
Java Concurrency

TABLE OF CONTENTS

Preface 1

Introduction 1

Basic Concepts 1

JMM "happens-before" Relationship 2

Threads and Runnable 3

Synchronization 5

The synchronized Keyword . 5

wait()/notify()/notifyAll() . 6

The volatile Keyword 7

The ThreadLocal Class 7

Immutable Objects 8

Deadlock, Livelock and Thread Starvation 9

Deadlock . 9

Overcoming Deadlock . 10

Livelock . 11

Thread Starvation . 11

The java.util.concurrent Package 11

Executor & ExecutorService . 11

Semaphor . 13

CountDownLatch. 13

CyclicBarrier. 13

Concurrent collections . 14

Atomics . 15

Locks. 15

JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

PREFACEPREFACE

This Java Concurrency Cheatsheet is crafted with
the intention of providing developers, both novice
and experienced, with a concise yet comprehensive
resource to navigate the intricacies of concurrent
programming in Java. Whether you are just
beginning your journey into concurrent
programming or seeking to refine your existing
skills, this cheatsheet aims to be your reliable
companion, offering quick access to essential
concepts, best practices, and code snippets.

INTRODUCTIONINTRODUCTION

Java is a powerful and versatile programming
language known for its support for concurrent
programming. Concurrency allows you to execute
multiple tasks in parallel, making your applications
more efficient and responsive. However,
concurrent programming introduces challenges
such as synchronization, thread safety, and
avoiding common pitfalls like deadlocks and race
conditions.

This Java Concurrency Cheatsheet serves as a quick
reference guide to essential concepts, classes, and
techniques for writing concurrent Java
applications. Whether you’re a beginner looking to
grasp the basics of multithreading or an
experienced developer aiming to optimize
performance, this cheatsheet provides a
comprehensive overview of key topics.

BASIC CONCEPTSBASIC CONCEPTS

Let’s start by providing a foundation for
understanding and working with concurrent
programming in Java. Concurrent programming is
essential for leveraging the power of modern multi-
core processors and creating responsive and
efficient applications that can perform tasks
concurrently and in parallel.

Concept Description

Thread A thread represents an
independent path of
execution within a Java
program. Threads allow
for concurrent and
parallel execution of
code. Java supports
multithreading through
the Thread class.

Runnable The Runnable interface is
used for defining the
code that can be
executed by a thread. It
provides a way to
encapsulate the task or
job that a thread should
perform.

Synchronization Synchronization
mechanisms like
synchronized blocks and
methods are used to
control access to critical
sections of code,
preventing multiple
threads from accessing
them simultaneously.

Locks and Mutexes Locks (e.g.,
ReentrantLock) are
explicit mechanisms
used to manage access
to shared resources,
allowing threads to
acquire and release
locks for controlled
access.

Race Conditions A race condition occurs
when two or more
threads access shared
data concurrently, and
the final result depends
on the order of
execution, leading to
unpredictable behavior.
Proper synchronization
prevents race
conditions.

1 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Concept Description

Data Race A data race is a specific
type of race condition
where two or more
threads concurrently
access shared data, and
at least one of them
modifies the data. Data
races can result in
undefined behavior and
should be avoided.

Deadlocks Deadlocks occur when
two or more threads are
blocked, waiting for
resources that will
never be released.
Identifying and avoiding
deadlocks is essential in
concurrent
programming.

Atomic Operations Atomic operations are
thread-safe operations
that can be performed
without interference
from other threads. Java
provides atomic classes
like AtomicInteger and
AtomicReference.

Thread Local Storage Thread-local storage
allows each thread to
have its own copy of a
variable, which is
isolated from other
threads. It’s useful for
storing thread-specific
data.

Volatile Keyword The volatile keyword
ensures that changes to
a variable are visible to
all threads. It’s used for
variables accessed by
multiple threads
without
synchronization.

Concept Description

Java Memory Model
(JMM)

JMM defines the rules
and guarantees for how
threads interact with
memory, ensuring
visibility of changes
made by one thread to
other threads.

JMM "HAPPENS-BEFORE"
RELATIONSHIP

JMM "HAPPENS-BEFORE"
RELATIONSHIP

The "happens-before" relationship describes the
guarantees and constraints JMM applies regarding
the order of actions and visibility of memory
changes in a multi-threaded environment. It is
critical for establishing a consistent and predictable
order of operations when we have multiple threads
accessing the same resources. It helps prevent
issues like data races, ensures that memory changes
are visible to other threads when necessary, and
provides a foundation for reasoning about the
behavior of concurrent Java programs.

A "happens-before" relationship has the following
properties:

• Guarantee of Order: The "happens-before"
relationship establishes a guarantee that
actions performed before an action "happens-
before" another action, will be seen by other
threads in the expected order. It ensures that
certain operations are observed as occurring
sequentially.

