure. If the organization doesn’t have other teams
like that or if the other teams do not have processes to provide your team with detection requirements,
however, it may fall on the detection engineers to actively seek out detection opportunities and create
the requirements themselves.

The future of detection engineering 291

Throughout the Triage and Investigate phases, detection engineers essentially act as researchers.
Whether it’s through direct testing, data analysis, or searching the internet, detection engineers must
be able to take a requirement and perform research to fully understand the behavior attempting to
be detected. After these phases, the Develop, Test, and Deploy phases start to require the engineering
side of detection engineering more heavily. This may involve some programming and/or DevOps
depending on the tooling being used by the organization.

Finally, on the continuous activity side of things, detection engineers must perform data analysis and
generate metrics to understand the performance of detections. To perform this data analysis, it is
useful to have an understanding of how to work with large sets of data, potentially in varying formats,
and understand how to glean insights from it in order to produce actionable feedback. Along with
using these metrics for improving detections, the performance analysis resulting from continuous
activities is important for communicating with management and stakeholders. Stakeholders will want
to understand the return on investment they are receiving from the detection engineering team. As
such, being able to communicate performance with (often) non-technical personnel is an important
skill in this job role.

As can be seen in the brief summary, detection engineers have various responsibilities each requiring
diverse skills. The skills involved in detection engineering range from research to development, to
communication and collaboration. The diversity in such a position also makes it a very interesting role!

All that being said, this field is new and rapidly evolving, so we also should discuss what we expect
to see in the coming years.

The future of detection engineering
Detection-as-code is focused on applying engineering and software development processes and technology
to detection creation. Therefore, we should continue to see maturity in processes and the adoption of
tools and technology most prominently from the software engineering, data engineering, and machine
learning fields. There are many external factors that will continue to influence and perpetuate the need
for detection engineering. In addition, there are issues that consistently hinder detection creation and
some new X-factors that we will need to see if they last through their hype. In the following sections,
we have identified many of those areas and how they will affect detection engineering going forward.
Writing predictions for the future is a dangerous task, so while we call these predictions, they are
mostly trends in the field that we believe will continue the need for detection engineering.

Attack surfaces

The scope of what a company is expected to protect and how it can protect it has expanded over time.
Originally, defenders could expect that their organization’s assets were in an internal network boundary.
As work from home, cellphones, and other personal devices became part of the company ecosystem,
those assumptions disappeared. In addition, cloud services, point-of-sale devices, and other types of

Career Guidance for Detection Engineers292

infrastructure continued to expand as well. This evolution will obviously not slow down and will not
stop. Each of these are new attack surfaces, which will have new vulnerabilities, new visibility, and
other complications, will require detection engineers to create custom detections that will identify
associated adversary activity. This increase in niche attack surfaces will only reinforce the need for
organizations to have their own detection engineering teams.

Visibility

In Chapter 4, we introduced detection data sources, which are the bedrock upon which our detections
are built. The data sources and events they provide are continuously evolving. Some of these additions
are from direct requirements by detection engineers to help identify malicious activities. Others may
be specific to your organization, provided by logs or events created by your custom software. New
telemetry equals new opportunities for detection.

Security device capabilities

For many years, security information and event management (SIEM) has been the universal log
management and detection capability. SIEM’s ability to adapt to new log sources and allow the analyst
to write detections against those sources has made it flexible to support new use cases. This flexibility
can also make it more difficult to use than some newer security devices, such as Endpoint Detection
and Response (EDR). EDR agents run on the endpoint, have access to more telemetry, can detect
adversary endpoint activity better, with fewer false positives, and can provide more in-depth explanations
of the attack. For these reasons, EDRs have exploded in popularity as the primary detection tool for
many SOCs. Security devices will continue to specialize in new attack surfaces, such as the cloud,
users, and other areas where a specialized focus can enable improved fidelity.

