
How to Implement Hierarchical Clustering for
Direct Marketing Campaigns— with Python
Code
Understand the ins and outs of hierarchical clustering, and
how it applies to marketing campaign analysis in the banking
industry.

Zoumana Keita

·

Published in

Towards Data Science

·
11 min read
·
Aug 28

Frederick Warren on Unsplash

https://zoumanakeita.medium.com/?source=post_page-----ef897f52d1c5--------------------------------
https://unsplash.com/photos/lOg_fQLHo7s
https://unsplash.com/@carnations
https://towardsdatascience.com/?source=post_page-----ef897f52d1c5--------------------------------
https://zoumanakeita.medium.com/?source=post_page-----ef897f52d1c5--------------------------------
https://towardsdatascience.com/?source=post_page-----ef897f52d1c5--------------------------------

Motivation
Imagine being a Data Scientist at a leading financial institution, and your task is to assist your team
in categorizing existing clients into distinct profiles:low , average , medium and platinum for
loan approval.

But, here is the catch:

There is no such historical label attached to these customers, so how do you proceed
with the creation of these categories?

This is where clustering can help, an unsupervised machine-learning technique to group unlabeled
data into similar categories.

Multiple clustering techniques exist, but this tutorial will focus more on the hierarchical
clustering approach.

It starts by providing an overview of what hierarchical clustering is, before walking you
through a step-by-step implementation in Python using the popular Scipy library.

What is hierarchical clustering?
Hierarchical clustering is a technique for grouping data into a tree of clusters called
dendrograms, representing the hierarchical relationship between the underlying clusters.

The hierarchical clustering algorithm relies on distance measures to form clusters, and it typically
involves the following main steps:

• Computation of the distance matrix containing the distance between each pair of data points
using a particular distance metric such as Euclidean distance, Manhattan distance, or cosine
similarity

• Merge the two clusters that are the closest in distance
• Update the distance matrix with regard to the new clusters
• Repeat steps 1, 2, and 3 until all the clusters are merged together to create a single cluster

Some graphical illustrations of the hierarchical clustering
Before diving into the technical implementation, let’s have an understanding of two main
hierarchical clustering approaches: agglomerative and divisive clustering.

#1. Agglomerative clustering

Also known as a bottom-up approach, agglomerative clustering starts by considering each data
point as an individual cluster. It then iteratively merges these clusters until only one remains.

Let’s consider the illustration below where:

• We begin by treating each animal as a unique cluster
• Then based on the list of animals, three different clusters are formed according to their

similarities: Eagles and Peacock categorized as Birds , Lions and bears as Mammals ,
Scorpion and Spiders as 3+ legs

• We continue the merging process to create the Vertebrate cluster by combining the two
most similar clusters: Birds and Mammals

• Lastly, the remaining two clusters, Vertebrate and 3+ legsare merged to create a
single Animals cluster.

#2. Divisive clustering

Divisive clustering on the other hand is top-down. It begins by considering all the data points as a
unified cluster and then progressively splits them until each data point stands as a unique cluster.

By observing the graphic of the divisive approach:

• We notice that the entire Animal dataset is considered a unified bloc
• Then, this block is split into two different clusters: Vertebrate and 3+ legs
• The division process is iteratively applied to the previously created clusters until each

animal is distinguished as its own unique cluster

Choosing the right distance measure
The choice of an appropriate distance measure is a critical step in clustering, and it depends on the
specific problem at hand.

For instance, a group of students can be clustered according to their country of origin, gender, or
previous academic background. While each of these criteria is valid for clustering, they convey a
unique significance.

The Euclidean distance is the most frequently used measure in many clustering software. However
other distance measures like Manhattan, Canberra, Pearson correlation, and Minkowski distances
also exist.

How to measure clusters before merging them
Clustering might be considered a straightforward process of grouping data. But, it is more than that.