• Program Order: Actions within a single thread,
as defined by the program order, are always
considered to have a "happens-before"
relationship. This means that actions within the
same thread occur in the order specified by the
program, as expected.

• Synchronization: Synchronization actions,
such as acquiring and releasing locks via
synchronized blocks or ReentrantLocks, create
"happens-before" relationships. When a thread
releases a lock, all actions performed within
the synchronized block are guaranteed to be
visible to other threads that subsequently
acquire the same lock.

• Thread Start and Termination: When a
thread starts (via Thread.start()) or terminates
(via Thread.join()), there is a "happens-before"

2 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

relationship between the thread’s start or
termination and actions that occur within that
thread.

• Volatile Variable Access: Accesses to volatile
variables create "happens-before"
relationships. When a thread writes to a
volatile variable, it guarantees that subsequent
reads by other threads will see the most recent
write.

• Transitivity: "happens-before" relationships
are transitive. If action A "happens-before"
action B, and action B "happens-before" action
C, then action A also "happens-before" action C.

THREADS AND RUNNABLETHREADS AND RUNNABLE

The Thread class is a fundamental class for creating
and managing threads. It allows you to define and
run concurrent tasks or processes within your
application. Threads represent lightweight,
independent paths of execution that can perform
tasks concurrently, making it possible to achieve
parallelism in your programs.

public class MyThread extends Thread
{
 public void run() {
 // Code to be executed by
the thread
 for (int i = 1; i <= 5; i++)
{
 System.out.println
("Thread: " + Thread.
currentThread().getId() + " Count: "
+ i);
 }
 }

 public static void main(String[]
args) {
 // Create two threads
 MyThread thread1 = new
MyThread();
 MyThread thread2 = new
MyThread();

 // Start the threads
 thread1.start();
 thread2.start();

 }
}

The Runnable interface is a functional interface that
represents a task or piece of code that can be
executed concurrently by a thread. It provides a
way to define the code that a thread should run
without the need to explicitly extend the Thread
class. Implementing the Runnable interface allows
for better separation of concerns and promotes
reusability of code.

public class MyRunnable implements
Runnable {
 public void run() {
 // Code to be executed by
the thread
 for (int i = 1; i <= 5; i++)
{
 System.out.println
("Thread: " + Thread.
currentThread().getId() + " Count: "
+ i);
 }
 }

 public static void main(String[]
args) {
 // Create two Runnable
instances
 MyRunnable runnable1 = new
MyRunnable();
 MyRunnable runnable2 = new
MyRunnable();

 // Create threads and
associate them with Runnable
instances
 Thread thread1 = new Thread
(runnable1);
 Thread thread2 = new Thread
(runnable2);

 // Start the threads
 thread1.start();
 thread2.start();
 }
}

3 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Thread states represent the different phases or
conditions that a thread can be in during its
lifecycle:

Thread State Description

NEW A thread is in the NEW
state when it has been
created but has not yet
started executing. It is
not yet eligible to run
and has not yet acquired
any system resources.

RUNNABLE A thread is in the
RUNNABLE state when it is
eligible to run, and the
Java Virtual Machine
(JVM) has allocated
resources for its
execution. However, it
may not be currently
executing.

BLOCKED A thread is in the
BLOCKED state when it is
waiting to acquire a
monitor lock to enter a
synchronized block or
method. It is blocked by
another thread holding
the lock.

WAITING A thread is in the
WAITING state when it is
waiting for a specific
condition to be met
before it can proceed. It
may be waiting
indefinitely until
notified by another
thread.

TIMED_WAITING Similar to the WAITING
state, a thread in the
TIMED_WAITING state is
waiting for a specific
condition. However, it
has a timeout and will
automatically transition
to RUNNABLE after the
timeout expires.

Thread State Description

TERMINATED A thread is in the
TERMINATED state when it
has completed its
execution or has been
explicitly terminated.
Once terminated, a
thread cannot be
restarted or run again.

Thread lifecycle methods:

Method Description

start() Initiates the execution of
a thread by invoking its
run() method. When
start() is called, the
thread transitions from
the NEW state to the
RUNNABLE state and
begins execution
concurrently. It’s the
primary method for
starting a new thread.

wait() Used to make a thread
voluntarily give up the
monitor lock it holds. It
should be called from
within a synchronized
block or method. The
thread enters the
WAITING state and
releases the lock until
it’s notified by another
thread.

notify() / notifyAll() Used to wake up one / all
of the threads that are
waiting using the wait()
method on the same
object. It allows one / all
waiting threads to
transition back to the
RUNNABLE state, giving
them a chance to
proceed.