Extended detection and response systems (XDRs) are seen as an extension of EDRs by starting with a
high-fidelity alert (such as an EDR alert) and correlating data from the same attack. This second-layer
processing will continue to grow in the future. Today, many detection engineers write descriptions that
provide details for the SOC analyst on how to triage the alert and determine whether it is a true or
false positive. Second-layer processing, such as XDR, will help facilitate these actions by automatically
performing many of the actions that SOC analysts have to do manually today. As these second-layer
processing capabilities improve, it will enable new detections to be written that have a higher false
positive rate but can capture more adversarial activity. Since the second-layer processing can triage
these alerts and combine them with other low-confidence signals, nosier detections can be written
without overwhelming the SOC.

Machine learning

Machine learning has traditionally focused on detection models such as antivirus, anomaly detection,
and triaging results. We purposefully did not cover the creation of models within this book because
the approaches are significantly different than rule creation. If you’d like to learn more about machine

The future of detection engineering 293

learning models, there is plenty of material online readily available on the topic, such as this article:
https://www.coursera.org/articles/machine-learning-models. While most
security devices now include some level of machine learning and many now allow analysts to deploy
their own models, there are limitations. Machine learning requires large datasets to build an accurate
model, and many of these models require supervised learning. This means the data must be categorized
for the algorithm to train the model. In addition, data scientists must identify the correct characteristics
within the data, called features, as part of the training process. Data scientists are usually reliant upon
domain experts, such as detection engineers, to identify important features, categorize data and review
results. While some security devices can use machine learning to identify new adversarial procedures
and rapidly deploy updates, most require significant effort and large development times. Custom
detection rules can be more rapidly created and deployed in response to new threats even if they
will eventually be replaced by a machine learning model that will provide more complete coverage.

The introduction of large language models (LLMs) is rapidly redefining the capabilities of machine
learning and how it can be used to support cyber security use cases. While many of these models
have initially focused on chatbot use cases, the technology is rapidly advancing and will likely expand
into other spaces. The chatbot technology will help document and summarize attacks from across
multiple alerts and events. Its ability to support analysts in the writing of new rules by speeding up
the investigation, development, and test phases will continue to accelerate. Additionally, LLMs may
support the SOC in identifying and performing the steps to investigate and respond to alerts.

Sharing of attack methodology

Most information about attack behaviors and how to identify them is currently shared in blogs, on
Twitter, or in other unstructured text and images despite attempts to create and adopt structured data-
sharing formats, such as Structured Threat Information Expression (STIX). There are economic
reasons for this that cannot be ignored. Companies want people to go to their websites so they can
sell their products. People want a following on social media to raise their profile and job prospects.
(We are not casting aspersions – at least they have only a minor affliction; we’re writing a book for
goodness’ sake.) Without a similar economic benefit, it will be difficult to encourage more machine-
ingestible forms of intelligence even if the technology issues are solved. We can, though, encourage
more actionable forms of data to be shared by identifying and encouraging best practices. To do this,
we either need to push the industry toward adopting STIX or a similar structured data distribution
method or find a better way of parsing unstructured data. The first approach requires that industry
tools implement support for the standards and that intelligence distributors provide their data in a
common structure. This approach often takes time and extensive encouragement. If the customers push
this as a point of interest in the solutions they are looking for or the resources they are seeking out, it
may fulfill the economic benefit mentioned earlier. Alternatively, advances in machine learning may
also help parse unstructured data and transform it, although if this technology becomes so good that
individuals are no longer reading blogs or posts, the incentives to share data may decrease. At its core,
this is a game theory problem. If you are a game theorist detection engineer, we need your help here.

Career Guidance for Detection Engineers294

The adversary

Incentives and economic benefits will also continue to drive adversaries to create new attack techniques
and procedures and identify new attack surfaces and ways to exploit their victims. Cyber-attacks are a
multi-billion-dollar illicit industry. The economic benefits to criminals and nation-states will continue
to drive innovation in cyber offense capabilities, resulting in similar investment and innovation to
defend against these attacks.

