
Design Patterns

Table of Contents
Preface 1

1. Introduction 1

2. Creational patterns 1

2.1. Singleton . 1

2.2. Factory. 1

2.3. Abstract Factory . 2

2.4. Builder. 2

2.5. Prototype . 2

3. Structural patterns 3

3.1. Adapter . 3

3.2. Bridge . 3

3.3. Composite . 3

3.4. Decorator . 4

3.5. Facade . 4

3.6. Flyweight . 4

3.7. Proxy . 4

4. Behavioral patterns 5

4.1. Chain of Responsibility . 5

4.2. Command . 5

4.3. Iterator . 5

4.4. Mediator . 5

4.5. Observer . 6

4.6. Strategy . 6

4.7. Template Method . 6

DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/minibook

Preface
In this cheatsheet we are going to talk about
design patterns in software development.
We will focus on what they are, how
they can benefit us, but more importantly
where and when to use them.

Design patterns can speed up the
development process by providing tested,
proven development paradigms. Effective
software design requires considering issues
that may not become visible until later in
the implementation. Reusing design
patterns helps to prevent subtle issues that
can cause major problems and improves
code readability for coders and architects
familiar with the patterns.

Often, people only understand how to apply
certain software design techniques to
certain problems. These techniques are
difficult to apply to a broader range of
problems. Design patterns provide general
solutions, documented in a format that
doesn’t require specifics tied to a particular
problem.

1. Introduction
Design patterns are reusable solutions to
common software design problems. They
provide a way to describe and document
software architectures, as well as a common
vocabulary for developers to communicate
about software design.

There are several types of design patterns,
including creational, structural, and
behavioral patterns.

Creational patterns deal with object
creation mechanisms, trying to create
objects in a manner suitable to the situation.

Structural patterns deal with object
composition, creating relationships between
objects to form larger structures.

Behavioral patterns focus on
communication between objects, what goes
on between objects and how they operate
together.

2. Creational
patterns

2.1. Singleton
The Singleton design pattern is used to
ensure that a class has only one instance,
and to provide a global access point to that
instance.

Figure 1. Singleton UML.

• One advantage of using the Singleton
design pattern is that it ensures that
there is only one instance of a class,
which can be useful for classes that
manage resources such as database
connections or network sockets.

• It also provides a global access point to
the instance, which can make it easier to
use the instance in different parts of the
code.

2.2. Factory
Provides a way to create objects without
specifying the exact class of object that will
be created. Has a method that creates
objects of a specific type. The method takes
the type of object to be created as an

1 DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://examples.javacodegeeks.com/wp-content/uploads/2022/12/image.png
https://www.javacodegeeks.com/minibook

argument and returns a new object of that
type.

Figure 2. Factory UML.

• One advantage of using the Factory
design pattern is that it allows the
creation of objects to be centralized in a
single location, which can make the code
more modular and easier to maintain.

• It also allows the implementation of
object creation to be changed easily,
which can make the design more
flexible and extensible.

• Allows objects to be created without
specifying their exact class, which can
make the code more generic and
reusable.

2.3. Abstract Factory
Provides an interface for creating families
of related or dependent objects without
specifying their concrete classes.

Figure 3. class_diagram_1

• A system should be independent of how
its products are created, composed, and
represented.

• A system should be configured with one
of the multiple families of products.

• A family of related product objects is
designed to be used together, and you
need to enforce this constraint.

• Useful when you want to create objects
that are compatible with a certain
application or framework, but you don’t
want to specify the concrete classes of
the objects until runtime.

2.4. Builder
Allows for the creation of complex objects
in a step-by-step manner. It separates the
construction of an object from its
representation, allowing for different
representations to be created.

Figure 4. Builder UML.

• Object creation algorithms should be
decoupled from the system.

• Multiple representations of creation
algorithms are required.

• The addition of new creation
functionality without changing the core
code is necessary.

• Runtime control over the creation
process is required.

2.5. Prototype
Allows for the creation of new objects by
copying existing objects, rather than
creating new objects from scratch.

