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Meta’s Prophet package¹ is one of the most widely-used packages for time series. At least 
anecdotally, according to me, after looking through a list of time series articles that I’ve 
bookmarked for later reading.

Sarcasm aside, I have used the package before and I love it.

Another great resource for time series modelling is Vincent Warmerdam’s talk titled “Winning with 
Simple, even Linear, Models”² where he touches on modelling time series with linear models (with 
a bit of preparation).

Now, there are some elements of data science which blur the boundaries of art and science — think 
hyperparameter tuning, or defining the structure of a neural network.

We’re going to lean into the art and do what a lot of the great artists have done: borrow ideas from 
others. So, in this series of articles we’ll be borrowing feature engineering ideas from Prophet, and 
linear modelling ideas from Vincent to perform our very own time series regression with a real-
world time series.

The big picture
Let’s touch first on what the overall goal is, before we hone in on feature engineering.

The overarching goal is simple — to generate the most accurate forecast of future events across a 
specified time horizon.

We’ll start from scratch with a time series containing only a date variable and the quantity of 
interest. From this, we’re going to derive additional bits of information which will allow us to 
model future outcomes accurately. These extra features will be heavily “inspired” by Prophet.

We’ll then feed our engineered data into a lightweight model, and let it learn how to best forecast 
into the future. Later on, we’ll dive into the model’s internal workings — after all, we’ll need to 
understand what’s driving our forecasts.

Now that we’ve seen the forest let’s get a close up of the trees, starting with a look at our data.

Data
We’re going to be using real-world data from the UK — in this case, road traffic accidents.

This is the STATS19³ data set produced by the UK government. This data set is quite large so to 
make things a bit more manageable, we’re going to aggregate the daily accident count up to a 
monthly figure.

Visualising our time series, we see a downward trend and a strong yearly pattern. It could also be 
argued that these patterns change at some point between 2012 and 2014.



That’s already two kinds of features that we’ll need to create — something to capture the overall 
direction of travel, and something that captures the repeated annual pattern (or seasonality).

Feature engineering
We’ll touch on the general ideas that will drive our engineering before moving on to its 
implementation.

The beauty of Prophet
Prophet uses a decomposable time series model with three main components combined additively 
(with a little randomness on the side). Mathematically, this is:

Here g(t) is the trend function which models non-periodic changes in the value of the 
time series, s(t) represents periodic changes (e.g., weekly and yearly seasonality), and 
h(t) represents the effects of holidays which occur on potentially irregular schedules 
over one or more days.⁴

It’s this decomposable model form that makes Prophet so flexible, and it’s this idea that a time 
series is separable that will guide our feature engineering: that is, we’ll generate features that will 
help us model each one of these components.

Our imitation won’t be a Prophet doppelganger — we’re only taking inspiration from it. So we’ll 
make a couple of changes:

• g(t) will also represent step changes or change points in the time series.
• We won’t focus too much on the error term (epsilon), other than to remember that Prophet 

uses it to represent “idiosyncratic changes which are not accommodated by the model”⁴.

Aside: if you’re unfamiliar with the components of a time series, this article is a good summary:



Let’s Do: Time Series Decomposition

A guide to effectively breaking a time series into its constituent parts
pub.towardsai.net

We’ll start with basic features that we can get from the date field, before deriving some more 
imaginative features.

Base features: step zero
As a warm up, let’s get out some basic date-related features:

# set date as the Frame index
df.set_index('date', inplace=True)
# simple date features
df['yr'] = df.index.year
df['qtr'] = df.index.quarter
df['mth'] = df.index.month
df['dim'] = df.index.days_in_month

All of these features are available directly. It’s probably clear — even to the uninitiated — that these
features are likely going to be predictive of the monthly accident count.

Time for some themed engineering.

Trend
Trend, or long-term changes over time, can take various forms.

If present at all, trends can often be quite simple — consistent upward or downward changes are not
uncommon. The airline passenger count data that’s used in many time series demonstrations⁵ has a 
very clear and simple trend at play.

However, trends can get more complicated than that. They could for instance, be non-linear, where 
there is an acceleration or deceleration in the rate of change. There could be multiple instances of 
acceleration or deceleration. Or there could be step changes where there is a sudden change in 
location of the trend.