4 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Method Description

join() Allows one thread to
wait for the completion
of another thread. When
a thread calls join() on
another thread, it will
block until the target
thread finishes its
execution.

yield() Suggests to the JVM that
the current thread is
willing to yield its
current CPU time to
allow other threads to
run. It’s a hint, and the
actual behavior depends
on the JVM’s
implementation.

sleep() Pauses the execution of
the current thread for a
specified amount of time
(in milliseconds). It
allows you to introduce
delays in your program,
often used for timing
purposes.

interrupt() Interrupts the execution
of a thread by setting its
interrupt status. It can
be used to request a
thread to gracefully
terminate or to handle
the interruption in a
custom way. If the
thread is waiting,
sleeping, or blocked an
InterruptedException is
thrown. In case you
catch the exception at
the interrupted thread
level, set its interrupt
status manually by
calling
Thread.currentThread().
interrupt() and throw
the exception in order to
be handled at a higher
level.

SYNCHRONIZATIONSYNCHRONIZATION

THE SYNCHRONIZED KEYWORD

The synchronized keyword is used to create
synchronized blocks of code, which ensure that
only one Thread can execute them at a time. It
provides a way to control access to critical sections
of your program, preventing multiple threads from
accessing them simultaneously.

To enter a synchronized block, one must acquire a
lock on an object’s monitor. An object’s monitor is a
synchronization mechanism that provides locking
functionality on Object instances. After doing so, all
code included in the block can be manipulated
exclusively and atomically. Upon exiting the
synchronized block the lock is returned to the
object’s monitor for other threads to acquire. If the
lock cannot be acquired immediately, the executing
Thread waits until it becomes available.

public class
SynchronizedBlockExample {
 private int count = 0;
 private Object lock = new
Object(); // A lock object for
synchronization

 public void performTask() {
 synchronized (lock) { //
Synchronized block using the 'lock'
object
 for (int i = 0; i <
1000; i++) {
 count++;
 }
 }
 }
}

The synchronized keyword can be also specified on
a method level. For non static methods, the lock is
acquired from the monitor of the Object instance
that the method is a member of, or for static
methods, the Class object monitor of the Class with
the method.

public class SynchronizedExample {

5 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

 private int count = 0;

 // Synchronized instance method
 public synchronized void
increment() {
 count++;
 }

 // Synchronized static method
 public static synchronized void
decrement() {
 count--;
 }

}

The lock is reentrant, so if the thread already holds
the lock, it can successfully acquire it again.

class Reentrantcy {
 private int count = 0;

 public synchronized void doAll()
{
 increment();
 decrement();
 }

 public synchronized void
increment() {
 count++;
 }

 public synchronized void
decrement() {
 count--;
 }
}

WAIT()/NOTIFY()/NOTIFYALL()

The most common pattern for synchronizing access
to functionality/resources using wait(), notify(),
notifyAll() methods is a condition loop. Let’s see
an example that demonstrates the usage of wait()
and notify() to coordinate two threads to print
alternate numbers:

public class WaitNotifyExample {
 private static final Object lock
= new Object();
 private static boolean isOddTurn
= true;

 public static void main(String[]
args) {
 Thread oddThread = new
Thread(() -> {
 for (int i = 1; i <= 10;
i += 2) {
 synchronized (lock)
{
 while
(!isOddTurn) {
 try {
 lock
.wait(); // Wait until it's the odd
thread's turn
 } catch
(InterruptedException e) {
 Thread
.currentThread().interrupt();
 }
 }
 System.out
.println("Odd: " + i);
 isOddTurn =
false; // Satisfy the waiting
condition
 lock.notify();
// Notify the even thread
 }
 }
 });

 Thread evenThread = new
Thread(() -> {
 for (int i = 2; i <= 10;
i += 2) {
 synchronized (lock)
{
 while (
isOddTurn) {
 try {
 lock
.wait(); // Wait until it's the even

6 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

thread's turn
 } catch
(InterruptedException e) {
 Thread
.currentThread().interrupt();
 }
 }
 System.out
.println("Even: " + i);
 isOddTurn =
true; // Satisfy the waiting
condition
 lock.notify();
// Notify the odd thread
 }
 }
 });

 oddThread.start();
 evenThread.start();
 }
}

Things to notice:

• In order to use wait(), notify(), notifyAll() on
an object, you need to acquire the lock on this
object first - both our threads synchronize on
the lock object to acquire its lock.

• Always wait inside a loop that checks the
condition being waited on. This addresses the
timing issue if another thread satisfies the
condition before the wait begins and also
protects your code from spurious wake-ups -
both our threads wait inside a loop governed
by the isOddTurn flag.

• Always ensure that you satisfy the waiting
condition before calling notify() / notifyAll().
Failing to do so will cause a notification but no
thread will ever be able to escape its wait loop -
both our threads satisfy the isOddTurn flag for
the other thread to continue.