There are three main standard ways to measure the nearest pair of clusters before merging them:
(1) single linkage, (2) complete linkage, and (3) average linkage. Let’s
explore each one in more detail.

#1. Single linkage

In the single linkage clustering, the distance between two given clusters C1 and C2 corresponds to
the minimum distances between all pairs of items in the two clusters.

Out of all the pairs of items from the two clusters, b and k have the minimum distance.

Single linkage illustration (Image by Author)

#2. Complete linkage

For the complete linkage clustering, the distance between two given clusters C1 and C2 is the
maximum distance between all pairs of items in the two clusters.

Out of all the pairs of items from the two clusters, the ones highlighted in green (f and m) have the
maximum distance.

Complete linkage illustration (Image by Author)

#3. Average linkage

In the average linkage clustering, the distance between two given clusters C1 and C2 is computed
using the average of all the distances between each pair of items in the two clusters.

Average linkage illustration (Image by Author)

From the above formula, the average distance can be computed as follows:

Implementing Hierarchical Clustering in
Python
Now you have an understanding of how hierarchical clustering works, let’s dive deep into the
technical implementation using Python.

We start by configuring the environment, understanding the data along with the relevant
preprocessing tasks, and lastly applying the clustering.

Configure the environment
Python is required and needs to be installed along with the following libraries:

• Pandas for loading the data frame
• Scikit-learn for data normalization
• Seaborn and Matplotlib for data visualization
• Scipy to apply the clustering

All these libraries are installed using the pip command as follows from your notebook:

%%bash
pip install scikit-learn

https://www.python.org/downloads/

pip install pandas
pip install matplotlib seaborn
pip install scipy

Instead of individually installing each library using the !pip [library] we use the %%bash
statement instead so that the notebook cell is considered a shell command, which ignores the !
hence facilitates the installation.

Understanding the data
We use a subset of the bank marketing campaigns (phone calls) data of a Portuguese banking
institution.

This dataset is from UCI and is licensed under a Creative Commons Attribution 4.0 International
(CC BY 4.0) license.

Due to the unsupervised nature of this tutorial, we get rid of the target column y column specifying
if the client subscribed to a deposit or not.

Using the head function only returns the first five entries, which does not provide enough
information about the structure of the data.

import pandas as pd
URL = "https://raw.githubusercontent.com/keitazoumana/Medium-Articles-
Notebooks/main/data/bank.csv"
bank_data = pd.read_csv(URL, sep=";")
bank_data.head()

The first five rows of the load data (Image by Author)

However, if we use the info function, we can have more granular information about the dataset
such as:

• The total number of entries (4,521) and columns (17)
• The name of each column and its type. We can observe that there are two main types of

columns: int64 and object
• The total number of missing values in each column

bank_data.info()

Output:

https://creativecommons.org/licenses/by/4.0/legalcode
https://archive.ics.uci.edu/dataset/222/bank+marketing

Information about the data (Image by Author)

Preprocessing the data
Data preprocessing is a major step in every data science task, and clustering is not an exception.
The main tasks applied to this data include:

• Filling missing values with appropriate information
• Normalizing the column values
• Finally, dropping irrelevant columns

#1. Dealing with missing values

Missing values can significantly damage the overall quality of the analysis and multiple imputation
techniques can be applied to efficiently tackle them.

The percent_missing reports the percentage of missing value in each column, and luckily,
there is no missing value in the data.

percent_missing =round(100*(loan_data.isnull().sum())/len(loan_data),2)
percent_missing

Output:

Percentage of missing values in the data (Image by Author)

#2. Drop irrelevant columns

Keeping the object columns in the dataset would require more processing tasks such as using the
relevant encoding technics to encode categorical data into their numerical representation.