We’ve seen above that there looks to be a downward linear trend in our data, with a change point 
somewhere between 2012 and 2014. I’m not entirely sure of the exact form of the trend, so I’ll 
create a variety of them and let the model figure out which is best:

# fraction of year
df['yr_fraction'] = df.index.year + (df.index.month - 1) / 12
# add non-linearity
yr_fraction_rebased = df['yr_fraction'] - df['yr'].min()
df['yr_fraction_sq'] = yr_fraction_rebased ** 2
df['yr_fraction_cube'] = yr_fraction_rebased ** 3
df['yr_fraction_quad'] = yr_fraction_rebased ** 4
df['yr_fraction_quint'] = yr_fraction_rebased ** 5
df['yr_fraction_sqrt'] = yr_fraction_rebased ** 0.5

Visually, this gives us a number of possible trends (with some scaling to get everything to fit on the 
same chart):

https://pub.towardsai.net/lets-do-time-series-decomposition-d59d6bd4eea6?source=post_page-----52d9df3d930d--------------------------------
https://pub.towardsai.net/lets-do-time-series-decomposition-d59d6bd4eea6?source=post_page-----52d9df3d930d--------------------------------
https://pub.towardsai.net/lets-do-time-series-decomposition-d59d6bd4eea6?source=post_page-----52d9df3d930d--------------------------------


Aside: it’s important to note that while all of these trends look to be increasing, the model will be 
able to use these to capture the decreasing trend in the data, by for example using negative weights 
or coefficients. This applies not only to the trend components, but all features used in the model.

Now for some change points.

Prophet detects change points by first specifying a large number of potential change points, and 
then using as few of them as possible⁶. Prophet’s default approach is to create 25 evenly spaced 
change points over the first 80% of the data.

We’ll do something similar by first creating many potential change points and then letting the model
choose which points to use. This is not too dissimilar from Prophet, but there’s no constraints on 
spacing.

# changepoints
changepoints = pd.DataFrame()
for date in df.index.unique():
    date = pd.to_datetime(date)
    date_str = f'change_{date.strftime("%Y_%m")}'
    
    # allow only X-erly changes
    if date.month % 3 == 0:
        temp = pd.DataFrame(
            {date_str:np.where(df.index <= date,0,1)}
        )
        changepoints = pd.concat([changepoints,temp], axis=1)

If we take a look at the first 12 rows, we see how the change point creation has worked:



Not very complex at all as we have a column for each change point feature indicating whether or 
not the observation happened before or after a given date.

It’s worth mentioning that I’ve only allowed change points to happen at the end of each quarter. 
Unless we’re absolutely certain of changes in the series, the setting of these points can be a bit of an
art where we balance flexibility against overreaction; change points need to be frequent enough to 
capture real changes in trend but not so frequent that they begin to capture noise.

In this case quarterly change points have a bit going for them. Firstly, they effectively put a 
minimum time threshold on how long a change has to last before it is considered “real” — 
potentially useful in reducing the model’s propensity to confuse signal for noise.

In the UK, quarterly changes roughly align with seasonal changes and significant calendar changes 
(e.g. 1 January).

There are external environment effects to consider too: new registration plates are released around 
March and September of each year, which usually drive a spike in new car sales. As new cars are 
generally safer than old cars, it’s not unreasonable to imagine that the change in car parc mix would 
have an impact on the number of road traffic accidents.

While it’s probably not too bad a place to start from, we might have to circle back later for some 
fine-tuning.

Seasonality
We refer to regular or periodic effects present in a time series as seasonality.

Prophet uses Fourier series to represent seasonal effects in the additive model. This generalises as 
the following:

The Fourier representation essentially implies that all the repetitive effects that we see in a time 
series can be represented by a series of sine and cosine waves of varying period.



As we’re working with monthly data, we’d expect to see seasonal effects around the same time 
every year; in other words, the period of our time series is one year, or 12 months. So we’d need to 
set P = 12.

N = 10 and N = 3 have been noted to work well for series with yearly and weekly seasonality 
respectively⁴, but we’ll extend N to 12 for good measure.

Remember that we’re not creating a separate seasonal model, but rather seasonal features which our
single model can assemble to represent periodic variations. With that in mind we create our 
Prophet-inspired features as follows:

# Prophet features
for j in range(1,13):
    df[f'prophet_sin_{j}'] = np.sin(2 * np.pi * df['mth'] * j / 12)
    df[f'prophet_cos_{j}'] = np.cos(2 * np.pi * df['mth'] * j / 12)

This creates multiple sine and cosine waves of various periods, ready for the model to assemble 
together in order to capture seasonality. So as input features, these may look a little like so:

Aside: note how higher values of n reduce the period — or time needed to complete a full cycle — 
of the sine function.