THE VOLATILE KEYWORDTHE VOLATILE KEYWORD

When a variable is declared as volatile, it
guarantees that any read or write operation on that
variable is directly performed on the main memory,
ensuring atomic updates and visibility of changes to

all threads. In other words, there JMM applies a
"happens-before" relationship for the events "write
to a volatile variable" and any subsequent "read
from the volatile variable". Therefore, any
subsequent reads of the variable will see the value
that was set by the most recent write.

public class VolatileExample {
 private static volatile boolean
flag = false;

 public static void main(String[]
args) {
 Thread writerThread = new
Thread(() -> {
 try {
 Thread.sleep(1000);
// Simulate some work
 } catch
(InterruptedException e) {
 Thread.
currentThread().interrupt();
 }
 flag = true; // Set the
flag to true
 System.out.println("Flag
set to true by writerThread.");
 });

 Thread readerThread = new
Thread(() -> {
 while (!flag) {
 // Busy-wait until
the flag becomes true
 }
 System.out.println("Flag
is true, readerThread can
proceed.");
 });

 writerThread.start();
 readerThread.start();
 }
}

THE THREADLOCAL CLASSTHE THREADLOCAL CLASS

ThreadLocal is a class that provides thread-local

7 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

variables. A thread-local variable is a variable that
is unique to each thread, meaning that each thread
accessing a ThreadLocal variable gets its own
independent copy of that variable. This can be
useful when you have data that needs to be isolated
and maintained separately for each thread, but also
reduce contention for shared resources, which
usually leads to performance bottlenecks. It’s
commonly used to store values like user sessions,
database connections, and thread-specific state
without explicitly passing them between methods.

Here’s a simple example of how to use ThreadLocal
to store and retrieve thread-specific data:

public class ThreadLocalExample {
 private static ThreadLocal
<Integer> threadLocal = ThreadLocal
.withInitial(() -> 0);

 public static void main(String[]
args) {
 // Create and start three
threads
 Thread thread1 = new
Thread(() -> {
 threadLocal.set(1); //
Set a thread-specific value
 System.out.println
("Thread 1: " + threadLocal.get());
// Get the thread-specific value
 });

 Thread thread2 = new
Thread(() -> {
 threadLocal.set(2);
 System.out.println
("Thread 2: " + threadLocal.get());
 });

 Thread thread3 = new
Thread(() -> {
 threadLocal.set(3);
 System.out.println
("Thread 3: " + threadLocal.get());
 });

 thread1.start();
 thread2.start();

 thread3.start();
 }
}

IMMUTABLE OBJECTSIMMUTABLE OBJECTS

An immutable object is an object whose state
cannot be modified after it is created. Once an
immutable object is initialized, its internal state
remains constant throughout its lifetime. This
property makes immutable objects inherently
thread-safe because they cannot be modified by
multiple threads simultaneously, eliminating the
need for synchronization.

Creating an immutable object involves several key
steps:

• Make the class final: To prevent inheritance
and ensure that the class cannot be subclassed.

• Declare all fields as final: Mark all instance
variables as final to make sure they are
initialized only once, typically within the
constructor.

• No setter methods: Do not provide setter
methods that allow the modification of the
object’s state.

• Safe publication: this reference does not
escape during construction.

• No mutable objects: If the class contains
references to mutable objects (objects that can
change their state), ensure that those
references are not exposed or allow external
modification.

• Make all fields private: Encapsulate the fields
by making them private to restrict direct
access.

• Return a new object in methods that modify
state: Instead of modifying the existing object,
create a new object with the desired changes
and return it.

public final class ImmutablePerson {
 private final String name;
 private final int age;
 private final List
<ImmutablePerson> family;

8 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

 public ImmutablePerson(String
name, int age, List<ImmutablePerson>
family) {
 this.name = name;
 this.age = age;
 // Defensive copy
 List<ImmutablePerson> copy =
new ArrayList<>(family);
 // Making mutable collection
unmodifiable
 this.family = Collections
.unmodifiableList(copy);
 // 'this' is not passed to
anywhere during construction
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 // No setter methods, and fields
are final

 // Instead of modifying the
object, return a new object with the
desired changes
 public ImmutablePerson withAge
(int newAge) {
 return new ImmutablePerson
(this.name, newAge);
 }