The human

Computer graphics pioneer Robert Cook is quoted as saying, “Programming today is a race between
software engineers striving to build bigger and better idiot-proof programs and the universe trying to
produce bigger and better idiots. So far, the universe is winning.” This quote applies well to the cyber
security field too. As long as users can be convinced to open a file, click on a link, or perform some
other action necessary for an attack to succeed, they will continue to remain the most exploitable attack
surface. “Humans,” in this equation, should not be limited to the end user. Software developers will
continue to create new applications, build upon unsecured open source libraries, and misconfigure
infrastructure, providing new opportunities for adversaries to exploit.

Summary
In this final chapter, we moved away from the details of detection engineering processes and pivoted
our focus to detection engineering as a career. If you’re reading this book and not already in detection
engineering, this chapter was intended to help guide you on your journey to a position in this field.
We hope that the information provided here, as well as the skills learned throughout the book help
increase your chances of landing such a role. If you’re already in a detection engineering role, hopefully,
this chapter and the rest of the book help improve your skills and future in detection engineering.

We hope you enjoyed this book and wish you all the luck on your detection engineering journey!

Index

A

abstraction map 268, 269
access, authentication, and

authorization logs 80
actionability, of detection 18
Active Exploits score 107, 108
ad hoc tests 38
adversary activity simulation 203

Atomic Red Team 203, 204
CALDERA 204, 205

adversary tools detection 141
PsExec usage, example scenarios 141

alert determinations 260
antivirus (AV) 81
Apache logs 90
Atomic Red Team 203

additional exercises 212
CALDERA agent, deploying 213, 214
detections for multiple technique,

validating 212
detections for single technique,

validating 205
detections, reviewing in Elastic

Stack 217-219
operation, starting 214-217
reference link 204
setup, for validating detection 205-208
validation, executing via 209-212

ATT&CK Navigator
reference link 9

availability logs 80
Awesome Detection Engineering

GitHub repository
reference link 287

B
Beats 42
blue team 202
breach and attack simulation

(BAS) resources 203
Business Email Compromise (BEC) 10
business security requirements 27

C
CALDERA 204, 205

adversary profiles 205
agents 205
facts 205
operations 205
URL 204

Capability Maturity Model
Integration (CMMI) 252

change logs 80

Index296

Cloud Matrix
reference link 79

common log format (CLF) 90
Common Vulnerabilities and

Exposures (CVE) ID 234
communication platform 102
complexity, of detection 17
confidence, of detection 17
continuous activities 28

comprehensive validation 30
maintenance 29
metrics 29
monitoring 29

continuous deployment
pipeline, Sigma rules

compile 177
deploy 177
lint 177
publish 177
test 177

Continuous Integration/ Continuous
Deployment (CI/CD) 16

creation time 17
cyberattacks, types 10

Business Email Compromise (BEC) 10
Denial of Service (DoS) attacks 10, 11
insider threats 11
malware outbreak 11
phishing attacks 11
ransomware attack 11, 12

Cyber Kill Chain 266
cyber security validation 199
cyber-threat intelligence 229

D
data engineering 15
data source issues and challenges 85

completeness 85
coverage 86, 87
quality 86
timeliness 86

data sources 74
adding 87, 88
identifying 83-85
MITRE ATT&CK data sources 82
questions, listing 87
reference link 83

defense in depth 266
Deliberately Insecure Web Application

(DIWA) project 89
deploying, to Linux VM 89

DE life cycle 23, 24
Deploy phase 38
Develop phase 36, 37
Investigate phase 34
Requirements Discovery phase 24
Test phase 37
Triage phase 31

Denial of Service (DoS) attacks 10, 11
deployment tags 39
Deploy phase, DE life cycle 38

experimental 39
stable 39
test 39

detection 66
automated validation 265
building blocks 180
composite alerting 180-182
documenting 169-174
efficacy, calculating 263
high-fidelity coverage metrics 265