Figure 5. Prototype UML.

2 DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/wp-content/uploads/2015/09/Factoryclass_diagram_1.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/Abstractclass_diagram_1.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/builder_class_diagram.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/PrototypePatternclass_diagram_11.jpg
https://www.javacodegeeks.com/minibook

• Useful when creating complex objects or
when the cost of creating a new object is
high.

• A class will not know what classes it will
be required to create.

• Subclasses may specify what objects
should be created.

• Parent classes wish to defer creation to
their subclasses.

3. Structural
patterns

3.1. Adapter
Allows two incompatible interfaces to work
together by wrapping an adapter class
around one of the interfaces. This adapter
class converts the interface of the adapted
class into the interface that the client is
expecting.

Figure 6. Figure 3

• Adapters can not only convert data into
various formats but can also help
objects with different interfaces
collaborate.

• Possible to create a two-way adapter
that can convert the calls in both
directions.

3.2. Bridge
Allows for the separation of abstraction and
implementation, so that the two can vary

independently.

Figure 7. Bridge UML.

• Abstractions and implementations
should not be bound at compile time.

• Abstractions and implementations
should be independently extensible.

• Changes in the implementation of an
abstraction should have no impact on
clients.

• Implementation details should be
hidden from the client.

3.3. Composite
Allows objects to be treated as a single unit.
It is used to compose objects into tree
structures, and to create complex objects
from simpler ones.

Figure 8. Composite UML.

• Hierarchical representations of objects
are needed.

• Objects and compositions of objects
should be treated uniformly.

3 DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/wp-content/uploads/2015/09/adapter_pattern_class_diagram.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/class_diagram_3.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/composite_pattern.jpg
https://www.javacodegeeks.com/minibook

3.4. Decorator
Allows for the dynamic addition of new
behavior to an existing object without
changing its structure.

Figure 9. Decorator UML.

• It can be used to add new functionality
to a class or to wrap an existing class
with additional functionality.

3.5. Facade
Provides a simplified interface to a complex
system.

Figure 10. Facade UML.

• Useful when a system has a large
number of interconnected classes or
when a client only needs to access a
limited number of the system’s
capabilities.

• It decouples the client from the complex
subsystems and allows for easier

maintenance and modification of the
system.

3.6. Flyweight
Aims to minimize the use of memory by
sharing common data among objects. This is
done by creating a shared object that can be
used by multiple objects, rather than each
object having its own separate instance of
the data.

Figure 11. Flyweight UML.

• We can reduce the memory footprint of
our application and improve its
performance.

• Carefully consider the trade-off between
the benefits of memory savings and the
added complexity of implementing the
pattern.

3.7. Proxy
Provides an intermediary object between a
client and a real subject.

The proxy pattern can be used to:

Figure 12. Proxy UML.

4 DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/wp-content/uploads/2015/09/decorator_design_pattern_class_diagram_1.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/facade_pattern.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/flyweight_class_diagram.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/Proxyclass_diagram_11.jpg
https://www.javacodegeeks.com/minibook

• Provide a placeholder for a potentially
expensive or resource-intensive object.
The proxy can be used to create the real
object only when it is needed, rather
than creating it upfront.

• Control access to the real subject. The
proxy can be used to enforce access
restrictions or implement authentication
and authorization checks.

• Add additional functionality to the real
subject. The proxy can be used to
intercept requests to the real subject and
perform additional tasks before or after
forwarding the request.

4. Behavioral
patterns

4.1. Chain of
Responsibility
Allows an object to send a request to a chain
of objects in order to handle the request.

Figure 13. Chain of Responsibility UML.

• Useful for situations where multiple
objects may be able to handle a request,
and the specific object that should
handle the request is not known in
advance.

• Allows for the easy addition or removal
of objects from the chain without
disrupting the overall functionality.

4.2. Command
Allows for the encapsulation of a request as
an object, which can then be passed to a
receiver to be executed.

Figure 14. Command UML.