Our model will select and scale these functions in various ways so that the periodic (or seasonal) 
element of the time series is appropriately accounted for… that is, the model will determine the a 
and b coefficients in the formula above.

Holidays
Holidays and events provide large, somewhat predictable shocks to many business time 
series and often do not follow a periodic pattern, so their effects are not well modeled 
by a smooth cycle.⁴

An excellent example of this is the Easter weekend which in the UK has a very definite impact on 
vehicular incidents. However, this holiday weekend doesn’t occur during the same month each year 
— in some instances it falls in March, while in other years we have to wait until April before we 
can start our search for chocolate rabbits.



While we will know fairly well in advance when Easter occurs (and will of course know when it 
occurred in the past), it’s quite difficult to model with the seasonal approach above. So we’ll take a 
different tack and instead count the number of bank holidays and business days in a month, which 
should allow us to also capture the effect of more regular holidays like Christmas.

We can use numpy to get to business days:

# business days
begin = df.index.values.astype('datetime64[D]')
end = (df.index + pd.DateOffset(months = 1)).values.astype('datetime64[D]')
df['bus_days'] = np.busday_count(
    begindates = begin,
    enddates = end
)
# holidays
df['hols'] = pd.Series(df.index).apply(count_holidays).values

… but need the holidays package and a bit of help from StackOverflow⁹ to get to monthly 
holiday count:

import holidays
def count_holidays(u):
    hols = holidays.country_holidays('GB')
    days = pd.date_range(u, u + pd.DateOffset(months = 1))
    return sum(y in hols for y in days)

We’ll leave out the number of weekend days: as it can be derived from existing features, using the 
count of weekend days could introduce unwanted feature correlation.

And that it’s — feature engineering complete, and we’re just about ready to move on to the 
modelling.

Wrap up and ramble
We’ve covered a lot of ground in this article. As is becoming tradition, we’ll quickly recap and then 
have a bit of a ramble.

Summary
After touching on our aspirations to build an awesome forecasting model we looked at UK road 
traffic accident data. We saw strong trend and seasonality in our aggregated monthly counts and 
knew that we’d need to create a variety of features to capture these effects.

We started our feature engineering process with a light warm up — extracting simple and directly 
available date features.

We moved on to building features to capture the trend along with some allowance for change points,
which were treated fairly simply. There was some potential merit to our logic but we acknowledged 
that it might need some fine tuning.

We used adapted Fourier transforms to model seasonality, creating 12 sets of seasonal features.

Finally we moved on to creating holiday features, choosing to focus on the number of working and 
holiday days in a month.



Cyclical feature encoding
When building new features we need to keep with two things in mind — what could be predictive 
of our target and how it would be interpreted by the machine.

A good example of this is month of the year which we usually represent using an integer mapping 
(i.e. January = 1, …, December = 12). We can be fairly sure that the month of the year would be a 
strong driver of accident count. But if we were to pass to the model the integer encoding, the model 
would treat the December of one year as something very different to the January of the following 
year, even they are temporally adjacent!

We solve this issue with cyclical feature encoding, or more specifically by conversion to polar co-
ordinates. Since neither the sine nor cosine transformation deliver a unique encoding on their own, 
we use the combination of both.

The code above doesn’t show any examples of cyclical encoding but it is used in my workflow and 
turns out to be an important feature in the model (see part 2).

The Prophet features
Following in a similar vein, our “Prophet features” relied heavily on sine and cosine 
transformations. In reality, these are really Fourier transforms.

Eagle-eyed readers may have picked up on how the Prophet features have been created. In the 
original paper, the time dimension has been re-based to a certain point and every observation is 
reflected as being t time units after that. We’ve not done that, instead opting to go another path. If I 
ever revisit this, it may be something to consider.

Lagged features: the elephant in the room
So far, I’ve really just glossed over the use of lagged features. Or lack of use to be precise.

Using previous values of the target quantity to predict the current or future value of the target 
quantity — i.e. using values that are “lagged” in time — is a staple in a lot of really great time 
series models. And for good reason, as they are generally strong predictors.