Index 297

indicators of compromise (IoCs),
leveraging for 116-118

low-fidelity coverage metrics 263-265
mechanics 66-68
need for 16
quality maintenance 178
tools, embedding within 182-185

Detection-as-code 177, 178
detection, based on static indicators

Investigate phase 117
detection drift 266
detection efforts

prioritizing 257, 258
detection engineering 23, 41

as job 289, 290
defining 14
job, finding 283
job postings 284
motivation for 12-14
roles and responsibilities 290, 291
skills, developing 285
SOC efficiency metrics 254, 255
versus data engineering 15
versus SOC operations 15
versus threat hunting process 15

detection engineering, future 291-294
adversary 294
attack methodology, sharing 293
attack surfaces 291
machine learning (ML) 292
security device capabilities 292
visibility 292

detection engineering maturity
model 252, 253

detection engineering program
benefits 18-20
effectiveness, measuring of 255-257
efficiency, measuring of 253-255

importance 16
maturity, assessing 252, 253
processes, implementing 14, 15

detection indicator types
of Investigate phase 118

Detection Lab
URL 69

detection performance
plotting 261-263

detection pipeline
creation challenges 185, 186

detection repository 174-176
detection requirements

collecting 25
description 25
discovering 100, 101
evidence 25
exceptions 25
Investigate phase 99
investigating 111-113
organization, requesting 25
phases 99, 100
processes 102, 103
reason 25
Requirements Discovery phase 99
scope 25
tools 101
Triage phase 99
triaging 105

detection requirement sources 26
business security requirements 27
continuous activities 28
organization’s detection

requirement sources 30
Red Team exercises 28
Security Operations Center requests 28
threat intelligence 26, 27

Index298

detection requirements, triaging
Active Exploits score 107, 108
detection coverage 107
organizational alignment 106, 107
priority, calculating 109-111
threat severity 105, 106

detection-rules
features 189-192
installing, from command line 186, 187
used, for publishing rule 186
working with 188

detection space 222
Develop phase, DE life cycle 36, 37

design process 37
development process 37
unit testing process 37

Develop phase, mark of web
bypass technique

detection, implementing 167
ISO files, mounting 165
queries, testing 166
reconnaissance commands, executing

via wermgr.exe 166
ZIP file download 165

Distributed Denial of Service
(DDoS) attacks 11

Docker
Elastic Stack, deploying with 44, 45
installing 45
installing, on Linux 46, 47
installing, on Windows 45, 46
reference link, for FAQ 44
reference link, for installation

instructions 45
URL 45

docker-compose utility 44
Domain Name System (DNS) 119
double-extortion ransomware attack 12

reference link 8

E
Elastic Agent

installing 60-64
policies 64-66

Elastic Docs
reference link 43

Elastic Query Language (EQL) 158
Elasticsearch 42

deployment example 43
reference link 44

Elastic Stack 42
Beats 42
configuring 48-50
deploying, with Docker 44, 45
Elasticsearch 42
integrations 42, 43
Kibana 42
Logstash 42
optional storage configuration 50-53

email security appliances 119
Emotet attack chain 5

reference link 5
Unified Kill Chain, mapping for 6

Endpoint and Cloud Security
integration 205

Endpoint Detection and Response
(EDR) 81, 179, 292

error logs 80
example detection design

application data source, using 80
cloud asset data source, using 79
endpoint data source, using 77
network data source, using 79
SaaS data source, using 81

extended detection and response
systems (XDRs) 292

Index 299

F
false negative 259
false positive 259
File Transfer Protocol (FTP) 219
FIN7 26
Fleet Server

additional configurations 56, 57
configuring 54-56
installing 54-56
setting up 53