Only int64 (numerical) columns are used in the analysis for simplicity’s sake. With the
select_dtypes function, we select the desired column type to preserve.

import numpy as np
cleaned_data = bank_data.select_dtypes(include=[np.int64])
cleaned_data.info()

Output:

New data without the unwanted columns (Image by Author)

#3. Analyze outliers

A notable drawback of hierarchical clustering is its sensitivity to outliers, which can skew the
distance calculations between data points or clusters.

A simple way to determine those outliers is to analyze the distribution of the data using a boxplot
as illustrated below in the show_boxplot helper function which leverages the Seaborn built-in
boxplot function.

import matplotlib.pyplot as plt
import seaborn as sns

def show_boxplot(df):
 plt.rcParams['figure.figsize'] = [14,6]
 sns.boxplot(data = df, orient="v")
 plt.title("Outliers Distribution", fontsize = 16)
 plt.ylabel("Range", fontweight = 'bold')
 plt.xlabel("Attributes", fontweight = 'bold')

show_boxplot(cleaned_data)

Output:

Boxplot of all the variables in the data (Image by Author)

The balance attribute representing the clients’ average yearly balance is the only one having data
points far away from the rest.

By using the interquartile range approach, we can remove all such points that lie outside the range
defined by the quartiles +/-1.5*IQR, where IQR is the InterQuartile Range.

The overall logic is implemented in the remove_outliers helper function.

def remove_outliers(data):

 df = data.copy()

 for col in list(df.columns):

 Q1 = df[str(col)].quantile(0.05)
 Q3 = df[str(col)].quantile(0.95)
 IQR = Q3 - Q1
 lower_bound = Q1 - 1.5*IQR
 upper_bound = Q3 + 1.5*IQR

 df = df[(df[str(col)] >= lower_bound) & (df[str(col)] <= upper_bound)]

 return df

Then, we can apply the function to the data set, and compare the new boxplot to the one before
removing the outliers.

without_outliers = remove_outliers(cleaned_data)
Display the new boxplot
show_boxplot(without_outliers)

Output:

without_outliers.shape
(4393, 7)

We ended up having a dataset of 4,393 rows and 7 columns, which means that the remaining 127
observations dropped from the data were outliers.

#4. Rescale the data

Given that hierarchical clustering uses Euclidean distance, which is sensitive to variables on
different scales, it’s better to rescale all the variables prior to distance computing.

The fit_transform function from the StandardScaler class transforms the original data so
that each column has a mean of zero and a standard deviation of one.

from sklearn.preprocessing import StandardScaler
data_scaler = StandardScaler()
scaled_data = data_scaler.fit_transform(without_outliers)
scaled_data.shape
(4393, 7)

The shape of the data remains unchanged (4,393 rows and 7 columns) since the normalization does
not affect the shape of the data.

Apply the hierarchical clustering algorithm
We are all set to dive deep into the implementation of the clustering algorithm!

At this stage, we can decide which linkage approach to adopt for the clustering of the method
attribute of linkage() function.

Instead of focusing on only one method, let’s cover all three linkage techniques using the Euclidean
distance.

from scipy.cluster.hierarchy import linkage, dendrogram
complete_clustering = linkage(scaled_data, method="complete",
metric="euclidean")
average_clustering = linkage(scaled_data, method="average", metric="euclidean")

single_clustering = linkage(scaled_data, method="single", metric="euclidean")

After computing all three clusterings, the respective dendrograms are visualized using the
dendogram function from scipy.cluster module and the pyplot function from
matplotlib.

Each dendrogram is organized as follows:

• The x-axis represents the clusters in the data
• The y-axis corresponds to the distance between those samples. The higher the line, the

more dissimilar are those clusters
• The appropriate number of clusters is obtained by drawing a horizontal line through that

highest vertical line
• The number of intersections with the horizontal line corresponds to the number of clusters

dendrogram(complete_clustering)
plt.show()

Output:

Dendrogram of the complete clustering approach (Image by Author)

dendrogram(average_clustering)
plt.show()

Output:

Dendrogram of the average clustering approach (Image by Author)

When running the single clustering we might face the recursion limit issue. This is
tackled by using the setrecursionlimit function with a large enough value:

import sys
sys.setrecursionlimit(1000000)

Now we display the dendrogram:

dendrogram(single_clustering)
plt.show()

Output:

Dendrogram of the single clustering approach (Image by Author)

Determine the number of optimal clusters in the dendrograms
The optimal number of clusters can be obtained by identifying the highest vertical line that does not
intersect with any other clusters (horizontal line). Such a line is found below with a red circle and
green check mark.