My reluctance to do so centres on the whole purpose of the model — to be good at forecasting. 
When we forecast with lagged features, we usually have to “walk” the lagged features forward and 
transition from using actual values of the target to using predicted values of the target.

To make that more concrete, consider a model which uses one lagged feature — that is, we use the 
value of the target at time t — 1 to predict the value of the target at time t. We’re interested in using 
the model to forecast 3 steps into the future.

The first forecast (at time t + 1) will use the value of the target today. Since the target value is 
known there are no issues here and it’s business as usual.

Now consider the forecast for time t + 2. We need the target value as at time t + 1 in order to use 
our model. Of course, the true target value is unknown at this point and so we resort to using the 
predicted target for time t + 1. When it comes to forecasting time t + 3, we walk forward the 
prediction from time t + 2, so on and so forth. From this it’s clear how prediction error can get 



baked into the forecast; early errors get compounded as poor predictions get walked forward and 
reused. I’m not a fan of this.

There is a secondary benefit from not using lagged features, and that is model explainability: we are
forced into modelling the target in a different way and really have to think about (and model!) the 
drivers of outcome.

Oftentimes this leads to a better conversation with stakeholders, as explaining a forecast starts to 
sound like “long-term trend represents X% and seasonality represents Y% of a forecast of Z” rather 
than “the forecast is B because the value of the previous forecast was A”.

A last note on lagged features before moving on. We aren’t constrained to using lagged target 
features, so while we’ve discussed including previous values of the target feature we could equally 
include lagged predictors with similar caveats and requirements.

This isn’t intended to be a blanket put down of the use of lagged features — I’m sure there are use 
cases where it makes perfect sense to do so. The number of lags used and length of forecasting 
window may even mean that this is a non-issue.

Change points
Let’s talk about change points, and the creation thereof.

I’ve created change points in a really simplistic way, and I’m sure there are many ways to improve 
my implementation. Prophet arguably does it better by creating evenly spaced change points in the 
first 80% of the data, but then there are a few things to consider.

This reduces the impact of more recent spurious change points on future forecasts — that’s a good 
thing.

But how many true changes happen on evenly-spaced time intervals? And if changes really did 
happen at that cadence, wouldn’t it be better thought of as some seasonal impact? Yes, it’s splitting 
hairs. Yes, it is important. Fine, I’ll move on.

While we can model historic change points, it’s a bit more difficult to model future change points; 
there are instances where an upcoming change is known.

For instance, the UK introduced the Civil Liability Act which made changes to the personal injury 
compensation system in England and Wales. If you were to regularly model the number and cost of 
compensation claims for whiplash injuries like I do (for work, not pleasure), the implementation of 
this act in June 2021 resulted in quite a serious step change. But since it was known about in 
advance, it was possible to take steps to account for it.

These kinds of changes need a case-by-case approach, with pragmatism and common sense being 
front and centre.

Interactions
Anyone keeping count of elephants in the room? Here’s another — we haven’t built any features 
which capture the interaction between predictors.



Interactions are incredibly useful features which can capture the relationship between various 
predictors. An interaction occurs when an independent variable has a different effect on the outcome
depending on the values of another independent variable⁹.

In our case one of the more interesting motivations for using interactions would be to allow the 
seasonality to change over time, as we currently assume — and model — that the same seasonal 
effect holds true for more than twenty years. There’s no obvious evidence to the contrary but we 
could potentially eke out more forecasting power from the model by interacting time with some 
features.

We’ll have to add this to our list of things to do next time.

Holidays
Lastly, a quick word on holidays.

We touched on some of the headaches that the Easter weekend can give us and came up with a 
simple solution.

A real enhancement to the feature engineering would be the incorporation of school holidays. These
will likely have an impact on the number of road traffic accidents, and so would be strong 
predictors.

Unfortunately it’s not so easy to do as schools in the UK go on holiday at slightly different times for
slightly different lengths of time. Perhaps we could get really imaginative and create a distribution 
of school holidays, and allocate that to each month — another one for next time.

That’s it from me. I hope you enjoyed reading this as much as I enjoyed writing it.

As always, please let me know what you think — I’m really interested to hear about your 
experiences with Prophet or with modelling time series in different ways.

As I mentioned, I’ll be tackling the modelling in a forthcoming article — keep your eyes peeled for 
that.

Until next time.
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