• Allows for the separation of the sender
and receiver of a request.

• Ability to queue or log requests, and to
support undo/redo functionality.

4.3. Iterator
Allows clients to access elements of an
aggregate object sequentially without
exposing the object’s underlying
representation.

Figure 15. Iterator UML.

• Allows clients to traverse a collection of
objects in a consistent, uniform manner,
regardless of the specific
implementation of the collection.

4.4. Mediator
Allows multiple objects to communicate
with each other without knowing the details
of their implementation.

5 DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/wp-content/uploads/2015/09/chain_of_responsibility_class_diagram.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/command_pattern_class_diagram_1.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/iterator_design_pattern_class_diagram_1.jpg
https://www.javacodegeeks.com/minibook

Figure 16. Mediator UML.

• It provides a central point of
communication, known as the mediator,
which acts as an intermediary between
the objects.

• Useful in cases where there are a large
number of objects that need to
communicate with each other, as it
reduces the complexity of the system by
separating the communication logic
from the objects themselves.

4.5. Observer
Allows an object (the subject) to notify a set
of objects (the observers) when its state
changes. The observer pattern is also
known as the publish-subscribe pattern.

Figure 17. Observer UML.

• Useful when you want to ensure that
various objects are kept in sync with
each other, or when you want to be able
to reuse subjects and observers
independently of each other.

4.6. Strategy
Allows an object to change its behavior or
strategy at runtime by switching to a
different strategy object.

Figure 18. Strategy UML.

• The only difference between many
related classes is their behavior.

• Multiple versions or variations of an
algorithm are required.

• Algorithms access or utilize data that
calling code shouldn’t be exposed to.

• The behavior of a class should be
defined at runtime.

• Conditional statements are complex and
hard to maintain.

4.7. Template Method
Defines the steps of an algorithm and allows
subclasses to override certain steps, while
still preserving the overall structure of the
algorithm.

6 DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

https://www.javacodegeeks.com/wp-content/uploads/2015/09/Mediatorclass_diagram_3.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/class_diagram_11.jpg
https://www.javacodegeeks.com/wp-content/uploads/2015/09/strategy_class_diagram_1.jpg
https://www.javacodegeeks.com/minibook

Figure 19. Template Method UML.

• A single abstract implementation of an
algorithm is needed.

• Common behavior among subclasses
should be localized to a common class.

• Parent classes should be able to
uniformly invoke behavior in their
subclasses.

• Most, or all subclasses need to
implement the behavior.

7 DESIGN PATTERNS

JAVACODEGEEKS.COM | © EXELIXIS MEDIA P.C. VISIT JAVACODEGEEKS.COM FOR MORE!

JCG delivers over 1 million pages each month to more than 700K software
developers, architects and decision makers. JCG offers something for everyone,
including news, tutorials, cheat sheets, research guides, feature articles, source code
and more.

Copyright © 2014 Exelixis Media P.C. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,

mechanical, photocopying, or otherwise, without prior written permission of the publisher.

CHEATSHEET FEEDBACK
WELCOME

support@javacodegeeks.com

SPONSORSHIP
OPPORTUNITIES

sales@javacodegeeks.com

https://www.javacodegeeks.com/wp-content/uploads/2015/09/TemplatePatternclass_diagram_13.jpg
https://www.javacodegeeks.com/minibook

	Design Patterns_doctor
	Design Patterns
	Table of Contents
	Preface
	1. Introduction
	2. Creational patterns
	2.1. Singleton
	2.2. Factory
	2.3. Abstract Factory
	2.4. Builder
	2.5. Prototype

	3. Structural patterns
	3.1. Adapter
	3.2. Bridge
	3.3. Composite
	3.4. Decorator
	3.5. Facade
	3.6. Flyweight
	3.7. Proxy

	4. Behavioral patterns
	4.1. Chain of Responsibility
	4.2. Command
	4.3. Iterator
	4.4. Mediator
	4.5. Observer
	4.6. Strategy
	4.7. Template Method

	cheatsheet ending