• For complete linkage: there is no significant number of clusters generated

Complete linkage: The optimal number of clusters from the highest distance without intersection
(Image by Author)

• For the average linkage: the difference between the two horizontal orange lines is slightly
more than one. We can consider two clusters instead.

Average linkage: The optimal number of clusters from the highest distance without intersection
(Image by Author)

• For the single linkage: no clear number of cluster can be determined

Single linkage: The optimal number of clusters from the highest distance without intersection
(Image by Author)

Based on the analysis above, the average linkage seems to provide the optimal number of clusters
compared to the single and complete linkages which do not provide a clear understanding of the
number of clusters.

Now that we have found the optimal number of clusters let’s interpret these clusters in the context
of the clients’ average yearly balance using the cut_tree function.

cluster_labels = cut_tree(average_clustering, n_clusters=2).reshape(-1,)
without_outliers["Cluster"] = cluster_labels
sns.boxplot(x='Cluster', y='balance', data=without_outliers)

(Image by Author)

From the above boxplot, we can observe that:

• Clients from cluster 0 possess the highest average annual balance
• Borrowers from cluster 1 have a comparatively lower average annual balance

Conclusion
Congratulations!!!🎉

I hope this article provided enough tools to help you take your knowledge to the next level. The
code is available on my GitHub.

Also, If you enjoy reading my stories and wish to support my writing, consider becoming a Medium
member. It’s $5 a month, giving you unlimited access to thousands of Python guides and Data
science articles.

By signing up using my link, I will earn a small commission at no extra cost to you.

Join Medium with my referral link - Zoumana Keita

As a Medium member, a portion of your membership fee goes to writers you
read, and you get full access to every story…
zoumanakeita.medium.com

Feel free to follow me on YouTube, or say Hi on LinkedIn. I am also open to a 1–1 discussion if
you need further information.

https://topmate.io/zoumanakeita
https://www.linkedin.com/in/zoumana-keita/
https://www.youtube.com/channel/UC9xKdy8cz6ZuJU5FTNtM_pQ
https://zoumanakeita.medium.com/membership?source=post_page-----ef897f52d1c5--------------------------------
https://zoumanakeita.medium.com/membership?source=post_page-----ef897f52d1c5--------------------------------
https://zoumanakeita.medium.com/membership?source=post_page-----ef897f52d1c5--------------------------------
https://zoumanakeita.medium.com/membership?source=post_page-----ef897f52d1c5--------------------------------
https://zoumanakeita.medium.com/membership
https://github.com/keitazoumana/Medium-Articles-Notebooks/blob/main/Hierarchical_Clustering_Bank_Marketing.ipynb

	How to Implement Hierarchical Clustering for Direct Marketing Campaigns— with Python Code
	Understand the ins and outs of hierarchical clustering, and how it applies to marketing campaign analysis in the banking industry.

	Motivation
	What is hierarchical clustering?
	Some graphical illustrations of the hierarchical clustering
	Choosing the right distance measure
	How to measure clusters before merging them

	Implementing Hierarchical Clustering in Python
	Configure the environment
	Understanding the data
	Preprocessing the data
	Apply the hierarchical clustering algorithm
	Determine the number of optimal clusters in the dendrograms

	Conclusion
	Join Medium with my referral link - Zoumana Keita
	As a Medium member, a portion of your membership fee goes to writers you read, and you get full access to every story…