 // No toString, hashCode and
equals methods for simplicity
}

DEADLOCK, LIVELOCK AND THREAD
STARVATION

DEADLOCK, LIVELOCK AND THREAD
STARVATION

DEADLOCK

Deadlock is a situation where two or more threads
are unable to proceed with their execution because
they are each waiting for the other(s) to release a

resource or a lock. This results in a standstill where
none of the threads can make progress. Deadlocks
are typically caused by improper synchronization
or resource allocation against resources that causes
blocking. Lest see an example of a deadlock
scenario involving two threads and two locks:

public class DeadlockExample {
 private static final Object
lock1 = new Object();
 private static final Object
lock2 = new Object();

 public static void main(String[]
args) {
 Thread thread1 = new
Thread(() -> {
 synchronized (lock1) {
 System.out.println
("Thread 1: Holding lock 1...");
 try { Thread.sleep
(100); } catch (InterruptedException
e) {}
 System.out.println
("Thread 1: Waiting for lock 2...");
 synchronized (lock2)
{
 System.out
.println("Thread 1: Acquired lock
2.");
 }
 }
 });

 Thread thread2 = new
Thread(() -> {
 synchronized (lock2) {
 System.out.println
("Thread 2: Holding lock 2...");
 try { Thread.sleep
(100); } catch (InterruptedException
e) {}
 System.out.println
("Thread 2: Waiting for lock 1...");
 synchronized (lock1)
{
 System.out
.println("Thread 2: Acquired lock
1.");

9 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

 }
 }
 });

 thread1.start();
 thread2.start();
 }
}

In this example:

• thread1 acquires lock1 and then waits for lock2.

• thread2 acquires lock2 and then waits for lock1.

Both threads are now waiting for a resource held
by the other, resulting in a deadlock. The program
will hang indefinitely.

OVERCOMING DEADLOCK

Deadlocks can be avoided or resolved by various
techniques:

• Use a Timeout: Set a timeout for acquiring
locks. If a thread cannot acquire a lock within a
specified time, it can release any locks it holds
and retry or abort. This functionality can be
easily implemented using ReentrantLock from
the java.util.concurrent.locks package.

• Lock Ordering: Establish a consistent order for
acquiring locks across all threads to prevent
circular waiting as seen in the example below.

• Resource Allocation Graph: Use algorithms
like the resource allocation graph to detect and
recover from deadlocks.

• Design for Deadlock Avoidance: Design your
multi-threaded code to minimize the potential
for deadlocks, such as using higher-level
abstractions like the java.util.concurrent
classes.

import
java.util.concurrent.TimeUnit;
import
java.util.concurrent.locks.Lock;
import
java.util.concurrent.locks.Reentrant
Lock;

public class
DeadlockResolutionExample {
 private static final Lock lock1
= new ReentrantLock();
 private static final Lock lock2
= new ReentrantLock();

 public static void main(String[]
args) {
 Runnable acquireLocks = ()
-> {
 lock1.lock();
 try {
 System.out.println
(Thread.currentThread().getName() +
": Holding lock 1...");
 try {
 Thread.sleep(
100);
 } catch
(InterruptedException e) {
 }
 System.out.println
(Thread.currentThread().getName() +
": Waiting for lock 2...");

 // Attempt to
acquire lock2 with a timeout of 500
milliseconds
 boolean
acquiredLock2 = lock2.tryLock(500,
TimeUnit.MILLISECONDS);
 if (acquiredLock2) {
 try {
 System.out
.println(Thread.currentThread().getN
ame() + ": Acquired lock 2.");
 } finally {
 lock2.
unlock();
 }
 } else {
 System.out
.println(Thread.currentThread().getN
ame() + ": Timeout while waiting for
lock 2.");
 }
 } finally {
 lock1.unlock();

10 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

 }
 };

 // Consistent order for
acquiring locks and use of timeouts
 Thread thread1 = new Thread
(acquireLocks);
 Thread thread2 = new Thread
(acquireLocks);

 thread1.start();
 thread2.start();
 }
}

LIVELOCK

Livelock is a situation where two or more threads
are actively trying to resolve a conflict but end up
causing repeated state changes without making any
progress. In a livelock, threads are not blocked but
are busy responding to each other’s actions, and the
system remains in an undesirable state.

THREAD STARVATION

Thread starvation occurs when a thread is unable
to make progress because it is constantly waiting
for a resource or access to a critical section that is
always being acquired by other threads. This
results in the affected thread not getting a fair
share of CPU time.

THE JAVA.UTIL.CONCURRENT
PACKAGE

THE JAVA.UTIL.CONCURRENT
PACKAGE

The java.util.concurrent package provides a wide
range of classes and interfaces that support
concurrent and multithreaded programming. These
classes offer high-level abstractions for managing
threads, synchronization, and concurrent data
structures, making it easier to write efficient and
thread-safe code. Here’s an overview of some of its
most popular classes and interfaces.

EXECUTOR & EXECUTORSERVICE

Executor is an interface that represents an object
capable of executing tasks asynchronously. It
decouples the task submission from task execution.

ExecutorService is a subinterface of Executor that
extends the functionality by providing methods for
managing the lifecycle of the executor and
controlling the execution of tasks. In other words,
ExecutorService is the core interface for thread
pools.