G
GIAC Certified Detection Analyst

(GCDA) certification 285

H
hashes 116

detecting 130-134
high-fidelity coverage metrics 265

adapt to account, for automated
response 273, 274

detection drift, tracking 266-268
examples 270-273
validation coverage 265
volatility, calculating 274-278

host, adding to detection lab
requirements 57
virtual machine setup 58-60

host-based indicators 116
Hunting ELK

URL 69

I
IcedID campaign

identifying, with indicators 118-127
Impacket 142

reference link 153
incident response (IR) teams 232
indicators of compromise

(IoCs) 116, 141, 169
leveraging, for detection 116-118

Industrial Control System (ICS) 258
infrastructure as Code (IaC) 16
insider threats 11
internal threat intelligence 231, 232
Internet Storm Center (ISC) diary 119
Investigate phase, DE life cycle 34

data source, identifying 34
detection indicator types,

determining 35, 36
research, performing 36
validation criteria, establishing 36

K
Kibana 42

features, reference link 42
kill chain analysis 267

L
Labcorp’s web portal 90
large language models (LLMs) 293
Linux

Docker, installing on 46, 47
Linux logs 76, 77
Logstash 42

Index300

low-fidelity coverage metrics 263, 264
organization attack surfaces and

visibility, comparing 264
threat intelligence, comparing 264

M
machine learning (ML) 81
macOS Unified Logs 77
malware outbreak 11
mark of web bypass technique

scenario 161, 169
Develop phase 165
Investigate phase 161-165

Matano
URL 69

Maze ransomware 231
Mean-Time-To-Detect (MTTD) 256, 263
Minimum Detections (MDs) 270
MITRE ATT&CK data sources 82
MITRE ATT&CK data sources,

User Account Creation
reference link 83

MITRE ATT&CK framework 7, 288
collection 8
command and control 8
credential access 8
defense evasion 8
discovery 8
execution 7
exfiltration 8
impact 9
initial access 7
lateral movement 8
persistence 7
privilege escalation 8
reconnaissance 7

references 248
resource development 7
URL 9

N
named pipes 150
National Vulnerability Database (NVD) 234
network-based indicators 116

detecting 134-138
next-generation firewalls (NGFWs) 119
noisiness, of detection 17

O
open source intelligence

(OSINT) 27, 116, 230, 231
Open Threat Exchange (OTX) 118
Operational Technology (OT)

environment 34
organizational alignment

using 106, 107
OS Credential Dumping, LSASS Memory

reference link 209
OS Credential Dumping techniques 209

P
packet captures (PCAPs) 100
performance management 251
phishing attacks 11
point estimation 254
point of contact (POC) 104
PowerShell event logs 76
precision 259, 261
proof-of-concept (PoC) exploit code 234
PsExec 141

Index 301

PsExec usage detection scenario 142
data sources, configuring 145
detection, implementing 159, 160
Impacket 153-157
PsExec, researching 142-145
rule development 157, 158
Sysinternals Sysmon 148-153
testing 158, 159
Windows Security auditing 146-148

PsTools 141
pulses 118
purple team exercises 202
Pyramid of Pain 9

reference link 10

Q
Qakbot infection 162
qualities, of good detection 16

ability to detect adversary 16, 17
costs to cyber security organization 17, 18
cost to adversary 18

quality maintenance, detection
Experimental branch 179
Feature branch 178
Test branch 179

R
ransomware 11, 12, 231

reference link 12
raw telemetry 74

application logs 80
cloud assets 79
endpoints and servers 74, 75
network data 78

recall 259, 261
receiver operating characteristic

(ROC) curves 261

red team 202
exercises 28

RemCom 142
remote access Trojan (RAT) 32, 109
Requirements Discovery phase 103, 104

exercise 30, 31
Requirements Discovery phase,

DE life cycle 24
detection requirement 25
detection requirement sources 26

return on investment (ROI) 19
rule

deploying 194, 195
linting 193
publishing 194
publishing, with detection-rules 186
testing 193