ExecutorService implementation classes offer
various ways to manage and execute tasks
concurrently, each with its own advantages and use
cases. You can find the most commonly used in the
table below. Choose the appropriate
implementation based on your specific
requirements, but remember, when sizing thread
pools, it is often useful to base their size on the
number of logical cores the machine running your
code has. You can get that value by calling
Runtime.getRuntime().availableProcessors()

Executorservice
Implementation

Description

ThreadPoolExecutor A versatile and
customizable executor
service that allows you
to create thread pools
with specified core and
maximum thread
counts, custom thread
factory, and more.

ScheduledThreadPoolExec
utor

Extends
ThreadPoolExecutor to
provide scheduling
capabilities for
executing tasks at
specific times or
intervals.

ForkJoinPool A specialized
ExecutorService
designed for parallel
execution, particularly
suited for recursive
tasks and algorithms
using the Fork-Join
framework.

WorkStealingPool An implementation of
ForkJoinPool that uses a
work-stealing algorithm
for efficiently
distributing tasks among
worker threads.

11 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Executorservice
Implementation

Description

SingleThreadExecutor Creates an executor
service with a single
worker thread, suitable
for sequentially
executing tasks one at a
time.

FixedThreadPool A fixed-size thread pool
executor that manages a
predetermined number
of worker threads, ideal
for a fixed workload.

CachedThreadPool A thread pool executor
that can adaptively
adjust the number of
threads based on task
demand, suitable for
short-lived and bursty
tasks.

SingleThreadScheduledEx
ecutor

Creates a single-
threaded scheduled
executor, which allows
scheduling tasks for
execution at specific
times or with fixed-rate
intervals.

FixedScheduledThreadPoo
l

A fixed-size thread pool
with scheduling
capabilities, combining
features of a fixed-size
thread pool with task
scheduling.

Additionally, java.util.concurrent provides the
Executors class which contains static factory
methods for easily creating the aforementioned
thread pool types and more.

Available task types are shown in the table below.

Task Type Description

Runnable Tasks Runnable tasks are
simple, non-returning
tasks that implement the
Runnable interface and
perform actions without
producing a result.

Task Type Description

Callable Tasks Callable tasks are
similar to runnables but
can return a result or
throw an exception.
They implement the
Callable<V> interface.

Asynchronous Tasks Asynchronous tasks are
often represented by the
Future<V> interface and
can run independently
of the calling thread.
FutureTask is a concrete
implementation of
Future that allows you to
wrap a Callable or
Runnable and use it with
executors.

Tasks are submitted to the executor service using
ExecutorService#submit, ExecutorService#invokeAll,
or ExecutorService#invokeAny.

Most methods of the ExecutorService return
Future<V> instances. Future is an interface that
represents the result of an asynchronous
computation. It exposes methods to examine if the
computation is complete or block until the result is
available. Below is an example.

import
java.util.concurrent.ExecutorService
;
import
java.util.concurrent.Executors;

public class ExecutorServiceExample
{

 public static void main(String[]
args) {
 // Create an ExecutorService
using a fixed-size thread pool with
2 threads.
 ExecutorService
executorService = Executors
.newFixedThreadPool(2);

 // Define a Runnable task

12 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

 Runnable runnableTask = ()
-> {
 String threadName =
Thread.currentThread().getName();
 System.out.println("Task
1 executed by " + threadName);
 };

 // Define a list of Callable
tasks
 List<Callable<String>>
callableTasks = List.of(
 () -> {
 String threadName =
Thread.currentThread().getName();
 return "Task 2
executed by " + threadName;
 },
 () -> {
 String threadName =
Thread.currentThread().getName();
 return "Task 3
executed by " + threadName;
 }
);

 // Submit the task to the
ExecutorService
 executorService.submit
(runnableTask);

 try {
 // Use invokeAll to
submit a list of Callable tasks and
wait for all tasks to complete.
 List<Future<String>>
futures = executorService.invokeAll
(callableTasks);

 // Print the results of
the Callable tasks, call to get()
waits until the result is available
 for (Future<String>
future : futures) {
 System.out.println
(future.get());
 }

 // Use invokeAny to

submit a list of Callable tasks and
wait for the first completed task.
 String firstResult =
executorService.invokeAny(callableTa
sks);
 System.out.println
("First completed task: " +
firstResult);
 } catch (Exception e) {
 e.printStackTrace();
 }

 // Shutdown the
ExecutorService to stop accepting
new tasks
 executorService.shutdown();
 }
}

SEMAPHOR

The Semaphore class is a synchronization primitive
that allows a fixed number of threads to access a
resource or a section of code concurrently. This is
especially useful for scenarios where you want to
limit concurrency, manage access to a pool of
resources, or protect a critical section of code.
Semaphore is initialized with a count, a set of
permits. Threads may call acquire() to acquire a
permit. Each acquire() blocks if necessary until a
permit is available, and then takes it. Threads may
call release() to add a permit, potentially releasing
a blocking acquirer.