S
Security Engineer 284
security functions 202
security information and event

management (SIEM) 82, 194, 292
security operations center (SOC) 25, 232

operations 15
requests 28

security tooling 81
endpoint protection 81
network protection 82

sensitive-data 79
Sigma 176, 285
skill development, detection

engineering (DE) 285
community involvement 288
learning recommendations 286
relevant skill sets and learning

recommendations 287

Index302

skill sets 286
training and certifications 285, 286

SOC analysts 289
Software-as-a-Service (SaaS) 80
specificity, of detection 18
staleness 17
story points 253
Structured Threat Information

Expression (STIX) 293
Sysmon 119

configuring 128, 129
installing 128, 129

Sysmon logs 76
Sysmon v14.16

reference link 76

T
tactics 7
tactics, techniques, and procedures

(TTPs) 25, 82, 229
test data 38

known bad data 38
known good data 38

test-driven development 37
Test phase, DE life cycle 37

test data 38
threat assessments 240

references 241
threat assessments, for detection

engineering 241
threat group-based finding 241-244
threat objective-based finding 245-247
threat type-based finding 244, 245

Threat Detection Engineer 284
threat hunting process 15
threat intel blog posts

for detection engineering 234-238

threat intelligence 26, 27
gathering 232
internal threat intelligence 231, 232
open source intelligence (OSINT) 230, 231
overview 229
sources and concepts 248

threat intelligence, in detection
engineering life cycle

Investigate phase 234
Requirements Discovery phase 232
Triage phase 233

threat severity 105, 106
ticketing system 101
tools and tactics, techniques, and

procedures (TTPs) 9, 116
Transparent Tribe 26
Triage phase, DE life cycle 31

active exploits 32-34
detection coverage 32
organizational alignment 32
threat severity 32

true negative 259
true positive 259
TTPs detection 161

mark of web bypass technique,
example scenario 161

U
Unified Kill Chain 4-6

In phase 4
mapping, for Emotet attack chain 6
Out phase 4
reference link 6
Through phase 4

User Acceptance Test (UAT) 257
User Account Control (UAC) 143

Index 303

V
validation process 200

analysis and reporting phase 201
challenges 226
detection coverage, measuring 220-225
edge cases, testing 225
execution and data collection phase 201
peer review 225
planning phase 200
results, using 219, 220
third-party validation 225
unit tests 225
validation coverage metrics 225
validation pass-rate metrics 225

VirtualBox
URL 57

virtual memory configuration 47
Linux 48
Windows 48

virtual private network (VPN) logs 118
VirusTotal 27
VirusTotal, for detection engineering 238

behavior 240
detection details 238, 239
file details 239
relations 239, 240

W
web server data source

adding 88
Apache logs 90
data collection configuration 90-96
lab setting up 88, 89

Windows
Docker, installing on 45, 46

Windows 10 installation .iso file
download link 58

Windows Event Logs 75, 76
Windows Registry 148
Windows Subsystem for Linux

version 2 (WSL2) 45

Y
YARA signatures 184

Z
zero-day attacks 7

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Incident Response Techniques for Ransomware Attacks

Oleg Skulkin

ISBN: 9781803240442

• Understand the modern ransomware threat landscape

• Explore the incident response process in the context of ransomware

• Discover how to collect and produce ransomware-related cyber threat intelligence

• Use forensic methods to collect relevant artifacts during incident response

• Interpret collected data to understand threat actor tactics, techniques, and procedures

• Un d e r s t a n d h o w t o r e c o n s t r u c t t h e r a n s o m w a r e a t t a c k k i l l c h a i n

307Other Books You May Enjoy

Incident Response with Threat Intelligence

Roberto Martinez

ISBN: 9781801072953

• Explore the fundamentals of incident response and incident management

• Find out how to develop incident response capabilities

• Understand the development of incident response plans and playbooks

• Align incident response procedures with business continuity

• Identify incident response requirements and orchestrate people, processes, and technologies

• Discover methodologies and tools to integrate cyber threat intelligence and threat hunting
into incident response

308

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Practical Detection Engineering, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

309

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801076715

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