COUNTDOWNLATCH

CountDownLatch is a synchronization construct that
allows one or more threads to wait for a set of
operations to complete before they proceed.
CountDownLatch is initialized with a count, the
number of operations needed to be completed
before a thread is allowed to continue. Threads may
call await() to wait for the count to reach 0 and
then proceed. Threads may call countDown() to
reduce the count by one when they complete an
operation.

CYCLICBARRIER

CyclicBarrier is a synchronization barrier that

13 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

allows a set of threads to wait for each other to
reach a common point before continuing execution.
It’s commonly used to synchronize multiple threads
that perform different subtasks and need to wait
for each other before proceeding. CyclicBarrier is
initialized with a count, the number of threads to
wait before continuing, and a function called when
the count is reached and threads are allowed to
continue. Threads may call await() to wait for the
count to reach the designated number before
allowed to proceed operations.

CONCURRENT COLLECTIONS

These concurrent collection classes provide thread-
safe data structures for various use cases, allowing
multiple threads to access and modify data
concurrently while ensuring data consistency and
minimizing contention. The choice of which class to
use depends on the specific needs of your
concurrent application.

Concurrent Collection
Class

Description

ConcurrentHashMap A highly concurrent,
thread-safe
implementation of the
Map interface, designed
for efficient read and
write operations in
multithreaded
environments.

ConcurrentSkipListMap A concurrent, sorted
map that is based on a
skip list data structure,
providing concurrent
access and sorted order.

Concurrent Collection
Class

Description

BlockingQueue
(LinkedBlockingQueue,
DelayQueue,
PriorityBlockingQueue,
SynchronousQueue)

Blocking queues are
thread-safe, bounded or
unbounded queues that
support blocking
operations for producer-
consumer scenarios. In
DelayQueue elements are
removed based on their
delay, in
PriorityBlockingQueue
based on a Comparator
and in SynchronousQueue
an element is removed
only when a new one
has arrived.

ConcurrentLinkedQueue A thread-safe, non-
blocking, and
unbounded queue based
on a linked node
structure, suitable for
high-concurrency
producer-consumer
scenarios.

ConcurrentLinkedDeque A thread-safe, non-
blocking, double-ended
queue that supports
concurrent access and
modifications from both
ends.

CopyOnWriteArrayList A list that creates a new
copy of its internal array
whenever a
modification is made,
ensuring thread safety
for read-heavy
workloads.

CopyOnWriteArraySet A thread-safe set that is
backed by a
CopyOnWriteArrayList,
providing thread safety
for read-heavy sets.

ConcurrentSkipListSet A concurrent, sorted set
that is based on a skip
list data structure,
providing concurrent
access and sorted order.

14 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

ATOMICS

The java.util.concurrent.atomic package provides
classes that support atomic operations on single
variables. These classes are designed to be used in
multi-threaded applications to ensure that
operations on shared variables are performed
atomically without the need for explicit
synchronization. This helps avoid data races and
ensures thread safety.

Common Atomic Classes:

• AtomicInteger: An integer value that can be
atomically incremented, decremented, or
updated.

• AtomicLong: A long value that supports atomic
operations.

• AtomicBoolean: A boolean value with atomic
operations for setting and getting.

• AtomicReference: A generic reference type that
supports atomic updates.

• AtomicStampedReference: A variant of
AtomicReference that includes a version stamp
to detect changes.

• AtomicIntegerArray, AtomicLongArray,
AtomicReferenceArray: Arrays of atomic values.

They are suitable for scenarios where you need to
perform operations like increment, compare-and-
set, and update on variables without risking data
corruption due to concurrent access. Here’s a
simple example using AtomicInteger to demonstrate
atomic operations.

import
java.util.concurrent.atomic.AtomicIn
teger;

public class AtomicExample {
 public static void main(String[]
args) {
 AtomicInteger atomicInt =
new AtomicInteger(0);

 // Increment the atomic
integer atomically
 int incrementedValue =
atomicInt.incrementAndGet();

 System.out.println
("Incremented value: " +
incrementedValue);

 // Add a specific value
atomically
 int addedValue = atomicInt
.addAndGet(5);
 System.out.println("Added
value: " + addedValue);

 // Compare and set the value
atomically
 boolean updated = atomicInt
.compareAndSet(10, 15);
 System.out.println("Value
updated? " + updated);

 // Get the current value
 int currentValue =
atomicInt.get();
 System.out.println("Current
value: " + currentValue);
 }
}

LOCKS

Locks provide more flexible and advanced locking
mechanisms compared to synchronized blocks,
including features like reentrancy, fairness, and
read-write locking. The java.util.concurrent.locks
package contains two interfaces, Lock and
ReadWriteLock and their implementation classes
ReentrantLock and ReentrantReadWriteLock
respectively.

ReentrantLock is a reentrant mutual exclusion lock
with the same basic behavior as synchronized blocks
but with additional features. It can be used to
control access to a shared resource and provides
more flexibility and control over locking such as
obtaining information about the state of the lock,
non-blocking tryLock(), and interruptible locking.
In this example, we use a ReentrantLock to protect a
critical section of code.

import
java.util.concurrent.locks.Reentrant

15 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Lock;

public class ReentrantLockExample {
 private static ReentrantLock
lock = new ReentrantLock();

 public static void main(String[]
args) {
 Runnable task = () -> {
 lock.lock(); // Acquire
the lock
 try {
 System.out.println
("Thread " + Thread.currentThread
().getId() + " has acquired the
lock.");
 // Perform some
critical section operations
 Thread.sleep(1000);
 } catch
(InterruptedException e) {
 Thread.
currentThread().interrupt();
 } finally {
 lock.unlock(); //
Release the lock
 System.out.println
("Thread " + Thread.currentThread
().getId() + " has released the
lock.");
 }
 };

 // Create multiple threads
to access the critical section
 for (int i = 0; i < 3; i++)
{
 new Thread(task).
start();
 }
 }
}

ReentrantReadWriteLock provides separate locks for
reading and writing. It’s used to allow multiple
threads to read a shared resource simultaneously,
while ensuring that only one thread can write to
the resource at a time. Here’s an example.

import
java.util.concurrent.locks.ReadWrite
Lock;
import
java.util.concurrent.locks.Reentrant
ReadWriteLock;

public class ReadWriteLockExample {
 private static ReadWriteLock
readWriteLock = new
ReentrantReadWriteLock();
 private static String sharedData
= "Initial Data";

 public static void main(String[]
args) {
 Runnable reader = () -> {
 readWriteLock.
readLock().lock(); // Acquire the
read lock
 try {
 System.out.println
("Reader Thread " + Thread
.currentThread().getId() + " is
reading: " + sharedData);
 // Reading shared
data
 } finally {
 readWriteLock
.readLock().unlock(); // Release the
read lock
 }
 };

 Runnable writer = () -> {
 readWriteLock.
writeLock().lock(); // Acquire the
write lock
 try {
 sharedData = "New
Data";
 System.out.println
("Writer Thread " + Thread
.currentThread().getId() + " is
writing: " + sharedData);
 // Writing to the
shared data
 } finally {

16 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

readWriteLock
.writeLock().unlock(); // Release
the write lock

}
};

// Create multiple reader
and writer threads

for (int i = 0; i < 3; i++)
{

new Thread(reader).
start();

}
for (int i = 0; i < 2; i++)

{
new Thread(writer).

start();
}

 }
}

17 JAVA CONCURRENCY

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

Copyright © 2014 Exelixis Media P.C. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,

mechanical, photocopying, or otherwise, without prior written permission of the publisher.

JCG delivers over 1 million pages each month to more than 700K software
developers, architects and decision makers. JCG offers something for everyone,
including news, tutorials, cheat sheets, research guides, feature articles, source code
and more.

CHEATSHEET FEEDBACK
WELCOME

support@javacodegeeks.com

SPONSORSHIP
OPPORTUNITIES

sales@javacodegeeks.com

https://www.javacodegeeks.com/minibook

	Java Concurrency
	Table of Contents
	Preface
	Introduction
	Basic Concepts
	JMM "happens-before" Relationship
	Threads and Runnable
	Synchronization
	The synchronized Keyword
	wait()/notify()/notifyAll()

	The volatile Keyword
	The ThreadLocal Class
	Immutable Objects
	Deadlock, Livelock and Thread Starvation
	Deadlock
	Overcoming Deadlock
	Livelock
	Thread Starvation

	The java.util.concurrent Package
	Executor & ExecutorService
	Semaphor
	CountDownLatch
	CyclicBarrier
	Concurrent collections
	Atomics
	Locks

	cheatsheet ending.pdf
	Design Patterns Cheatsheet
	Table of Contents
	Preface
	About the Author
	1. Introduction
	2. Creational patterns
	2.1. Singleton
	2.2. Factory
	2.3. Abstract Factory
	2.4. Builder
	2.5. Prototype

	3. Structural patterns
	3.1. Adapter
	3.2. Bridge
	3.3. Composite
	3.4. Decorator
	3.5. Facade
	3.6. Flyweight
	3.7. Proxy

	4. Behavioral patterns
	4.1. Chain of Responsibility
	4.2. Command
	4.3. Iterator
	4.4. Mediator
	4.5. Observer
	4.6. Strategy
	4.7. Template Method

